Upload Physics ViT model
Browse files- README.md +183 -0
- config.json +24 -0
- model.safetensors +3 -0
- preprocessor_config.json +35 -0
README.md
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Physics Foundation Vision Transformer (PhysicsViT-StandardVersion)
|
| 2 |
+
|
| 3 |
+
A Vision Transformer model trained on multi-physics simulation data for scientific computing applications. This model is specifically designed for understanding and analyzing physics simulations across multiple domains.
|
| 4 |
+
|
| 5 |
+
**Model Version:** Standard Version - Trained for ~1.2 epochs (78,372 steps)
|
| 6 |
+
|
| 7 |
+
## Model Details
|
| 8 |
+
|
| 9 |
+
### Model Description
|
| 10 |
+
|
| 11 |
+
- **Developed by:** PhysicsAlchemists Research Team
|
| 12 |
+
- **Model type:** Vision Transformer (ViT-Huge)
|
| 13 |
+
- **Language(s):** N/A (Computer Vision)
|
| 14 |
+
- **License:** Apache 2.0
|
| 15 |
+
- **Finetuned from model:** Trained from scratch on physics simulation data
|
| 16 |
+
- **Training Steps:** 78,372 steps
|
| 17 |
+
|
| 18 |
+
### Model Architecture
|
| 19 |
+
|
| 20 |
+
- **Architecture:** ViT-Huge (Feature Extraction)
|
| 21 |
+
- **Hidden size:** 1280
|
| 22 |
+
- **Number of layers:** 32
|
| 23 |
+
- **Number of attention heads:** 16
|
| 24 |
+
- **Intermediate size:** 5120
|
| 25 |
+
- **Image size:** 224×224
|
| 26 |
+
- **Patch size:** 16×16
|
| 27 |
+
- **Embedding dimension:** 1280
|
| 28 |
+
|
| 29 |
+
## Training Details
|
| 30 |
+
|
| 31 |
+
### Training Data
|
| 32 |
+
|
| 33 |
+
The model was trained on a comprehensive dataset of physics simulations including:
|
| 34 |
+
|
| 35 |
+
- Acoustic scattering (inclusions, discontinuous, maze)
|
| 36 |
+
- Active matter simulations
|
| 37 |
+
- Euler equations (multi-quadrants with open/periodic BC)
|
| 38 |
+
- Gray-Scott reaction-diffusion
|
| 39 |
+
- Helmholtz staircase
|
| 40 |
+
- Planetary shallow water equations
|
| 41 |
+
- Rayleigh-Bénard convection (standard and uniform)
|
| 42 |
+
- Shear flow dynamics
|
| 43 |
+
- Turbulent radiative layer (2D)
|
| 44 |
+
- Viscoelastic instability
|
| 45 |
+
|
| 46 |
+
### Training Configuration
|
| 47 |
+
|
| 48 |
+
- **Training regime:** ~1.2 epochs (78,372 steps)
|
| 49 |
+
- **Batch size:** 1,470
|
| 50 |
+
- **Learning rate:** 0.0005 (with warmup and cosine decay)
|
| 51 |
+
- **Optimizer:** Adam (β₁=0.9, β₂=0.999, weight_decay=0.0003)
|
| 52 |
+
- **Mixed precision:** bfloat16
|
| 53 |
+
- **Hardware:** Cerebras CS-X systems
|
| 54 |
+
|
| 55 |
+
### Data Augmentation
|
| 56 |
+
|
| 57 |
+
- Random colormap application (viridis, plasma, inferno, coolwarm)
|
| 58 |
+
- Grayscale conversion (30% probability)
|
| 59 |
+
- Temporal trajectory preservation during training
|
| 60 |
+
|
| 61 |
+
## Usage
|
| 62 |
+
|
| 63 |
+
⚠️ **Important:** This model requires specific preprocessing that differs from standard ViT models.
