cmpatino commited on
Commit
d591279
·
verified ·
1 Parent(s): 451a3a6

Edit model card

Browse files
Files changed (1) hide show
  1. README.md +174 -176
README.md CHANGED
@@ -1,199 +1,197 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
 
 
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ - fr
7
+ - es
8
+ - it
9
+ - pt
10
+ - zh
11
+ - ar
12
+ - ru
13
  ---
14
 
 
15
 
16
+ # SmolLM3
17
 
18
 
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/zy0dqTCCt5IHmuzwoqtJ9.png)
20
 
 
21
 
22
+ ## Table of Contents
23
 
24
+ 1. [Model Summary](#model-summary)
25
+ 2. [Evaluation](#evaluation)
26
+ 3. [Training](#training)
27
+ 4. [Limitations](#limitations)
28
+ 5. [License](#license)
29
 
30
+ ## Model Summary
31
 
32
+ SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale.
 
 
 
 
 
 
33
 
34
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/Zcm_016pWeyFr_uIkT7Ki.png)
35
 
36
+ The model is a decoder-only transformer using GQA and NoRope, it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).
37
 
38
+ ### Key features
39
+ - Instruct model optimized for **hybrid reasoning**
40
+ - **Fully open model**: open weights + full training details including public data mixture and training configs
41
+ - **Long context:** Trained on 64k context and suppots up to **128k tokens** using YARN extrapolation
42
+ - **Multilingual**: 6 natively supported (English, French, Spanish, German, Italian, and Portuguese)
43
 
44
+ For more details refer to our blog post: TODO
45
 
46
+ ### How to use
47
+ The modeling code for SmolLM3 is available in transformers `v4.53.0`, so make sure to upgrade your transformers version. You can also load the model with the latest `vllm` which uses transformers as a backend.
48
+ ```bash
49
+ pip install -U transformers
50
+ ```
51
 
52
+ ```python
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
 
55
+ checkpoint = "HuggingFaceTB/SmolLM3-3B"
56
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
57
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
58
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
59
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
60
+ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
61
+ outputs = model.generate(inputs)
62
+ print(tokenizer.decode(outputs[0]))
63
+ ```
64
 
65
+ For local inference, you can use `llama.cpp`, `ONNX`, `MLX` and `MLC`. You can find quantized checkpoints in this collection [TODO].
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ## Evaluation
68
 
