File size: 1,107 Bytes
2cc7666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
library_name: ultralytics
tags:
  - object-detection
  - yolo
  - yolo9
  - animals
  - CAN-Benchmark
license: mit
datasets:
  - ICICLE-AI/CAN_Benchmark
task: object-detection
---

# YOLOv9 – Animal Detection (Zebra, Impala, Giraffe)

This model is a **YOLOv9** detector fine-tuned with [Ultralytics](https://github.com/ultralytics/ultralytics).  
It was trained for **50 epochs** on a **subset** of the [ICICLE-AI/CAN_Benchmark](https://huggingface.co/datasets/ICICLE-AI/CAN_Benchmark) dataset containing three species:  

- **0 β†’ zebra**  
- **1 β†’ impala**  
- **2 β†’ giraffe**  

## πŸ“Š Training details
- Framework: Ultralytics YOLOv9  
- Epochs: 50  
- See full hyperparameters in [`args.yaml`](./args.yaml)

The model converged by ~40 epochs, and shows strong precision/recall on the held-out validation set:

![Training curves](./results.png)

## πŸš€ Usage

Load the model directly from the Hugging Face Hub:

```python
from ultralytics import YOLO

# Load model from HF Hub
model = YOLO("ICICLE-AI/yolov9-animals-AE-data")

# Run inference
results = model("demo.jpg")
results[0].show()