Commit
·
f2e835f
1
Parent(s):
6cefe52
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,54 +1,34 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
- generated_from_keras_callback
|
| 6 |
-
model-index:
|
| 7 |
-
- name: Jayveersinh-Raj/mpt5s-guj-grammar-2-3
|
| 8 |
-
results: []
|
| 9 |
---
|
| 10 |
|
| 11 |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
| 12 |
probably proofread and complete it, then remove this comment. -->
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5.6e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 197899, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 100, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
|
| 40 |
-
- training_precision: mixed_float16
|
| 41 |
-
|
| 42 |
-
### Training results
|
| 43 |
-
|
| 44 |
-
| Train Loss | Validation Loss | Epoch |
|
| 45 |
-
|:----------:|:---------------:|:-----:|
|
| 46 |
-
| 0.0777 | 0.0375 | 0 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
### Framework versions
|
| 50 |
-
|
| 51 |
-
- Transformers 4.32.1
|
| 52 |
-
- TensorFlow 2.12.0
|
| 53 |
-
- Datasets 2.14.4
|
| 54 |
-
- Tokenizers 0.13.3
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- gu
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
| 8 |
probably proofread and complete it, then remove this comment. -->
|
| 9 |
|
| 10 |
+
# Model description
|
| 11 |
+
The model is a mt5-small version of Gujarati Grammarly for spell correction given a sentence. Only this small version checkpoints are open source.
|
| 12 |
+
|
| 13 |
+
# Example usage:
|
| 14 |
+
from transformers import AutoTokenizer
|
| 15 |
+
import tensorflow as tf
|
| 16 |
+
from transformers import TFAutoModelForSeq2SeqLM
|
| 17 |
+
from transformers import create_optimizer
|
| 18 |
+
|
| 19 |
+
model_checkpoint = "Jayveersinh-Raj/guj-grammar-small"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 21 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
| 22 |
+
|
| 23 |
+
sent="સુંદરકાંડના પ્રારંભમાં હનૂમાન બળવાન તો છે પણ સાથે-સાથે બુદ્ધિમાન પણ છે તેની રોચક ધર્મકથા છૈ"
|
| 24 |
+
inputs = tokenizer.encode(sent, return_tensors='tf')
|
| 25 |
+
output_ids = model.generate(inputs, max_length=128, num_beams = 4, early_stopping=True)
|
| 26 |
+
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 27 |
+
|
| 28 |
+
print("Generated Correction:")
|
| 29 |
+
print(output)
|
| 30 |
+
|
| 31 |
+
# Notes:
|
| 32 |
+
- Only supports Gujarati language for now
|
| 33 |
+
- Private dataset is used
|
| 34 |
+
- Only Tensorflow model is available for now, Pytorch checkpoints would be available soon.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|