Push model using huggingface_hub.
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +379 -3
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +41 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
CHANGED
|
@@ -1,3 +1,379 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: 통화 중 수신함 신청
|
| 9 |
+
- text: 핸드폰 변경 날짜 알려줘
|
| 10 |
+
- text: 인증 번호가 안 와요
|
| 11 |
+
- text: 분실
|
| 12 |
+
- text: 스팸 차단 번호들 알고 싶어
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
pipeline_tag: text-classification
|
| 16 |
+
library_name: setfit
|
| 17 |
+
inference: true
|
| 18 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 22 |
+
|
| 23 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 24 |
+
|
| 25 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 26 |
+
|
| 27 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 28 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 29 |
+
|
| 30 |
+
## Model Details
|
| 31 |
+
|
| 32 |
+
### Model Description
|
| 33 |
+
- **Model Type:** SetFit
|
| 34 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
| 35 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 36 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 37 |
+
- **Number of Classes:** 36 classes
|
| 38 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 39 |
+
<!-- - **Language:** Unknown -->
|
| 40 |
+
<!-- - **License:** Unknown -->
|
| 41 |
+
|
| 42 |
+
### Model Sources
|
| 43 |
+
|
| 44 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 45 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 46 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 47 |
+
|
| 48 |
+
### Model Labels
|
| 49 |
+
| Label | Examples |
|
| 50 |
+
|:---------------------------|:-----------------------------------------------------------------------------------------------------------------|
|
| 51 |
+
| [단말기]모바일 U+Shop | <ul><li>'새로운 폰 개통'</li><li>'그러다 폰 개통'</li><li>'아이폰 십육 프로 문의입니다'</li></ul> |
|
| 52 |
+
| [콜봇공통]장애처리 | <ul><li>'통화품질'</li><li>'핸드폰을 바꿨는데 데이터가 안 터져요'</li><li>'데이터 속도 느림'</li></ul> |
|
| 53 |
+
| [콜봇상담]IPTV장애 | <ul><li>'티비 고장'</li><li>'티비가 안 나와요'</li><li>'저 티비가 안 나와요'</li></ul> |
|
| 54 |
+
| [콜봇상담]결합상품문의 | <ul><li>'핸드폰 결합'</li><li>'가족 묶음이요'</li><li>'결합 해제'</li></ul> |
|
| 55 |
+
| [콜봇상담]기기변경문의 | <ul><li>'네 아이 핸드폰에 변경'</li><li>'아 휴대폰 요금 요금 변경 이런 거 좀 할라고요'</li><li>'기기변경 취소'</li></ul> |
|
| 56 |
+
| [콜봇상담]납부방법변경 | <ul><li>'자동이체 변경'</li><li>'자동이체 신청'</li><li>'응 계좌 변경'</li></ul> |
|
| 57 |
+
| [콜봇상담]납부확인서 발급 | <ul><li>'핸드폰 납부 요금 일월부터 시월까지 팩스로 보내주세요 작년도 거'</li><li>'요금 납부 내역'</li><li>'이십 삼년도 해놨네'</li></ul> |
|
| 58 |
+
| [콜봇상담]듀얼넘버 문의 | <ul><li>'듀얼 넘버'</li><li>'듀얼 넘버'</li><li>'투넘버 서비스'</li></ul> |
|
| 59 |
+
