Upload tokenizer
Browse files- special_tokens_map.json +30 -0
- tokenization_baichuan.py +252 -0
- tokenizer.model +3 -0
- tokenizer_config.json +46 -0
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": true,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenization_baichuan.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
| 2 |
+
|
| 3 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 6 |
+
# and OPT implementations in this library. It has been modified from its
|
| 7 |
+
# original forms to accommodate minor architectural differences compared
|
| 8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
|
| 22 |
+
import os
|
| 23 |
+
from shutil import copyfile
|
| 24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 25 |
+
|
| 26 |
+
import sentencepiece as spm
|
| 27 |
+
|
| 28 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 29 |
+
from transformers.utils import logging
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
| 35 |
+
|
| 36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 37 |
+
"vocab_file": {},
|
| 38 |
+
"tokenizer_file": {},
|
| 39 |
+
}
|
| 40 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
| 44 |
+
"""
|
| 45 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
vocab_file (`str`):
|
| 49 |
+
Path to the vocabulary file.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 53 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 54 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 55 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 56 |
+
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
vocab_file,
|
| 60 |
+
unk_token="<unk>",
|
| 61 |
+
bos_token="<s>",
|
| 62 |
+
eos_token="</s>",
|
| 63 |
+
pad_token=None,
|
| 64 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 65 |
+
add_bos_token=True,
|
| 66 |
+
add_eos_token=False,
|
| 67 |
+
clean_up_tokenization_spaces=False,
|
| 68 |
+
**kwargs,
|
| 69 |
+
):
|
| 70 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 71 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
| 72 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
| 73 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
| 74 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
| 75 |
+
|
| 76 |
+
self.vocab_file = vocab_file
|
| 77 |
+
self.add_bos_token = add_bos_token
|
| 78 |
+
self.add_eos_token = add_eos_token
|
| 79 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 80 |
+
self.sp_model.Load(vocab_file)
|
| 81 |
+
super().__init__(
|
| 82 |
+
bos_token=bos_token,
|
| 83 |
+
eos_token=eos_token,
|
| 84 |
+
unk_token=unk_token,
|
| 85 |
+
pad_token=pad_token,
|
| 86 |
+
add_bos_token=add_bos_token,
|
| 87 |
+
add_eos_token=add_eos_token,
|
| 88 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
| 89 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 90 |
+
**kwargs,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
def __getstate__(self):
|
| 94 |
+
state = self.__dict__.copy()
|
| 95 |
+
state["sp_model"] = None
|
| 96 |
+
return state
|
| 97 |
+
|
| 98 |
+
def __setstate__(self, d):
|
| 99 |
+
self.__dict__ = d
|
| 100 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 101 |
+
self.sp_model.Load(self.vocab_file)
|
| 102 |
+
|
| 103 |
+
@property
|
| 104 |
+
def vocab_size(self):
|
| 105 |
+
"""Returns vocab size"""
|
| 106 |
+
return self.sp_model.get_piece_size()
|
| 107 |
+
|
| 108 |
+
def get_vocab(self):
|
| 109 |
+
"""Returns vocab as a dict"""
|
| 110 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 111 |
+
vocab.update(self.added_tokens_encoder)
|
| 112 |
+
return vocab
|
| 113 |
+
|
| 114 |
+
def _tokenize(self, text):
|
| 115 |
+
"""Returns a tokenized string."""
|
| 116 |
+
return self.sp_model.encode(text, out_type=str)
|
| 117 |
+
|
| 118 |
+
def _convert_token_to_id(self, token):
|
| 119 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 120 |
+
return self.sp_model.piece_to_id(token)
|
| 121 |
+
|
| 122 |
+
def _convert_id_to_token(self, index):
|
| 123 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 124 |
+
token = self.sp_model.IdToPiece(index)
|
| 125 |
+
return token
|
| 126 |
+
|
| 127 |
+
def convert_tokens_to_string(self, tokens):
|
| 128 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 129 |
+
current_sub_tokens = []
|
| 130 |
+
out_string = ""
|
| 131 |
+
prev_is_special = False
|
| 132 |
+
for i, token in enumerate(tokens):
|
| 133 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 134 |
+
if token in self.all_special_tokens:
|
| 135 |
+
if not prev_is_special and i != 0:
|
| 136 |
+
out_string += " "
|
| 137 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 138 |
+
prev_is_special = True
|
| 139 |
+
current_sub_tokens = []
|
| 140 |
+
else:
|
| 141 |
+
current_sub_tokens.append(token)
|
| 142 |
+
prev_is_special = False
|
| 143 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 144 |
+
return out_string
|
| 145 |
+
|
| 146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 147 |
+
"""
|
| 148 |
+
Save the vocabulary and special tokens file to a directory.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
save_directory (`str`):
|
| 152 |
+
The directory in which to save the vocabulary.
