Upload folder using huggingface_hub
Browse files- added_tokens.json +3 -0
- config.json +475 -0
- configuration_prismatic.py +140 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_prismatic.py +562 -0
- preprocessor_config.json +114 -0
- processing_prismatic.py +257 -0
- processor_config.json +6 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +55 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<PAD>": 32000
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"arch_specifier": "no-align+fused-gelu-mlp",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"OpenVLAForActionPrediction"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_prismatic.OpenVLAConfig",
|
| 8 |
+
"AutoModelForVision2Seq": "modeling_prismatic.OpenVLAForActionPrediction"
|
| 9 |
+
},
|
| 10 |
+
"hf_llm_id": "meta-llama/Llama-2-7b-hf",
|
| 11 |
+
"image_resize_strategy": "resize-naive",
|
| 12 |
+
"image_sizes": [
|
| 13 |
+
224,
|
| 14 |
+
224
|
| 15 |
+
],
|
| 16 |
+
"llm_backbone_id": "llama2-7b-pure",
|
| 17 |
+
"llm_max_length": 2048,
|
| 18 |
+
"model_type": "openvla",
|
| 19 |
+
"n_action_bins": 256,
|
| 20 |
+
"norm_stats": {
|
| 21 |
+
"libero_spatial": {
|
| 22 |
+
"action": {
|
| 23 |
+
"mask": [
|
| 24 |
+
true,
|
| 25 |
+
true,
|
| 26 |
+
true,
|
| 27 |
+
true,
|
| 28 |
+
true,
|
| 29 |
+
true,
|
| 30 |
+
false
|
| 31 |
+
],
|
| 32 |
+
"max": [
|
| 33 |
+
0.9375,
|
| 34 |
+
0.9375,
|
| 35 |
+
0.9375,
|
| 36 |
+
0.1971428543329239,
|
| 37 |
+
0.33642858266830444,
|
| 38 |
+
0.375,
|
| 39 |
+
1.0
|
| 40 |
+
],
|
| 41 |
+
"mean": [
|
| 42 |
+
0.15312479436397552,
|
| 43 |
+
0.13707277178764343,
|
| 44 |
+
-0.15526802837848663,
|
| 45 |
+
-0.005176450591534376,
|
| 46 |
+
-0.01120874285697937,
|
| 47 |
+
-0.020194264128804207,
|
| 48 |
+
0.4578818082809448
|
| 49 |
+
],
|
| 50 |
+
"min": [
|
| 51 |
+
-0.9375,
|
| 52 |
+
-0.9375,
|
| 53 |
+
-0.9375,
|
| 54 |
+
-0.1875,
|
| 55 |
+
-0.3675000071525574,
|
| 56 |
+
-0.36000001430511475,
|
| 57 |
+
0.0
|
| 58 |
+
],
|
| 59 |
+
"q01": [
|
| 60 |
+
-0.7454732114076613,
|
| 61 |
+
-0.6616071462631226,
|
| 62 |
+
-0.9375,
|
| 63 |
+
-0.1071428582072258,
|
| 64 |
+
-0.20678570866584778,
|
| 65 |
+
-0.1842857152223587,
|
| 66 |
+
0.0
|
| 67 |
+
],
|
| 68 |
+
"q99": [
|
| 69 |
+
0.9375,
|
| 70 |
+
0.8758928775787354,
|
| 71 |
+
0.9321428537368774,
|
| 72 |
+
0.1039285734295845,
|
| 73 |
+
0.17678570747375488,
|
| 74 |
+
0.14571428298950195,
|
| 75 |
+
1.0
|
| 76 |
+
],
|
| 77 |
+
"std": [
|
| 78 |
+
0.41272708773612976,
|
| 79 |
+
0.34724321961402893,
|
| 80 |
+
0.50869220495224,
|
| 81 |
+
0.037266165018081665,
|
| 82 |
+
0.07244449853897095,
|
| 83 |
+
0.05762382969260216,
|
| 84 |
+
0.49827873706817627
|
| 85 |
+
]
|
| 86 |
+
},
|
| 87 |
+
"num_trajectories": 432,
|
| 88 |
+
"num_transitions": 52970,
|
| 89 |
+
"proprio": {
|
| 90 |
+
"max": [
|
| 91 |
+
0.0,
|
| 92 |
+
0.0,
|
| 93 |
+
0.0,
|
| 94 |
+
0.0,
|
| 95 |
+
0.0,
|
| 96 |
+
0.0,
|
| 97 |
+
0.0
|
| 98 |
+
],
|
| 99 |
+
"mean": [
|
| 100 |
+
0.0,
|
| 101 |
+
0.0,
|
| 102 |
+
0.0,
|