| [콜봇상담]모바일 부가서비스 가입 및 해지 | <ul><li>'부가서비스 해제'</li><li>'부가서비스'</li><li>'패스 해제'</li></ul> |
|
| 60 |
+
| [콜봇상담]선택약정할인상태 안내 및 등록기능 | <ul><li>'선택 약정'</li><li>'선택약정 신청'</li><li>'선택약정할인'</li></ul> |
|
| 61 |
+
| [콜봇상담]세금계산서발행 | <ul><li>'소득세 신고요'</li><li>'종합 종합소득세 신고'</li><li>'세금 납부 서류'</li></ul> |
|
| 62 |
+
| [콜봇상담]스팸차단 서비스 신청 및 해지 | <ul><li>'스팸 차단 메시지를 확인할 수 있어요'</li><li>'어 수신 수신 수신 차단 부 요 풀���주세요'</li><li>'스팸 문자'</li></ul> |
|
| 63 |
+
| [콜봇상담]약정문의(공통) | <ul><li>'약정 연장'</li><li>'약정기간'</li><li>'그의 뭐 하 그 전에 그 기 약정기간이 지난 걸 몰르고 요금이 많이 나오는데 그거는 어 저 뭐 할인 안 되나요'</li></ul> |
|
| 64 |
+
| [콜봇상담]연체문의(공통) | <ul><li>'핸드폰 미납'</li><li>'어 요금 미납'</li><li>'미납요금'</li></ul> |
|
| 65 |
+
| [콜봇상담]요금납부 | <ul><li>'분할 납부'</li><li>'예 요금 낼려구요'</li><li>'미납요금 분할 납부'</li></ul> |
|
| 66 |
+
| [콜봇상담]요금문의(공통) | <ul><li>'요금'</li><li>'요 핸드폰 요금 관련해서 물어보는 겁니다'</li><li>'공구 요금 알려줘'</li></ul> |
|
| 67 |
+
| [콜봇상담]요금제변경 | <ul><li>'요금제 변경'</li><li>'요금 변경'</li><li>'요금제 변경'</li></ul> |
|
| 68 |
+
| [콜봇상담]유심 구매 및 이동 문의 | <ul><li>'유심칩 교체'</li><li>'유심'</li><li>'이심 옮기지'</li></ul> |
|
| 69 |
+
| [콜봇상담]이전설치 | <ul><li>'이사하려고 하는데 서비스 받고 싶어서요'</li><li>'포인트 사용 이전요'</li><li>'주소변경'</li></ul> |
|
| 70 |
+
| [콜봇상담]인터넷 해지 | <ul><li>'인터넷 해제'</li><li>'인터넷 해제'</li><li>'와이파이 해제'</li></ul> |
|
| 71 |
+
| [콜봇상담]인터넷장애 | <ul><li>'와이파이가 인터넷이 안돼 연결은 되는데'</li><li>'인터넷이 잘 안돼요'</li><li>'인터넷 고장'</li></ul> |
|
| 72 |
+
| [콜봇상담]일반상담(공통) | <ul><li>'변경'</li><li>'티비'</li><li>'예 서비스 이용이요'</li></ul> |
|
| 73 |
+
| [콜봇상담]일시정지 및 일시정지 해제(공통) | <ul><li>'일시정지'</li><li>'지금 쓰고 있는 전화 번호 잠시 정지하고 싶어'</li><li>'전화기를 잠시 정지시키려고 합니다'</li></ul> |
|
| 74 |
+
| [콜봇상담]일시정지 및 일시정지 해제(모) | <ul><li>'핸드폰 정지'</li><li>'휴대폰 일시정지'</li><li>'휴대폰 정지'</li></ul> |
|
| 75 |
+
| [콜봇상담]청구요금조회 | <ul><li>'청구요금'</li><li>'네 사월 달에 사월 이십 이일 날 날 청구요금과 국민은행으로 자동이체 된 거하고 확인할라고요'</li><li>'청구요금'</li></ul> |
|
| 76 |
+
| [콜봇상담]통화연결음 가입 및 해지 | <ul><li>'컬러링 없애죠'</li><li>'브이 컬러링 해제'</li><li>'말해 달라 컬러링'</li></ul> |
|
| 77 |
+
| [콜봇상담]통화중대기 가입 및 해지 | <ul><li>'통화 중 대기 부가서비스'</li><li>'예 통화 대기 중'</li><li>'통화 중 대기'</li></ul> |
|
| 78 |
+
| [콜봇상담]해지(공통) | <ul><li>'계약 취소'</li><li>'워치 해제'</li><li>'어 뭐지'</li></ul> |
|
| 79 |
+
| [콜봇상담]홈서비스 가입 | <ul><li>'티비가입'</li><li>'티비 설치 문의'</li><li>'인터넷 설치'</li></ul> |
|
| 80 |
+
| [콜봇상담]환불_이중납부 | <ul><li>'이중납부'</li><li>'요금 납부가 이중으로'</li><li>'이중 교체'</li></ul> |
|
| 81 |
+
| [콜봇상담]휴대폰 분실문의 | <ul><li>'핸드폰 분실'</li><li>'분실 신고'</li><li>'분실신고'</li></ul> |
|
| 82 |
+
| [콜봇상담]휴대폰결제 한도변경 | <ul><li>'소액결제 한도'</li><li>'소액 한도 확인'</li><li>'휴대폰 결제 한도 상향'</li></ul> |
|
| 83 |
+
| [콜봇상담]휴대폰결제(공통) | <ul><li>'소액결제'</li><li>'핸드폰 소액결제'</li><li>'핸드폰 결제 핸드폰 결제'</li></ul> |
|
| 84 |
+
| [콜봇상담]휴대폰보험문의및보상신청 | <ul><li>'파손 보험'</li><li>'의료보험공단이요'</li><li>'휴대폰 보험 확인'</li></ul> |
|
| 85 |
+
