Add instanovo-v1.0.0 model
Browse files
README.md
CHANGED
|
@@ -1,195 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
license: cc-by-nc-sa-4.0
|
| 3 |
-
library_name: pytorch
|
| 4 |
tags:
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
- peptide-sequencing
|
| 8 |
-
- de-novo-sequencing
|
| 9 |
-
- transformer
|
| 10 |
-
- biology
|
| 11 |
-
- computational-biology
|
| 12 |
-
pipeline_tag: text-generation
|
| 13 |
-
datasets:
|
| 14 |
-
- InstaDeepAI/ms_ninespecies_benchmark
|
| 15 |
-
- InstaDeepAI/ms_proteometools
|
| 16 |
---
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
## Usage
|
| 24 |
-
|
| 25 |
-
```python
|
| 26 |
-
import torch
|
| 27 |
-
import numpy as np
|
| 28 |
-
import pandas as pd
|
| 29 |
-
from instanovo.transformer.model import InstaNovo
|
| 30 |
-
from instanovo.utils import SpectrumDataFrame
|
| 31 |
-
from instanovo.transformer.dataset import SpectrumDataset, collate_batch
|
| 32 |
-
from torch.utils.data import DataLoader
|
| 33 |
-
from instanovo.inference import ScoredSequence
|
| 34 |
-
from instanovo.inference import BeamSearchDecoder
|
| 35 |
-
from instanovo.utils.metrics import Metrics
|
| 36 |
-
from tqdm.notebook import tqdm
|
| 37 |
-
|
| 38 |
-
# Load the model from the Hugging Face Hub
|
| 39 |
-
model, config = InstaNovo.from_pretrained("InstaDeepAI/instanovo-v1.0.0")
|
| 40 |
-
|
| 41 |
-
# Move the model to the GPU if available
|
| 42 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 43 |
-
model = model.to(device).eval()
|
| 44 |
-
|
| 45 |
-
# Update the residue set with custom modifications
|
| 46 |
-
model.residue_set.update_remapping(
|
| 47 |
-
{
|
| 48 |
-
"M(ox)": "M[UNIMOD:35]",
|
| 49 |
-
"M(+15.99)": "M[UNIMOD:35]",
|
| 50 |
-
"S(p)": "S[UNIMOD:21]", # Phosphorylation
|
| 51 |
-
"T(p)": "T[UNIMOD:21]",
|
| 52 |
-
"Y(p)": "Y[UNIMOD:21]",
|
| 53 |
-
"S(+79.97)": "S[UNIMOD:21]",
|
| 54 |
-
"T(+79.97)": "T[UNIMOD:21]",
|
| 55 |
-
"Y(+79.97)": "Y[UNIMOD:21]",
|
| 56 |
-
"Q(+0.98)": "Q[UNIMOD:7]", # Deamidation
|
| 57 |
-
"N(+0.98)": "N[UNIMOD:7]",
|
| 58 |
-
"Q(+.98)": "Q[UNIMOD:7]",
|
| 59 |
-
"N(+.98)": "N[UNIMOD:7]",
|
| 60 |
-
"C(+57.02)": "C[UNIMOD:4]", # Carboxyamidomethylation
|
| 61 |
-
"(+42.01)": "[UNIMOD:1]", # Acetylation
|
| 62 |
-
"(+43.01)": "[UNIMOD:5]", # Carbamylation
|
| 63 |
-
"(-17.03)": "[UNIMOD:385]",
|
| 64 |
-
}
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
# Load the test data
|
| 68 |
-
sdf = SpectrumDataFrame.from_huggingface(
|
| 69 |
-
"InstaDeepAI/ms_ninespecies_benchmark",
|
| 70 |
-
is_annotated=True,
|
| 71 |
-
shuffle=False,
|
| 72 |
-
split="test[:10%]", # Let's only use a subset of the test data for faster inference
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
# Create the dataset
|
| 76 |
-
ds = SpectrumDataset(
|
| 77 |
-
sdf,
|
| 78 |
-
model.residue_set,
|
| 79 |
-
config.get("n_peaks", 200),
|
| 80 |
-
return_str=True,
|
| 81 |
-
annotated=True,
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
# Create the data loader
|
| 85 |
-
dl = DataLoader(ds, batch_size=64, shuffle=False, num_workers=0, collate_fn=collate_batch)
|
| 86 |
-
|
| 87 |
-
# Create the decoder
|
| 88 |
-
decoder = BeamSearchDecoder(model=model)
|
| 89 |
-
|
| 90 |
-
# Initialize lists to store predictions and targets
|
| 91 |
-
preds = []
|
| 92 |
-
targs = []
|
| 93 |
-
probs = []
|
| 94 |
-
|
| 95 |
-
# Iterate over the data loader
|
| 96 |
-
for _, batch in tqdm(enumerate(dl), total=len(dl)):
|
| 97 |
-
spectra, precursors, _, peptides, _ = batch
|
| 98 |
-
spectra = spectra.to(device)
|
| 99 |
-
precursors = precursors.to(device)
|
| 100 |
-
|
| 101 |
-
# Perform inference
|
| 102 |
-
with torch.no_grad():
|
| 103 |
-
p = decoder.decode(
|
| 104 |
-
spectra=spectra,
|
| 105 |
-
precursors=precursors,
|
| 106 |
-
beam_size=config["n_beams"],
|
| 107 |
-
max_length=config["max_length"],
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
preds += [x.sequence if isinstance(x, ScoredSequence) else [] for x in p]
|
| 112 |
-
probs += [
|
| 113 |
-
x.sequence_log_probability if isinstance(x, ScoredSequence) else -float("inf") for x in p
|