| 103 |
+
0.0,
|
| 104 |
+
0.0,
|
| 105 |
+
0.0,
|
| 106 |
+
0.0
|
| 107 |
+
],
|
| 108 |
+
"min": [
|
| 109 |
+
0.0,
|
| 110 |
+
0.0,
|
| 111 |
+
0.0,
|
| 112 |
+
0.0,
|
| 113 |
+
0.0,
|
| 114 |
+
0.0,
|
| 115 |
+
0.0
|
| 116 |
+
],
|
| 117 |
+
"q01": [
|
| 118 |
+
0.0,
|
| 119 |
+
0.0,
|
| 120 |
+
0.0,
|
| 121 |
+
0.0,
|
| 122 |
+
0.0,
|
| 123 |
+
0.0,
|
| 124 |
+
0.0
|
| 125 |
+
],
|
| 126 |
+
"q99": [
|
| 127 |
+
0.0,
|
| 128 |
+
0.0,
|
| 129 |
+
0.0,
|
| 130 |
+
0.0,
|
| 131 |
+
0.0,
|
| 132 |
+
0.0,
|
| 133 |
+
0.0
|
| 134 |
+
],
|
| 135 |
+
"std": [
|
| 136 |
+
0.0,
|
| 137 |
+
0.0,
|
| 138 |
+
0.0,
|
| 139 |
+
0.0,
|
| 140 |
+
0.0,
|
| 141 |
+
0.0,
|
| 142 |
+
0.0
|
| 143 |
+
]
|
| 144 |
+
}
|
| 145 |
+
}
|
| 146 |
+
},
|
| 147 |
+
"output_projector_states": false,
|
| 148 |
+
"pad_to_multiple_of": 64,
|
| 149 |
+
"pad_token_id": 32000,
|
| 150 |
+
"quantization_config": {
|
| 151 |
+
"backend": null,
|
| 152 |
+
"batch_size": 1,
|
| 153 |
+
"bits": 4,
|
| 154 |
+
"block_name_to_quantize": null,
|
| 155 |
+
"cache_block_outputs": true,
|
| 156 |
+
"checkpoint_format": "gptq",
|
| 157 |
+
"damp_percent": 0.1,
|
| 158 |
+
"dataset": [
|
| 159 |
+
"pick up blue pen and put into drawer",
|
| 160 |
+
"Pick up the pot and place it on the napkin.",
|
| 161 |
+
"put potato on plate",
|
| 162 |
+
"move the spoon to the bottom left of the table",
|
| 163 |
+
"Put the banana on the green cloth",
|
| 164 |
+
"Move the silver pot so that it's directly in front of the canned goods.",
|
| 165 |
+
"Place the metal pot on the purple cloth.",
|
| 166 |
+
"Pick the blue spoon and place it on blue towel",
|
| 167 |
+
"Put the mushroom into the pot.",
|
| 168 |
+
"Put the banana to the left hand side of the table towards the bottom.",
|
| 169 |
+
"Move the egg onto the towel",
|
| 170 |
+
"Move the pot from edge to corner of the table.",
|
| 171 |
+
"put sweet potato in pot which is in sink distractors",
|
| 172 |
+
"Place the orange cloth directly in front of the tall can.",
|
| 173 |
+
"Place the pot on top of the blue cloth",
|
| 174 |
+
"Move the orange cloth to the far edge of the table",
|
| 175 |
+
"flip pot upright which is in sink",
|
| 176 |
+
"Move the spoon behind the metal pot.",
|
| 177 |
+
"close microwave",
|
| 178 |
+
"Place the corn inside of the silver pot.",
|
| 179 |
+
"Place the spoon to the left of the pot.",
|
| 180 |
+
"upright basil bottle cardboard fence",
|
| 181 |
+
"put pear on plate and blueberry in pot or pan in sink",
|
| 182 |
+
"open large4fbox flaps",
|
| 183 |
+
"flip pot upright in sink distractors",
|
| 184 |
+
"Put the strawberry into the metal bowl.",
|
| 185 |
+
"Move the pineapple closer to the blue spoon against the wall.",
|
| 186 |
+
"turn lever vertical to front distractors",
|
| 187 |
+
"move the green cloth to the front edge next to orange",
|
| 188 |
+
"move red spoon to middle lower part of table",
|
| 189 |
+
"turn lever vertical to front distractors",
|
| 190 |
+
"Slide the green rag into the corner near the blue handle.",
|
| 191 |