| [콜봇이벤트]로밍상담 재질의 | <ul><li>'해외 로밍 부탁드려요'</li><li>'해외 로밍'</li><li>'로밍'</li></ul> |
|
| 86 |
+
| [프리미어요금제약정할인]프리미어 요금제 약정할인 | <ul><li>'프리미엄 요금 약정 신청'</li><li>'프리미엄 요금제 약정 할�� 재가입'</li><li>'프리미엄 요금제 할인 재신청 해줘'</li></ul> |
|
| 87 |
+
|
| 88 |
+
## Uses
|
| 89 |
+
|
| 90 |
+
### Direct Use for Inference
|
| 91 |
+
|
| 92 |
+
First install the SetFit library:
|
| 93 |
+
|
| 94 |
+
```bash
|
| 95 |
+
pip install setfit
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
Then you can load this model and run inference.
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
from setfit import SetFitModel
|
| 102 |
+
|
| 103 |
+
# Download from the 🤗 Hub
|
| 104 |
+
model = SetFitModel.from_pretrained("huiyeong/setfit-callbot-keyword-neg")
|
| 105 |
+
# Run inference
|
| 106 |
+
preds = model("분실")
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
<!--
|
| 110 |
+
### Downstream Use
|
| 111 |
+
|
| 112 |
+
*List how someone could finetune this model on their own dataset.*
|
| 113 |
+
-->
|
| 114 |
+
|
| 115 |
+
<!--
|
| 116 |
+
### Out-of-Scope Use
|
| 117 |
+
|
| 118 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 119 |
+
-->
|
| 120 |
+
|
| 121 |
+
<!--
|
| 122 |
+
## Bias, Risks and Limitations
|
| 123 |
+
|
| 124 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 125 |
+
-->
|
| 126 |
+
|
| 127 |
+
<!--
|
| 128 |
+
### Recommendations
|
| 129 |
+
|
| 130 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 131 |
+
-->
|
| 132 |
+
|
| 133 |
+
## Training Details
|
| 134 |
+
|
| 135 |
+
### Training Set Metrics
|
| 136 |
+
| Training set | Min | Median | Max |
|
| 137 |
+
|:-------------|:----|:-------|:----|
|
| 138 |
+
| Word count | 1 | 3.1023 | 27 |
|
| 139 |
+
|
| 140 |
+
| Label | Training Sample Count |
|
| 141 |
+
|:---------------------------|:----------------------|
|
| 142 |
+
| [단말기]모바일 U+Shop | 59 |
|
| 143 |
+
| [콜봇공통]장애처리 | 58 |
|
| 144 |
+
| [콜봇상담]IPTV장애 | 66 |
|
| 145 |
+
| [콜봇상담]결합상품문의 | 60 |
|
| 146 |
+
| [콜봇상담]기기변경문의 | 61 |
|
| 147 |
+
| [콜봇상담]납부방법변경 | 58 |
|
| 148 |
+
| [콜봇상담]납부확인서 발급 | 62 |
|
| 149 |
+
| [콜봇상담]듀얼넘버 문의 | 57 |
|
| 150 |
+
| [콜봇상담]모바일 부가서비스 가입 및 해지 | 62 |
|
| 151 |
+
| [콜봇상담]선택약정할인상태 안내 및 등록기능 | 63 |
|
| 152 |
+
| [콜봇상담]세금계산서발행 | 63 |
|
| 153 |
+
| [콜봇상담]스팸차단 서비스 신청 및 해지 | 56 |
|
| 154 |
+
| [콜봇상담]약정문의(공통) | 59 |
|
| 155 |
+
| [콜봇상담]연체문의(공통) | 57 |
|
| 156 |
+
| [콜봇상담]요금납부 | 58 |
|
| 157 |
+
| [콜봇상담]요금문의(공통) | 60 |
|
| 158 |
+
| [콜봇상담]요금제변경 | 57 |
|
| 159 |
+
| [콜봇상담]유심 구매 및 이동 문의 | 59 |
|
| 160 |
+
| [콜봇상담]이전설치 | 61 |
|
| 161 |
+
| [콜봇상담]인터넷 해지 | 58 |
|
| 162 |
+
| [콜봇상담]인터넷장애 | 57 |
|
| 163 |
+
| [콜봇상담]일반상담(공통) | 59 |
|
| 164 |
+
| [콜봇상담]일시정지 및 일시정지 해제(공통) | 63 |
|
| 165 |
+
| [콜봇상담]일시정지 및 일시정지 해제(모) | 57 |
|
| 166 |
+
| [콜봇상담]청구요금조회 | 61 |