69
+ In this section, we report the evaluation results of SmolLM3 base model. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them. For Ruler 64k evaluation, we apply YaRN to the Qwen models with 32k context to extrapolate the context length.
70
+
71
+ We highlight the best score in bold and underline the second-best score.
72
+
73
+ ## Base Pre-Trained Model
74
+
75
+ ### English benchmarks
76
+ Note: All evaluations are zero-shot unless stated otherwise.
77
+
78
+ | Category | Metric | SmolLM3-3B | Qwen2.5-3B | Llama3-3.2B | Qwen3-1.7B-Base | Qwen3-4B-Base |
79
+ |---------|--------|---------------------|------------|--------------|------------------|---------------|
80
+ | Reasoning & Commonsense| HellaSwag | **76.15** | 74.19 |<u>75.52</u> | 60.52 | 74.37 |
81
+ | | ARC-CF (Average) | **65.61** | 59.81 | 58.58 | 55.88 | <u>62.11</u> |
82
+ | | Winogrande | 58.88 | **61.41** | 58.72 | 57.06 | <u>59.59</u> |
83
+ | | CommonsenseQA | <u>55.28</u> | 49.14 | **60.60** | 48.98 | 52.99 |
84
+ | Knowledge & Understanding | MMLU-CF (Average) | <u>44.13</u> | 42.93 | 41.32 | 39.11 | **47.65** |
85
+ | | MMLU Pro CF | <u>19.61</u> | 16.66 | 16.42 | 18.04 | **24.92** |
86
+ | | MMLU Pro MCF | <u>32.70</u> | 31.32 | 25.07 | 30.39 | **41.07** |
87
+ | | PIQA | **78.89** | 78.35 | <u>78.51</u> | 75.35 | 77.58 |
88
+ | | OpenBookQA | 40.60 | 40.20 | <u>42.00</u> | 36.40 | **42.40** |
89
+ | | BoolQ | **78.99** | 73.61 | <u>75.33</u> | 74.46 | 74.28 |
90
+ | **Math & Code** | | | | | | |
91
+ | Coding & math | HumanEval+ | 30.48 | 34.14| 25.00 | <u>43.29</u>| **54.87** |
92
+ | | MBPP+ | 52.91 | 52.11 | 38.88| <u>59.25</u> | **63.75** |
93
+ | | MATH (4-shot) | <u>46.10</u> | 40.10 | 7.44 | 41.64 | **51.20** |
94
+ | | GSM8k (5-shot) | 67.63 | <u>70.13</u> | 25.92 | 65.88 | **74.14** |
95
+ | **Long context** | | | | | | |
96
+ | | Ruler 32k context | 76.35 | 75.93 | <u>77.58</u> | 70.63 | **83.98** |
97
+ | | Ruler 64k context | 67.85 | 64.90 | **72.93** | 57.18 | 60.29 |
98
+
99
+ ### Multilingual benchmarks
100
+
101
+
102
+
103
+ | Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
104
+ |---------|--------|---------------------|------------|--------------|------------------|---------------|
105
+ | Main supported languages | | | | | | | |
106
+ | French| MLMM Hellaswag | **63.94** | 57.47 | 57.66 | 51.26 | <u>61.00</u> |
107
+ | | Belebele | 51.00 | <u>51.55</u> | 49.22 |49.44| **55.00** |
108
+ | | Global MMLU (CF) | <u>38.37</u> | 34.22 | 33.71 | 34.94 |**41.80** |
109
+ | | Flores-200 (5-shot) | 62.85| 61.38| <u>62.89<u/u> | 58.68 | **65.76** |
110
+ | Spanish| MLMM Hellaswag | **65.85** | 58.25 | 59.39 | 52.40 | <u>61.85</u> |
111
+ | | Belebele | 47.00 | <u>48.88</u> | 47.00 | 47.56 | **50.33** |
112
+ | | Global MMLU (CF) | <u>38.51</u> | 35.84 | 35.60 | 34.79 |**41.22** |
113
+ | | Flores-200 (5-shot) | <u>48.25</u>| 50.00| 44.45 | 46.93 | **50.16** |
114
+ | German| MLMM Hellaswag | **59.56** | 49.99| 53.19|46.10| <u>56.43</u>|
115
+ | | Belebele | <u>48.44</u> | 47.88 | 46.22 | 48.00 | **53.44**|
116
+ | | Global MMLU (CF) | <u>35.10</u> | 33.19 | 32.60 | 32.73 |**38.70** |
117
+ | | Flores-200 (5-shot) | **56.60**| 50.63| <u>54.95</u> | 52.58 | 50.48 |
118
+ | Italian| MLMM Hellaswag | **62.49** | 53.21 | 54.96 | 48.72 | <u>58.76</u> |
119
+ | | Belebele | <u>46.44</u> | 44.77 | 43.88 | 44.00 | **48.78** | 44.88 |
120
+ | | Global MMLU (CF) | <u>36.99</u> | 33.91 | 32.79 | 35.37 |**39.26** |
121
+ | | Flores-200 (5-shot) | <u>52.65<u/>| **54.87**| 48.83 | 48.37 | 49.11 |
122
+ | Portuguese| MLMM Hellaswag | **63.22** | 57.38 | 56.84 | 50.73 | <u>59.89</u> |
123
+ | | Belebele | 47.67 | **49.22** | 45.00 | 44.00 | 50.00 | <u>49.00</U> |
124
+ | | Global MMLU (CF) | <u>36.88</u> | 34.72 | 33.05 | 35.26 |**40.66** |
125
+ | | Flores-200 (5-shot) | <u>60.93</u> |57.68| 54.28 | 56.58 | **63.43** |
126
+
127
+ The model has also been trained on Arabic (standard), Chinese and Russian data, but has seen fewer tokens in these languages compared to the 6 above. We report the performance on these langages for information.
128
+ | Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
129
+ |---------|--------|---------------------|------------|--------------|------------------|---------------|
130
+ | Other supported languages | | | | | | | |
131
+ | Arabic| Belebele | 40.22 | 44.22 | <u>45.33</u> | 42.33 | **51.78** |
132
+ | | Global MMLU (CF) | 28.57 | 28.81 | 27.67 | <u>29.37</u> | **31.85** |
133
+ | | Flores-200 (5-shot) | <u>40.22</u> | 39.44 | **44.43** | 35.82 | 39.76 |
134
+ | Chinese| Belebele | 43.78 | 44.56 | <u>49.56</u> | 48.78 | **53.22** |
135
+ | | Global MMLU (CF) | 36.16 | 33.79 | <u>39.57</u> | 38.56 | **44.55** |
136
+ | | Flores-200 (5-shot) | 29.17 | **33.21** | 31.89 | 25.70 | <u>32.50</u> |
137
+ | Russian| Belebele | <u>47.44</u> | 45.89 | <u>47.44</u> | 45.22 | **51.44** |
138
+ | | Global MMLU (CF) | <u>36.51</u> | 32.47 | 34.52 | 34.83 | **38.80** |
139
+ | | Flores-200 (5-shot) | 47.13 | 48.74 | 50.74 | <u>54.70</u> | **60.53** |
140
+
141
+
142
+ ## Instruction Model
143
+
144
+ ### No Extended Thinking
145
+ Evaluation results of non reasoning models and reasoning models in no thinking mode. We highlight the best and second-best scores in bold.
146
+ | Category | Metric | SmoLLM3-3B | Qwen2.5-3B | Llama3.1-3B | Qwen3-1.7B | Qwen3-4B |
147
+ |---------|--------|------------|------------|-------------|------------|----------|
148
+ | High school math competition | AIME 2025 | <u>9.3</u> | 2.9 | 0.3 | 8.0 | **17.1** |
149
+ | Math problem-solving | GSM-Plus | 72.8 | <u>74.1</u> | 59.2 | 68.3 | **82.1** |
150
+ | Competitive programming | LiveCodeBench v4 | <u>15.2</u> | 10.5 | 3.4 | 15.0 | **24.9** |
151
+ | Graduate-level reasoning | GPQA Diamond | <u>35.7</u> | 32.2 | 29.4 | 31.8 | **44.4** |
152
+ | Instruction following | IFEval | **76.7** | 65.6 | 71.6 | <u>74.0</u> | 68.9 |
153
+ | Alignment | MixEval Hard | 26.9 | <u>27.6</u> | 24.9 | 24.3 | **31.6** |
154
+ | Knowledge | MMLU-Pro | 45.0 | 41.9 | 36.6 | <u>45.6</u> | **60.9** |
155
+ | Multilingual Q&A | Global MMLU | <u>53.5</u> | 50.54 | 46.8 | 49.5 | **65.1** |
156
+
157
+ ### Extended Thinking
158
+ Evaluation results in reasoning mode for SmolLM3 and Qwen3 models:
159
+ | Category | Metric | SmoLLM3-3B | Qwen3-1.7B | Qwen3-4B |
160
+ |---------|--------|------------|------------|----------|
161
+ | High school math competition | AIME 2025 | <u>36.7</u> | 30.7 | **58.8** |
162
+ | Math problem-solving | GSM-Plus | <u>83.4</u> | 79.4 | **88.2** |
163
+ | Competitive programming | LiveCodeBench v4 | 30.0 | <u>34.4</u> | **52.9** |
164
+ | Graduate-level reasoning | GPQA Diamond | <u>41.7</u> | 39.9 | **55.3** |
165
+ | Instruction following | IFEval | 71.2 | <u>74.2</u> | **85.4** |
166
+ | Alignment | MixEval Hard | 30.8 | <u>33.9</u> | **38.0** |
167
+ | Knowledge | MMLU-Pro | <u>58.4</u> | 57.8 | **70.2** |
168
+ | Multilingual Q&A | Global MMLU | <u>64.1</u> | 62.3 | **73.3** |
169
+
170
+ ## Training
171
+
172
+ ### Model
173
+
174
+ - **Architecture:** Transformer decoder
175
+ - **Pretraining tokens:** 11T
176
+ - **Precision:** bfloat16
177
+
178
+ ### Software & hardware
179
+
180
+ - **GPUs:** 384 H100
181
+ - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
182
+ - **Data processing framework:** [datatrove](https://github.com/huggingface/datatrove)
183
+ - **Evaluation framework:** [lighteval](https://github.com/huggingface/lighteval)
184
+ - **Post-training Framework:** [TRL](https://github.com/huggingface/trl)
185
+
186
+ ### Open resources
187
+ Here is an infographic with all the training details [TODO].
188
+ - The datasets used for pretraining can be found in this [collection](https://huggingface.co/collections/HuggingFaceTB/smollm3-pretraining-datasets-685a7353fdc01aecde51b1d9) and those used in mid-training and pos-training can be found here [TODO]
189
+ - The training and evaluation configs and code can be found in the [huggingface/smollm](https://github.com/huggingface/smollm) repository.
190
+
191
+ ## Limitations
192
+
193
+ SmolLM3 can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
194
+
195
+
196
+ ## License
197
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)