+
"open fridge",
|
| 192 |
+
"put pan in sink",
|
| 193 |
+
"close fridge",
|
| 194 |
+
"upright basil bottle cardboard fence",
|
| 195 |
+
"Put the spatula to the top-left of the cloth.",
|
| 196 |
+
"wipe pot with sponge",
|
| 197 |
+
"close fridge",
|
| 198 |
+
"put green squash in pot or pan",
|
| 199 |
+
"put spatula on plate sink",
|
| 200 |
+
"Put the knife on the left edge of the counter.",
|
| 201 |
+
"put pear in bowl",
|
| 202 |
+
"put spatula in pan",
|
| 203 |
+
"put pot in sink",
|
| 204 |
+
"open microwave",
|
| 205 |
+
"Place the salt next to the brush above the napkin.",
|
| 206 |
+
"Put the cheese towards the right upper corner of the table.",
|
| 207 |
+
"Move the silver pan off of the purple rag and next to the green broccoli.",
|
| 208 |
+
"Move red pot closer to right side of banana.",
|
| 209 |
+
"put cauliflower in pot or pan an put pot or pan on stove",
|
| 210 |
+
"Slide the cloth diagonally to the front of the spoon",
|
| 211 |
+
"Move the can to the back of the counter",
|
| 212 |
+
"Move the cucumber to the front right of the table.",
|
| 213 |
+
"open fridge",
|
| 214 |
+
"Pull the red rectangle near the edge of the table.",
|
| 215 |
+
"put pear in bowl cardboardfence",
|
| 216 |
+
"Place the red pepper on the bottom right corner of the table.",
|
| 217 |
+
"take sushi off plate",
|
| 218 |
+
"pour almonds in pot",
|
| 219 |
+
"open microwave",
|
| 220 |
+
"Move the pot to the left of the spoon, in front of the microwave.",
|
| 221 |
+
"Pick up the corn from the steel pan and place it on the table.",
|
| 222 |
+
"put sweet potato in pot",
|
| 223 |
+
"fold cloth in half",
|
| 224 |
+
"put pear in bowl cardboardfence",
|
| 225 |
+
"put sushi on plate",
|
| 226 |
+
"Turn the yellow spoon horizontally in front of the microwave.",
|
| 227 |
+
"move towel up to just left of bowl",
|
| 228 |
+
"Place wok on top of purple cloth.",
|
| 229 |
+
"close fridge",
|
| 230 |
+
"Place the corn to the right of the blue brush.",
|
| 231 |
+
"Move the strawberry and place on orange towel",
|
| 232 |
+
"take lid off pot cardboardfence",
|
| 233 |
+
"turn lever vertical to-front",
|
| 234 |
+
"put cup from counter to sink",
|
| 235 |
+
"Pick up the red spoon on to of orange cloth and place it on its left",
|
| 236 |
+
"put clothes in laundry machine",
|
| 237 |
+
"Moves the green tool off the napkin to the bottom right.",
|
| 238 |
+
"move green peper into pot",
|
| 239 |
+
"Slide the yellow rag forward so that it touches the front edge of the table.",
|
| 240 |
+
"Move the pot to the inner edge of the table.",
|
| 241 |
+
"Move the cheese slice in between pot and blue spoon",
|
| 242 |
+
"put knife in pot cardboard fence",
|
| 243 |
+
"MOVE THE BLENDER INSIDE THE VESSEL",
|
| 244 |
+
"Put the orange cloth to the top left of the table.",
|
| 245 |
+
"move the blue cloth from front to behind on the table",
|
| 246 |
+
"put banana in pot cardboard fence",
|
| 247 |
+
"Place the silver pan on the purple cloth.",
|
| 248 |
+
"put cup from anywhere into sink",
|