|
| 167 |
+
| [콜봇상담]통화연결음 가입 및 해지 | 55 |
|
| 168 |
+
| [콜봇상담]통화중대기 가입 및 해지 | 64 |
|
| 169 |
+
| [콜봇상담]해지(공통) | 61 |
|
| 170 |
+
| [콜봇상담]홈서비스 가입 | 59 |
|
| 171 |
+
| [콜봇상담]환불_이중납부 | 61 |
|
| 172 |
+
| [콜봇상담]휴대폰 분실문의 | 64 |
|
| 173 |
+
| [콜봇상담]휴대폰결제 한도변경 | 63 |
|
| 174 |
+
| [콜봇상담]휴대폰결제(공통) | 56 |
|
| 175 |
+
| [콜봇상담]휴대폰보험문의및보상신청 | 60 |
|
| 176 |
+
| [콜봇이벤트]로밍상담 재질의 | 60 |
|
| 177 |
+
| [프리미어요금제약정할인]프리미어 요금제 약정할인 | 66 |
|
| 178 |
+
|
| 179 |
+
### Training Hyperparameters
|
| 180 |
+
- batch_size: (16, 16)
|
| 181 |
+
- num_epochs: (5, 5)
|
| 182 |
+
- max_steps: -1
|
| 183 |
+
- sampling_strategy: oversampling
|
| 184 |
+
- num_iterations: 5
|
| 185 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 186 |
+
- head_learning_rate: 0.01
|
| 187 |
+
- loss: CosineSimilarityLoss
|
| 188 |
+
- distance_metric: cosine_distance
|
| 189 |
+
- margin: 0.25
|
| 190 |
+
- end_to_end: False
|
| 191 |
+
- use_amp: False
|
| 192 |
+
- warmup_proportion: 0.1
|
| 193 |
+
- l2_weight: 0.01
|
| 194 |
+
- seed: 42
|
| 195 |
+
- eval_max_steps: -1
|
| 196 |
+
- load_best_model_at_end: False
|
| 197 |
+
|
| 198 |
+
### Training Results
|
| 199 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 200 |
+
|:------:|:----:|:-------------:|:---------------:|
|
| 201 |
+
| 0.0007 | 1 | 0.2327 | - |
|
| 202 |
+
| 0.0370 | 50 | 0.2495 | - |
|
| 203 |
+
| 0.0741 | 100 | 0.2222 | - |
|
| 204 |
+
| 0.1111 | 150 | 0.2231 | - |
|
| 205 |
+
| 0.1481 | 200 | 0.1941 | - |
|
| 206 |
+
| 0.1852 | 250 | 0.1796 | - |
|
| 207 |
+
| 0.2222 | 300 | 0.1705 | - |
|
| 208 |
+
| 0.2593 | 350 | 0.1623 | - |
|
| 209 |
+
| 0.2963 | 400 | 0.1512 | - |
|
| 210 |
+
| 0.3333 | 450 | 0.1317 | - |
|
| 211 |
+
| 0.3704 | 500 | 0.1156 | - |
|
| 212 |
+
| 0.4074 | 550 | 0.1071 | - |
|
| 213 |
+
| 0.4444 | 600 | 0.1148 | - |
|
| 214 |
+
| 0.4815 | 650 | 0.1024 | - |
|
| 215 |
+
| 0.5185 | 700 | 0.1044 | - |
|
| 216 |
+
| 0.5556 | 750 | 0.1047 | - |
|
| 217 |
+
| 0.5926 | 800 | 0.0879 | - |
|
| 218 |
+
| 0.6296 | 850 | 0.0781 | - |
|
| 219 |
+
| 0.6667 | 900 | 0.078 | - |
|
| 220 |
+
| 0.7037 | 950 | 0.0824 | - |
|
| 221 |
+
| 0.7407 | 1000 | 0.0635 | - |
|
| 222 |
+
| 0.7778 | 1050 | 0.073 | - |
|
| 223 |
+
| 0.8148 | 1100 | 0.078 | - |
|
| 224 |
+
| 0.8519 | 1150 | 0.0676 | - |
|
| 225 |
+
| 0.8889 | 1200 | 0.0677 | - |
|
| 226 |
+
| 0.9259 | 1250 | 0.0714 | - |
|
| 227 |
+
| 0.9630 | 1300 | 0.0548 | - |
|
| 228 |
+
| 1.0 | 1350 | 0.0531 | - |
|
| 229 |
+
| 1.0370 | 1400 | 0.0499 | - |
|
| 230 |
+
| 1.0741 | 1450 | 0.0467 | - |
|
| 231 |
+
| 1.1111 | 1500 | 0.0532 | - |
|
| 232 |
+
| 1.1481 | 1550 | 0.0477 | - |
|
| 233 |
+
| 1.1852 | 1600 | 0.0456 | - |
|
| 234 |
+
| 1.2222 | 1650 | 0.0399 | - |