|
| 64 |
+
|
| 65 |
+
### Basic Usage
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
from transformers import AutoModel, AutoImageProcessor
|
| 69 |
+
from PIL import Image
|
| 70 |
+
import torch
|
| 71 |
+
|
| 72 |
+
# Load model and processor
|
| 73 |
+
model = AutoModel.from_pretrained("your-username/physics-vit-standard")
|
| 74 |
+
processor = AutoImageProcessor.from_pretrained("your-username/physics-vit-standard")
|
| 75 |
+
|
| 76 |
+
# Load your physics image
|
| 77 |
+
image = Image.open("physics_simulation.png").convert('RGB')
|
| 78 |
+
|
| 79 |
+
# ⚠️ CRITICAL: Apply custom preprocessing
|
| 80 |
+
image = expand_to_square(image, background_color=(128, 128, 128))
|
| 81 |
+
image = image.resize((224, 224), Image.BILINEAR)
|
| 82 |
+
|
| 83 |
+
# Convert to tensor and add batch dimension
|
| 84 |
+
from torchvision import transforms
|
| 85 |
+
tensor = transforms.ToTensor()(image).unsqueeze(0)
|
| 86 |
+
|
| 87 |
+
# Extract physics-aware embeddings
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
outputs = model(pixel_values=tensor)
|
| 90 |
+
|
| 91 |
+
# CLS token embedding (best for classification tasks)
|
| 92 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :] # Shape: [1, 1280]
|
| 93 |
+
|
| 94 |
+
# Average pooled embedding (good for trajectory prediction)
|
| 95 |
+
pooled_embedding = outputs.last_hidden_state.mean(dim=1) # Shape: [1, 1280]
|
| 96 |
+
|
| 97 |
+
# Patch embeddings (for spatial analysis)
|
| 98 |
+
patch_embeddings = outputs.last_hidden_state[:, 1:, :] # Shape: [1, 196, 1280]
|
| 99 |
+
|
| 100 |
+
print(f"CLS embedding shape: {cls_embedding.shape}")
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Required Preprocessing Function
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
from PIL import Image
|
| 107 |
+
|
| 108 |
+
def expand_to_square(pil_img, background_color):
|
| 109 |
+
"""
|
| 110 |
+
Pad image to square with background color, keeping image centered.
|
| 111 |
+
|
| 112 |
+
REQUIRED for Physics ViT - this preprocessing was used during training.
|
| 113 |
+
"""
|
| 114 |
+
background_color = tuple(background_color)
|
| 115 |
+
width, height = pil_img.size
|
| 116 |
+
if width == height:
|
| 117 |
+
return pil_img
|
| 118 |
+
elif width > height:
|
| 119 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 120 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 121 |
+
return result
|
| 122 |
+
else:
|
| 123 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 124 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 125 |
+
return result
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
### Downstream Tasks
|
| 129 |
+
|
| 130 |
+
This model produces rich 1280-dimensional embeddings optimized for:
|
| 131 |
+
|
| 132 |
+
- **Physics Domain Classification:** Use CLS token embeddings
|
| 133 |
+
- **Temporal Forecasting:** Use pooled embeddings for trajectory prediction
|
| 134 |
+
- **Clustering & Similarity:** Use CLS or pooled embeddings
|
| 135 |
+
- **Spatial Analysis:** Use patch embeddings
|
| 136 |
+
- **Transfer Learning:** Fine-tune embeddings for new physics domains
|
| 137 |
+
|
| 138 |
+
## Performance
|
| 139 |
+
|
| 140 |
+
The model has been evaluated against DINO v2 and CLIP on physics-specific tasks:
|
| 141 |
+
|
| 142 |
+
- **Classification:** Superior performance on physics domain classification
|
| 143 |
+
- **Temporal Forecasting:** Better prediction of physics evolution
|
| 144 |
+
- **Clustering:** Clearer separation of physics simulation types
|
| 145 |
+
- **Transfer Learning:** Robust features for new physics applications
|
| 146 |
+
|
| 147 |
+
*Detailed benchmarks available in the original research.*
|
| 148 |
+
|
| 149 |
+