| 249 |
+
"open white1fbox flap",
|
| 250 |
+
"close white1fbox flap",
|
| 251 |
+
"take lid off pot or pan",
|
| 252 |
+
"Put the metal pot in front of the mushroom.",
|
| 253 |
+
"move the scoop to the far left in front of the pepper",
|
| 254 |
+
"Take the wok off the blue cloth and move it behind the cloth.",
|
| 255 |
+
"lift bowl",
|
| 256 |
+
"Move the bowl to the top right of table",
|
| 257 |
+
"put banana in pot or pan",
|
| 258 |
+
"Move the blue towel to the right of the spoon",
|
| 259 |
+
"take lid off pot cardboardfence",
|
| 260 |
+
"open microwave",
|
| 261 |
+
"put corn in pot which is in sink distractors",
|
| 262 |
+
"put banana on plate",
|
| 263 |
+
"Place the mushroom in front of the microwave.",
|
| 264 |
+
"Put the mushroom in the pot.",
|
| 265 |
+
"put big spoon from basket to tray",
|
| 266 |
+
"Move the orange cloth to the lower right of the table",
|
| 267 |
+
"flip pot upright in sink distractors",
|
| 268 |
+
"Move the purple cloth to the left of the grey toy",
|
| 269 |
+
"take corn out of bowl sink",
|
| 270 |
+
"Hold the mushroom which is infront of the oven and drop it under the tiffin box, which is on the right edge of the table.",
|
| 271 |
+
"take cucumber out of cup",
|
| 272 |
+
"flip pot upright in sink distractors",
|
| 273 |
+
"put spoon in pot",
|
| 274 |
+
"Move the pot directly right of the towel",
|
| 275 |
+
"flip pot upright in sink distractors",
|
| 276 |
+
"unzip zipper bag",
|
| 277 |
+
"Place the spoon on top of the orange cloth.",
|
| 278 |
+
"take cucumber out of cup",
|
| 279 |
+
"put pot in sink",
|
| 280 |
+
"Move the chicken thigh to the top left corner of the table.",
|
| 281 |
+
"put pepper in pot or pan",
|
| 282 |
+
"Move the mushroom to the left of the yellow spoon",
|
| 283 |
+
"take carrot off plate cardboardfence",
|
| 284 |
+
"Move blue and gray item to the left of the pot.",
|
| 285 |
+
"Put the spoon to the left of the pot.",
|
| 286 |
+
"pick ball and put it on the vessel",
|
| 287 |
+
"Put the blue fork on top of the napkin",
|
| 288 |
+
"take sushi out of pot cardboard fence",
|
| 289 |
+
"Move the purple cloth to the far left edge of the table",
|
| 290 |
+
"zip zipper bag",
|
| 291 |
+
"take bowl off plate cardboard fence",
|
| 292 |
+
"take carrot out of pot cardboard fence",
|
| 293 |
+
"close fridge",
|
| 294 |
+
"Put the pot in the bottom left hand corner of the table.",
|
| 295 |
+
"open microwave",
|
| 296 |
+
"Pick up the spoon and put it on the left hand corner of the table.",
|
| 297 |
+
"take broccoli out of pan cardboardfence",
|
| 298 |
+
"Place the brush behind the pot.",
|
| 299 |
+
"Place the mushroom behind the spatula.",
|
| 300 |
+
"Move the brush to the middle bottom between burners",
|
| 301 |
+
"pick up blue pen and put into drawer",
|
| 302 |
+
"Move the bowl to the left adjacent to the spoon",
|
| 303 |
+
"Pick up the metal strainer and place it on the left eye.",
|
| 304 |
+
"Put the spoon under the pot.",
|
| 305 |
+
"turn lever vertical to front distractors",
|
| 306 |
+