|
| 235 |
+
| 1.2593 | 1700 | 0.0438 | - |
|
| 236 |
+
| 1.2963 | 1750 | 0.0472 | - |
|
| 237 |
+
| 1.3333 | 1800 | 0.0432 | - |
|
| 238 |
+
| 1.3704 | 1850 | 0.0419 | - |
|
| 239 |
+
| 1.4074 | 1900 | 0.0475 | - |
|
| 240 |
+
| 1.4444 | 1950 | 0.0401 | - |
|
| 241 |
+
| 1.4815 | 2000 | 0.0402 | - |
|
| 242 |
+
| 1.5185 | 2050 | 0.0341 | - |
|
| 243 |
+
| 1.5556 | 2100 | 0.035 | - |
|
| 244 |
+
| 1.5926 | 2150 | 0.033 | - |
|
| 245 |
+
| 1.6296 | 2200 | 0.0368 | - |
|
| 246 |
+
| 1.6667 | 2250 | 0.0266 | - |
|
| 247 |
+
| 1.7037 | 2300 | 0.0325 | - |
|
| 248 |
+
| 1.7407 | 2350 | 0.0307 | - |
|
| 249 |
+
| 1.7778 | 2400 | 0.0321 | - |
|
| 250 |
+
| 1.8148 | 2450 | 0.0309 | - |
|
| 251 |
+
| 1.8519 | 2500 | 0.0273 | - |
|
| 252 |
+
| 1.8889 | 2550 | 0.0277 | - |
|
| 253 |
+
| 1.9259 | 2600 | 0.0312 | - |
|
| 254 |
+
| 1.9630 | 2650 | 0.0282 | - |
|
| 255 |
+
| 2.0 | 2700 | 0.0294 | - |
|
| 256 |
+
| 2.0370 | 2750 | 0.027 | - |
|
| 257 |
+
| 2.0741 | 2800 | 0.0268 | - |
|
| 258 |
+
| 2.1111 | 2850 | 0.0243 | - |
|
| 259 |
+
| 2.1481 | 2900 | 0.0227 | - |
|
| 260 |
+
| 2.1852 | 2950 | 0.0226 | - |
|
| 261 |
+
| 2.2222 | 3000 | 0.0257 | - |
|
| 262 |
+
| 2.2593 | 3050 | 0.0261 | - |
|
| 263 |
+
| 2.2963 | 3100 | 0.0192 | - |
|
| 264 |
+
| 2.3333 | 3150 | 0.0232 | - |
|
| 265 |
+
| 2.3704 | 3200 | 0.0263 | - |
|
| 266 |
+
| 2.4074 | 3250 | 0.0252 | - |
|
| 267 |
+
| 2.4444 | 3300 | 0.024 | - |
|
| 268 |
+
| 2.4815 | 3350 | 0.0236 | - |
|
| 269 |
+
| 2.5185 | 3400 | 0.0193 | - |
|
| 270 |
+
| 2.5556 | 3450 | 0.0226 | - |
|
| 271 |
+
| 2.5926 | 3500 | 0.024 | - |
|
| 272 |
+
| 2.6296 | 3550 | 0.0198 | - |
|
| 273 |
+
| 2.6667 | 3600 | 0.0278 | - |
|
| 274 |
+
| 2.7037 | 3650 | 0.0223 | - |
|
| 275 |
+
| 2.7407 | 3700 | 0.0256 | - |
|
| 276 |
+
| 2.7778 | 3750 | 0.0223 | - |
|
| 277 |
+
| 2.8148 | 3800 | 0.0217 | - |
|
| 278 |
+
| 2.8519 | 3850 | 0.0165 | - |
|
| 279 |
+
| 2.8889 | 3900 | 0.0223 | - |
|
| 280 |
+
| 2.9259 | 3950 | 0.0241 | - |
|
| 281 |
+
| 2.9630 | 4000 | 0.0182 | - |
|
| 282 |
+
| 3.0 | 4050 | 0.0213 | - |
|
| 283 |
+
| 3.0370 | 4100 | 0.0196 | - |
|
| 284 |
+
| 3.0741 | 4150 | 0.0218 | - |
|
| 285 |
+
| 3.1111 | 4200 | 0.0142 | - |
|
| 286 |
+
| 3.1481 | 4250 | 0.0185 | - |
|
| 287 |
+
| 3.1852 | 4300 | 0.0203 | - |
|
| 288 |
+
| 3.2222 | 4350 | 0.0173 | - |
|
| 289 |
+
| 3.2593 | 4400 | 0.018 | - |
|
| 290 |
+
| 3.2963 | 4450 | 0.0161 | - |
|
| 291 |
+
| 3.3333 | 4500 | 0.0143 | - |
|
| 292 |
+
| 3.3704 | 4550 | 0.0151 | - |
|
| 293 |
+
| 3.4074 | 4600 | 0.0115 | - |
|
| 294 |
+
| 3.4444 | 4650 | 0.0152 | - |
|
| 295 |
+
| 3.4815 | 4700 | 0.0166 | - |
|
| 296 |
+
| 3.5185 | 4750 | 0.0215 | - |
|
| 297 |
+
| 3.5556 | 4800 | 0.0138 | - |