| 114 |
-
]
|
| 115 |
-
targs += list(peptides)
|
| 116 |
-
|
| 117 |
-
# Initialize metrics
|
| 118 |
-
metrics = Metrics(model.residue_set, config["isotope_error_range"])
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# Compute precision and recall
|
| 122 |
-
aa_precision, aa_recall, peptide_recall, peptide_precision = metrics.compute_precision_recall(
|
| 123 |
-
peptides, preds
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
# Compute amino acid error rate and AUC
|
| 127 |
-
aa_error_rate = metrics.compute_aa_er(targs, preds)
|
| 128 |
-
auc = metrics.calc_auc(targs, preds, np.exp(pd.Series(probs)))
|
| 129 |
-
|
| 130 |
-
print(f"amino acid error rate: {aa_error_rate:.5f}")
|
| 131 |
-
print(f"amino acid precision: {aa_precision:.5f}")
|
| 132 |
-
print(f"amino acid recall: {aa_recall:.5f}")
|
| 133 |
-
print(f"peptide precision: {peptide_precision:.5f}")
|
| 134 |
-
print(f"peptide recall: {peptide_recall:.5f}")
|
| 135 |
-
print(f"area under the PR curve: {auc:.5f}")
|
| 136 |
-
```
|
| 137 |
-
|
| 138 |
-
For more explanation, see the [Getting Started notebook](https://github.com/instadeepai/InstaNovo/blob/main/notebooks/getting_started_with_instanovo.ipynb) in the repository.
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
## Citation
|
| 142 |
-
|
| 143 |
-
If you use InstaNovo in your research, please cite:
|
| 144 |
-
|
| 145 |
-
```bibtex
|
| 146 |
-
@article{eloff_kalogeropoulos_2025_instanovo,
|
| 147 |
-
title = {InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale
|
| 148 |
-
proteomics experiments},
|
| 149 |
-
author = {Eloff, Kevin and Kalogeropoulos, Konstantinos and Mabona, Amandla and Morell,
|
| 150 |
-
Oliver and Catzel, Rachel and Rivera-de-Torre, Esperanza and Berg Jespersen,
|
| 151 |
-
Jakob and Williams, Wesley and van Beljouw, Sam P. B. and Skwark, Marcin J.
|
| 152 |
-
and Laustsen, Andreas Hougaard and Brouns, Stan J. J. and Ljungars,
|
| 153 |
-
Anne and Schoof, Erwin M. and Van Goey, Jeroen and auf dem Keller, Ulrich and
|
| 154 |
-
Beguir, Karim and Lopez Carranza, Nicolas and Jenkins, Timothy P.},
|
| 155 |
-
year = {2025},
|
| 156 |
-
month = {Mar},
|
| 157 |
-
day = {31},
|
| 158 |
-
journal = {Nature Machine Intelligence},
|
| 159 |
-
doi = {10.1038/s42256-025-01019-5},
|
| 160 |
-
issn = {2522-5839},
|
| 161 |
-
url = {https://doi.org/10.1038/s42256-025-01019-5}
|
| 162 |
-
}
|
| 163 |
-
```
|
| 164 |
-
|
| 165 |
-
## Resources
|
| 166 |
-
|
| 167 |
-
- **Code Repository**: [https://github.com/instadeepai/InstaNovo](https://github.com/instadeepai/InstaNovo)
|
| 168 |
-
- **Documentation**: [https://instadeepai.github.io/InstaNovo/](https://instadeepai.github.io/InstaNovo/)
|
| 169 |
-
- **Publication**: [https://www.nature.com/articles/s42256-025-01019-5](https://www.nature.com/articles/s42256-025-01019-5)
|
| 170 |
-
|
| 171 |
-
## License
|
| 172 |
-
|
| 173 |
-
- **Code**: Licensed under Apache License 2.0
|
| 174 |
-
- **Model Checkpoints**: Licensed under Creative Commons Non-Commercial (CC BY-NC-SA 4.0)
|
| 175 |
-
|
| 176 |
-
## Installation
|
| 177 |
-
|
| 178 |
-
```bash
|
| 179 |
-
pip install instanovo
|
| 180 |
-
```
|
| 181 |
-
|
| 182 |
-
For GPU support, install with CUDA dependencies:
|
| 183 |
-
```bash
|
| 184 |
-
pip install instanovo[cu126]
|
| 185 |
-
```
|
| 186 |
-
|
| 187 |
-
## Requirements
|
| 188 |
-
|
| 189 |
-
- Python >= 3.10, < 3.13
|
| 190 |
-
- PyTorch >= 1.13.0
|
| 191 |
-
- CUDA (optional, for GPU acceleration)
|
| 192 |
-
|
| 193 |
-
## Support
|
| 194 |
-
|
| 195 |
-
For questions, issues, or contributions, please visit the [GitHub repository](https://github.com/instadeepai/InstaNovo) or check the [documentation](https://instadeepai.github.io/InstaNovo/).
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
+
- model_hub_mixin
|
| 4 |
+
- pytorch_model_hub_mixin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
+
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
|
| 8 |
+
- Code: [More Information Needed]
|
| 9 |
+
- Paper: [More Information Needed]
|
| 10 |
+
- Docs: [More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|