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
`Tuple(str)`: Paths to the files saved.
|
| 156 |
+
"""
|
| 157 |
+
if not os.path.isdir(save_directory):
|
| 158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 159 |
+
return
|
| 160 |
+
out_vocab_file = os.path.join(
|
| 161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 166 |
+
elif not os.path.isfile(self.vocab_file):
|
| 167 |
+
with open(out_vocab_file, "wb") as fi:
|
| 168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 169 |
+
fi.write(content_spiece_model)
|
| 170 |
+
|
| 171 |
+
return (out_vocab_file,)
|
| 172 |
+
|
| 173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 174 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 175 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 176 |
+
|
| 177 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
| 178 |
+
|
| 179 |
+
if token_ids_1 is not None:
|
| 180 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
| 181 |
+
|
| 182 |
+
return output
|
| 183 |
+
|
| 184 |
+
def get_special_tokens_mask(
|
| 185 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 186 |
+
) -> List[int]:
|
| 187 |
+
"""
|
| 188 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 189 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
token_ids_0 (`List[int]`):
|
| 193 |
+
List of IDs.
|
| 194 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 195 |
+
Optional second list of IDs for sequence pairs.
|
| 196 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 197 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 201 |
+
"""
|
| 202 |
+
if already_has_special_tokens:
|
| 203 |
+
return super().get_special_tokens_mask(
|
| 204 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
bos_token_id = [1] if self.add_bos_token else []
|
| 208 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 209 |
+
|
| 210 |
+
if token_ids_1 is None:
|
| 211 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
| 212 |
+
return (
|
| 213 |
+
bos_token_id
|
| 214 |
+
+ ([0] * len(token_ids_0))
|
| 215 |
+
+ eos_token_id
|
| 216 |
+
+ bos_token_id
|
| 217 |
+
+ ([0] * len(token_ids_1))
|
| 218 |
+
+ eos_token_id
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
def create_token_type_ids_from_sequences(
|
| 222 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 223 |
+
) -> List[int]:
|
| 224 |
+
"""
|
| 225 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 226 |
+
sequence pair mask has the following format:
|
| 227 |
+
|
| 228 |
+
```
|
| 229 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 230 |
+
| first sequence | second sequence |
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 234 |
+
|
| 235 |
+
Args:
|
| 236 |
+
token_ids_0 (`List[int]`):
|
| 237 |
+
List of ids.
|
| 238 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 239 |
+
Optional second list of IDs for sequence pairs.
|
| 240 |
+
|
| 241 |
+
Returns:
|
| 242 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
| 243 |
+
"""
|
| 244 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 245 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 246 |
+
|
| 247 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
| 248 |
+
|
| 249 |
+
if token_ids_1 is not None:
|
| 250 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
| 251 |
+
|
| 252 |
+
return output
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
| 3 |
+
size 2001107
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": true,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": true,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": true,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"auto_map": {
|
| 31 |
+
"AutoTokenizer": [
|
| 32 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
| 33 |
+
null
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
"bos_token": "<s>",
|
| 37 |
+
"clean_up_tokenization_spaces": false,
|
| 38 |
+
"eos_token": "</s>",
|
| 39 |
+
"model_max_length": 4096,
|
| 40 |
+
"pad_token": "<unk>",
|
| 41 |
+
"padding_side": "left",
|
| 42 |
+
"sp_model_kwargs": {},
|
| 43 |
+
"tokenizer_class": "BaichuanTokenizer",
|
| 44 |
+
"unk_token": "<unk>",
|
| 45 |
+
"use_fast": false
|
| 46 |
+
}
|