|
| 298 |
+
| 3.5926 | 4850 | 0.017 | - |
|
| 299 |
+
| 3.6296 | 4900 | 0.0192 | - |
|
| 300 |
+
| 3.6667 | 4950 | 0.0206 | - |
|
| 301 |
+
| 3.7037 | 5000 | 0.0172 | - |
|
| 302 |
+
| 3.7407 | 5050 | 0.0169 | - |
|
| 303 |
+
| 3.7778 | 5100 | 0.0226 | - |
|
| 304 |
+
| 3.8148 | 5150 | 0.017 | - |
|
| 305 |
+
| 3.8519 | 5200 | 0.0176 | - |
|
| 306 |
+
| 3.8889 | 5250 | 0.0183 | - |
|
| 307 |
+
| 3.9259 | 5300 | 0.0155 | - |
|
| 308 |
+
| 3.9630 | 5350 | 0.0156 | - |
|
| 309 |
+
| 4.0 | 5400 | 0.0174 | - |
|
| 310 |
+
| 4.0370 | 5450 | 0.0121 | - |
|
| 311 |
+
| 4.0741 | 5500 | 0.0132 | - |
|
| 312 |
+
| 4.1111 | 5550 | 0.0159 | - |
|
| 313 |
+
| 4.1481 | 5600 | 0.0144 | - |
|
| 314 |
+
| 4.1852 | 5650 | 0.0179 | - |
|
| 315 |
+
| 4.2222 | 5700 | 0.0175 | - |
|
| 316 |
+
| 4.2593 | 5750 | 0.0118 | - |
|
| 317 |
+
| 4.2963 | 5800 | 0.0136 | - |
|
| 318 |
+
| 4.3333 | 5850 | 0.0151 | - |
|
| 319 |
+
| 4.3704 | 5900 | 0.0171 | - |
|
| 320 |
+
| 4.4074 | 5950 | 0.0185 | - |
|
| 321 |
+
| 4.4444 | 6000 | 0.017 | - |
|
| 322 |
+
| 4.4815 | 6050 | 0.0166 | - |
|
| 323 |
+
| 4.5185 | 6100 | 0.0195 | - |
|
| 324 |
+
| 4.5556 | 6150 | 0.0127 | - |
|
| 325 |
+
| 4.5926 | 6200 | 0.0096 | - |
|
| 326 |
+
| 4.6296 | 6250 | 0.0127 | - |
|
| 327 |
+
| 4.6667 | 6300 | 0.0202 | - |
|
| 328 |
+
| 4.7037 | 6350 | 0.0148 | - |
|
| 329 |
+
| 4.7407 | 6400 | 0.0163 | - |
|
| 330 |
+
| 4.7778 | 6450 | 0.0155 | - |
|
| 331 |
+
| 4.8148 | 6500 | 0.0126 | - |
|
| 332 |
+
| 4.8519 | 6550 | 0.0155 | - |
|
| 333 |
+
| 4.8889 | 6600 | 0.0162 | - |
|
| 334 |
+
| 4.9259 | 6650 | 0.0157 | - |
|
| 335 |
+
| 4.9630 | 6700 | 0.0165 | - |
|
| 336 |
+
| 5.0 | 6750 | 0.0122 | - |
|
| 337 |
+
|
| 338 |
+
### Framework Versions
|
| 339 |
+
- Python: 3.11.13
|
| 340 |
+
- SetFit: 1.1.2
|
| 341 |
+
- Sentence Transformers: 4.1.0
|
| 342 |
+
- Transformers: 4.52.4
|
| 343 |
+
- PyTorch: 2.6.0+cu124
|
| 344 |
+
- Datasets: 3.6.0
|
| 345 |
+
- Tokenizers: 0.21.2
|
| 346 |
+
|
| 347 |
+
## Citation
|
| 348 |
+
|
| 349 |
+
### BibTeX
|
| 350 |
+
```bibtex
|
| 351 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 352 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 353 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 354 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 355 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 356 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 357 |
+
publisher = {arXiv},
|
| 358 |
+
year = {2022},
|
| 359 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 360 |
+
}
|
| 361 |
+
```
|
| 362 |
+
|
| 363 |
+
<!--
|
| 364 |
+
## Glossary
|
| 365 |
+
|
| 366 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 367 |
+
-->
|
| 368 |
+
|
| 369 |