## Model Versions
|
| 150 |
+
|
| 151 |
+
- **Standard Version:** 78,372 training steps (~1.2 epochs) - Good balance of performance and training efficiency
|
| 152 |
+
- **Extended Version:** 195,930 training steps (3 full epochs) - Maximum performance, longer training
|
| 153 |
+
|
| 154 |
+
## Installation
|
| 155 |
+
|
| 156 |
+
```bash
|
| 157 |
+
pip install transformers torch torchvision pillow
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
## Limitations
|
| 161 |
+
|
| 162 |
+
- **Domain Specific:** Optimized for physics simulations, may not generalize to natural images
|
| 163 |
+
- **Preprocessing Required:** Must use expand_to_square preprocessing for correct results
|
| 164 |
+
- **Resolution:** Optimized for 224×224 input images
|
| 165 |
+
- **Physics Domains:** Trained on specific simulation types listed above
|
| 166 |
+
|
| 167 |
+
## Citation
|
| 168 |
+
|
| 169 |
+
```bibtex
|
| 170 |
+
@misc{physics-vit-2024,
|
| 171 |
+
title={Physics Foundation Vision Transformer for Scientific Computing},
|
| 172 |
+
author={PhysicsAlchemists Research Team},
|
| 173 |
+
year={2024},
|
| 174 |
+
howpublished={HuggingFace Model Hub},
|
| 175 |
+
url={https://huggingface.co/your-username/physics-vit-standard}
|
| 176 |
+
}
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
## Acknowledgments
|
| 180 |
+
|
| 181 |
+
- Built using [Cerebras ModelZoo](https://github.com/Cerebras/modelzoo)
|
| 182 |
+
- Trained on Cerebras CS-X systems
|
| 183 |
+
- Based on Vision Transformer architecture
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ViTModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"encoder_stride": 16,
|
| 7 |
+
"hidden_dropout_prob": 0.1,
|
| 8 |
+
"hidden_size": 1280,
|
| 9 |
+
"image_size": 224,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 5120,
|
| 12 |
+
"layer_norm_eps": 1e-06,
|
| 13 |
+
"model_type": "vit",
|
| 14 |
+
"num_attention_heads": 16,
|
| 15 |
+
"num_channels": 3,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"patch_size": 16,
|
| 18 |
+
"qkv_bias": true,
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.36.0",
|
| 21 |
+
"use_cache": true,
|
| 22 |
+
"_name_or_path": "physics-vit",
|
| 23 |
+
"problem_type": "single_label_classification"
|
| 24 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c27213c7240ecd9edf4bd9b218cad8dcc3dbc365f38982f9e4d4a57da310cf81
|
| 3 |
+
size 2523797432
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": false,
|
| 3 |
+
"do_rescale": false,
|
| 4 |
+
"do_resize": true,
|
| 5 |
+
"image_mean": null,
|
| 6 |
+
"image_std": null,
|
| 7 |
+
"resample": 2,
|
| 8 |
+
"rescale_factor": null,
|
| 9 |
+
"size": {
|
| 10 |
+
"height": 224,
|
| 11 |
+
"width": 224
|
| 12 |
+
},
|
| 13 |
+
"image_processor_type": "ViTImageProcessor",
|
| 14 |
+
"crop_pct": null,
|
| 15 |
+
"do_center_crop": false,
|
| 16 |
+
"processor_class": "ViTImageProcessor",
|
| 17 |
+
"preprocessing_source": "cerebras_modelzoo",
|
| 18 |
+
"preprocessing_url": "https://github.com/Cerebras/modelzoo/blob/5e81c965c68fd0a7ed9154bd0a7ed9154bd0ae26381f01218cd/src/cerebras/modelzoo/data/vision/transforms.py#L360",
|
| 19 |
+
"custom_preprocessing": {
|
| 20 |
+
"expand_to_square": true,
|
| 21 |
+
"background_color": [
|
| 22 |
+
128,
|
| 23 |
+
128,
|
| 24 |
+
128
|
| 25 |
+
],
|
| 26 |
+
"interpolation": "bilinear",
|
| 27 |
+
"antialias": true,
|
| 28 |
+
"transforms_sequence": [
|
| 29 |
+
"expand_to_square",
|
| 30 |
+
"resize",
|
| 31 |
+
"to_tensor"
|
| 32 |
+
],
|
| 33 |
+
"note": "This model requires Cerebras ModelZoo preprocessing pipeline. Standard HuggingFace ViTImageProcessor will NOT work correctly without the expand_to_square preprocessing step."
|
| 34 |
+
}
|
| 35 |
+
}
|