Create README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,113 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc0-1.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc0-1.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
## Winnow HeLa Single Shot Probability Calibrator
|
| 6 |
+
|
| 7 |
+
**Winnow** recalibrates confidence scores and provides FDR control for *de novo* peptide sequencing (DNS) workflows.
|
| 8 |
+
This repository contains the calibrator trained on HeLa Single Shot data as referenced in our paper: TODO.
|
| 9 |
+
|
| 10 |
+
- Intended inputs: spectrum input data and corresponding MS/MS PSM results produced by InstaNovo
|
| 11 |
+
- Outputs: calibrated per-PSM probabilities in `calibrated_confidence`.
|
| 12 |
+
|
| 13 |
+
### What’s inside
|
| 14 |
+
- `calibrator.pkl`: trained classifier
|
| 15 |
+
- `scaler.pkl`: feature standardiser
|
| 16 |
+
- `irt_predictor.pkl`: Prosit iRT regressor used by RT features
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
## How to use
|
| 21 |
+
|
| 22 |
+
### Python
|
| 23 |
+
```python
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
from huggingface_hub import snapshot_download
|
| 26 |
+
from winnow.calibration.calibrator import ProbabilityCalibrator
|
| 27 |
+
from winnow.datasets.data_loaders import InstaNovoDatasetLoader
|
| 28 |
+
from winnow.scripts.main import filter_dataset
|
| 29 |
+
from winnow.fdr.nonparametric import NonParametricFDRControl
|
| 30 |
+
|
| 31 |
+
# 1) Download model files
|
| 32 |
+
snapshot_download(
|
| 33 |
+
repo_id="InstaDeepAI/winnow-helaqc-model",
|
| 34 |
+
allow_patterns=["*.pkl"]),
|
| 35 |
+
repo_type="model",
|
| 36 |
+
local_dir=helaqc_model,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# 2) Load calibrator
|
| 40 |
+
calibrator = ProbabilityCalibrator.load(helaqc_model)
|
| 41 |
+
|
| 42 |
+
# 3) Load your dataset (InstaNovo-style config)
|
| 43 |
+
dataset = InstaNovoDatasetLoader().load(
|
| 44 |
+
"path_to_spectrum_data.parquet",
|
| 45 |
+
"path_to_instanovo_predictions.csv",
|
| 46 |
+
)
|
| 47 |
+
dataset = filter_dataset(dataset) # standard Winnow filtering
|
| 48 |
+
|
| 49 |
+
# 4) Predict calibrated confidences
|
| 50 |
+
calibrator.predict(dataset) # adds dataset.metadata["calibrated_confidence"]
|
| 51 |
+
|
| 52 |
+
# 5) Optional: FDR control on calibrated confidence
|
| 53 |
+
fdr = NonParametricFDRControl()
|
| 54 |
+
fdr.fit(dataset.metadata["calibrated_confidence"])
|
| 55 |
+
cutoff = fdr.get_confidence_cutoff(0.05) # 5% FDR cutoff
|
| 56 |
+
dataset.metadata["keep@5%"] = dataset.metadata["calibrated_confidence"] >= cutoff
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
### CLI
|
| 60 |
+
```bash
|
| 61 |
+
# After `pip install winnow`
|
| 62 |
+
winnow predict \
|
| 63 |
+
--data-source instanovo \
|
| 64 |
+
--dataset-config-path config_with_dataset_paths.yaml \
|
| 65 |
+
--model-folder general_model_folder \
|
| 66 |
+
--method winnow \
|
| 67 |
+
--fdr-threshold 0.05 \
|
| 68 |
+
--confidence-column calibrated_confidence \
|
| 69 |
+
--output-path outputs/winnow_predictions.csv
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## Inputs and outputs
|
| 75 |
+
**Required columns for calibration:**
|
| 76 |
+
- Spectrum data (*.parquet)
|
| 77 |
+
- `spectrum_id` (string): unique spectrum identifier
|
| 78 |
+
- `sequence` (string): ground truth peptide sequence from database search (optional)
|
| 79 |
+
- `retention_time` (float): retention time (seconds)
|
| 80 |
+
- `precursor_mass` (float): mass of the precursor ion (from MS1)
|
| 81 |
+
- `mz_array` (list[float]): mass-to-charge values of the MS2 spectrum
|
| 82 |
+
- `intensity_array` (list[float]): intensity values of the MS2 spectrum
|
| 83 |
+
- `precursor_charge` (int): charge of the precursor (from MS1)
|
| 84 |
+
|
| 85 |
+
- Beam predictions (*_beams.csv)
|
| 86 |
+
- `spectrum_id` (string)
|
| 87 |
+
- `sequence` (string): ground truth peptide sequence from database search (optional)
|
| 88 |
+
- `preds` (string): top prediction, untokenised sequence
|
| 89 |
+
- `preds_tokenised` (string): comma‐separated tokens for the top prediction
|
| 90 |
+
- `log_probs` (float): top prediction log probability
|
| 91 |
+
- `preds_beam_k` (string): untokenised sequence for beam k (k≥0)
|
| 92 |
+
- `log_probs_beam_k` (float)
|
| 93 |
+
- `token_log_probs_k` (string/list-encoded): per-token log probabilities for beam k
|
| 94 |
+
|
| 95 |
+
**Output columns (added by Winnow's calibrator on `predict`):**
|
| 96 |
+
- `calibrated_confidence`: calibrated probability
|
| 97 |
+
- Optional (if requested): `psm_pep`, `psm_fdr`, `psm_qvalue`
|
| 98 |
+
- All input columns are retained in-place
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## Training data
|
| 103 |
+
|
| 104 |
+
- The general model was trained on the HeLa single-shot dataset (PXD044934)
|
| 105 |
+
- All default features were enabled for the training of this model.
|
| 106 |
+
- Predictions were obtained using InstaNovo v1.1.1 with knapsack beam search set to 50 beams.
|
| 107 |
+
|
| 108 |
+
---
|
| 109 |
+
|
| 110 |
+
## Citation
|
| 111 |
+
|
| 112 |
+
If you use Winnow or this model, please cite:
|
| 113 |
+
TODO
|