+
<!--
|
| 370 |
+
## Model Card Authors
|
| 371 |
+
|
| 372 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 373 |
+
-->
|
| 374 |
+
|
| 375 |
+
<!--
|
| 376 |
+
## Model Card Contact
|
| 377 |
+
|
| 378 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 379 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 1536,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.52.4",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 250037
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.52.4",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"normalize_embeddings": false,
|
| 3 |
+
"labels": [
|
| 4 |
+
"[\ub2e8\ub9d0\uae30]\ubaa8\ubc14\uc77c U+Shop",
|
| 5 |
+
"[\ucf5c\ubd07\uacf5\ud1b5]\uc7a5\uc560\ucc98\ub9ac",
|
| 6 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]IPTV\uc7a5\uc560",
|
| 7 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uacb0\ud569\uc0c1\ud488\ubb38\uc758",
|
| 8 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uae30\uae30\ubcc0\uacbd\ubb38\uc758",
|
| 9 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ub0a9\ubd80\ubc29\ubc95\ubcc0\uacbd",
|
| 10 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ub0a9\ubd80\ud655\uc778\uc11c \ubc1c\uae09",
|
| 11 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ub4c0\uc5bc\ub118\ubc84 \ubb38\uc758",
|
| 12 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ubaa8\ubc14\uc77c \ubd80\uac00\uc11c\ube44\uc2a4 \uac00\uc785 \ubc0f \ud574\uc9c0",
|
| 13 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc120\ud0dd\uc57d\uc815\ud560\uc778\uc0c1\ud0dc \uc548\ub0b4 \ubc0f \ub4f1\ub85d\uae30\ub2a5",
|
| 14 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc138\uae08\uacc4\uc0b0\uc11c\ubc1c\ud589",
|
| 15 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc2a4\ud338\ucc28\ub2e8 \uc11c\ube44\uc2a4 \uc2e0\uccad \ubc0f \ud574\uc9c0",
|
| 16 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc57d\uc815\ubb38\uc758(\uacf5\ud1b5)",
|
| 17 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc5f0\uccb4\ubb38\uc758(\uacf5\ud1b5)",
|
| 18 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc694\uae08\ub0a9\ubd80",
|
| 19 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc694\uae08\ubb38\uc758(\uacf5\ud1b5)",
|
| 20 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc694\uae08\uc81c\ubcc0\uacbd",
|
| 21 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc720\uc2ec \uad6c\ub9e4 \ubc0f \uc774\ub3d9 \ubb38\uc758",
|
| 22 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc774\uc804\uc124\uce58",
|
| 23 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc778\ud130\ub137 \ud574\uc9c0",
|
| 24 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc778\ud130\ub137\uc7a5\uc560",
