Update README.md
Browse files
README.md
CHANGED
|
@@ -29,6 +29,28 @@ To build SmolLM-Instruct, we instruction tuned the models using publicly availab
|
|
| 29 |
|
| 30 |
This is the SmolLM-360M-Instruct.
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Limitations
|
| 34 |
|
|
|
|
| 29 |
|
| 30 |
This is the SmolLM-360M-Instruct.
|
| 31 |
|
| 32 |
+
### Generation
|
| 33 |
+
```bash
|
| 34 |
+
pip install transformers
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
# pip install transformers
|
| 39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 40 |
+
checkpoint = "HuggingFaceTB/SmolLM-360M-Instructt"
|
| 41 |
+
|
| 42 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 44 |
+
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
| 46 |
+
|
| 47 |
+
messages = [{"role": "user", "content": "List the steps to bake a chocolate cake from scratch."}]
|
| 48 |
+
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
|
| 49 |
+
print(input_text)
|
| 50 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
| 51 |
+
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.6, top_p=0.92, do_sample=True)
|
| 52 |
+
print(tokenizer.decode(outputs[0]))
|
| 53 |
+
```
|
| 54 |
|
| 55 |
# Limitations
|
| 56 |
|