|
| 25 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc77c\ubc18\uc0c1\ub2f4(\uacf5\ud1b5)",
|
| 26 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc77c\uc2dc\uc815\uc9c0 \ubc0f \uc77c\uc2dc\uc815\uc9c0 \ud574\uc81c(\uacf5\ud1b5)",
|
| 27 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uc77c\uc2dc\uc815\uc9c0 \ubc0f \uc77c\uc2dc\uc815\uc9c0 \ud574\uc81c(\ubaa8)",
|
| 28 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\uccad\uad6c\uc694\uae08\uc870\ud68c",
|
| 29 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud1b5\ud654\uc5f0\uacb0\uc74c \uac00\uc785 \ubc0f \ud574\uc9c0",
|
| 30 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud1b5\ud654\uc911\ub300\uae30 \uac00\uc785 \ubc0f \ud574\uc9c0",
|
| 31 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud574\uc9c0(\uacf5\ud1b5)",
|
| 32 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud648\uc11c\ube44\uc2a4 \uac00\uc785",
|
| 33 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud658\ubd88_\uc774\uc911\ub0a9\ubd80",
|
| 34 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud734\ub300\ud3f0 \ubd84\uc2e4\ubb38\uc758",
|
| 35 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud734\ub300\ud3f0\uacb0\uc81c \ud55c\ub3c4\ubcc0\uacbd",
|
| 36 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud734\ub300\ud3f0\uacb0\uc81c(\uacf5\ud1b5)",
|
| 37 |
+
"[\ucf5c\ubd07\uc0c1\ub2f4]\ud734\ub300\ud3f0\ubcf4\ud5d8\ubb38\uc758\ubc0f\ubcf4\uc0c1\uc2e0\uccad",
|
| 38 |
+
"[\ucf5c\ubd07\uc774\ubca4\ud2b8]\ub85c\ubc0d\uc0c1\ub2f4 \uc7ac\uc9c8\uc758",
|
| 39 |
+
"[\ud504\ub9ac\ubbf8\uc5b4\uc694\uae08\uc81c\uc57d\uc815\ud560\uc778]\ud504\ub9ac\ubbf8\uc5b4 \uc694\uae08\uc81c \uc57d\uc815\ud560\uc778"
|
| 40 |
+
]
|
| 41 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72897486056056f5007798b5c8e6ab8500024087b39c862ac426f21a6ced22ac
|
| 3 |
+
size 470637416
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41767c36dae94e7b190999c5085185edd4071cf08160e93b6567a1ed0d1988ea
|
| 3 |
+
size 115463
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"extra_special_tokens": {},
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"max_length": 128,
|
| 52 |
+
"model_max_length": 128,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "<pad>",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "</s>",
|
| 58 |
+
"stride": 0,
|
| 59 |
+
"strip_accents": null,
|
| 60 |
+
"tokenize_chinese_chars": true,
|
| 61 |
+
"tokenizer_class": "BertTokenizer",
|
| 62 |
+
"truncation_side": "right",
|
| 63 |
+
"truncation_strategy": "longest_first",
|
| 64 |
+
"unk_token": "<unk>"
|
| 65 |
+
}
|
unigram.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
|
| 3 |
+
size 14763260
|