"Place the pot next to the knife.",
|
| 307 |
+
"push the blue cloth a few inches back",
|
| 308 |
+
"Move the cloth to the inner front edge of the table.",
|
| 309 |
+
"Move the pot over the green cloth",
|
| 310 |
+
"pick up pan from stove distractors",
|
| 311 |
+
"Grab the bell pepper outside of the pot and place it towards the bottom of the table to the right side of the yellow towel.",
|
| 312 |
+
"put eggplant into pot or pan",
|
| 313 |
+
"Pick the cup from the vessel and place it on the blue towel in the middle of the table",
|
| 314 |
+
"put sweet potato in pan which is on stove distractors",
|
| 315 |
+
"Remove the pear from the pot and place it on the right back corner of the counter.",
|
| 316 |
+
"put knife on cutting board cardboard fence",
|
| 317 |
+
"wipe pot with sponge",
|
| 318 |
+
"pour almonds in pot",
|
| 319 |
+
"open oven",
|
| 320 |
+
"Move the mushroom in front of the blue cloth",
|
| 321 |
+
"Move the pot to the left of the brush.",
|
| 322 |
+
"Move the mushroom and put it in the pot.",
|
| 323 |
+
"Move the carrot from the pot.",
|
| 324 |
+
"topple basil bottle cardboard fence",
|
| 325 |
+
"Put the metal pot on top of the yellow cloth.",
|
| 326 |
+
"close large4fbox flaps",
|
| 327 |
+
"end effector reaching knife",
|
| 328 |
+
"unzip zipper bag",
|
| 329 |
+
"Move the food item to the lower left side of the table",
|
| 330 |
+
"Put the red spoon in between the pan and the green cloth",
|
| 331 |
+
"Place the spatula to the left of the pot.",
|
| 332 |
+
"put pan on towel",
|
| 333 |
+
"Move the red spoon so that it's in front of the silver pan, near the edge of the table.",
|
| 334 |
+
"turn faucet front to left",
|
| 335 |
+
"Move the purple cloth and place it at the center of the table.",
|
| 336 |
+
"take carrot off plate cardboardfence",
|
| 337 |
+
"right pepper shaker",
|
| 338 |
+
"turn faucet front to left",
|
| 339 |
+
"Place the container in the pan",
|
| 340 |
+
"Move the cloth directly between the pot and mushroom.",
|
| 341 |
+
"put the mushroom in the pot",
|
| 342 |
+
"end effector reaching pot or pan",
|
| 343 |
+
"Put orange and green object in silver pan",
|
| 344 |
+
"Place the blue spoon next to the metal pot",
|
| 345 |
+
"Put the green spoon beside the metal bowl.",
|
| 346 |
+
"put eggplant in pot or pan",
|
| 347 |
+
"Place the spoon on the front right corner of the counter near the bowl.",
|
| 348 |
+
"pick up glass cup",
|
| 349 |
+
"NOT MOMENT THE ANY THING",
|
| 350 |
+
"put cucumber in cup",
|
| 351 |
+
"Move the white item to the front of the microwave",
|
| 352 |
+
"Put the fork onto the cloth.",
|
| 353 |
+
"take bowl off plate",
|
| 354 |
+
"pick appl from vessel and place it on the right bottom of the table",
|
| 355 |
+
"Place the silver pot on the blue cloth.",
|
| 356 |
+
"Place the knife next to the potato.",
|
| 357 |
+
"put pot or pan on stove and put mushroom in pot or pan",
|
| 358 |
+
"take carrot out of pot cardboard fence",
|
| 359 |
+
"turn lever vertical to-front",
|
| 360 |
+
"Move the red pepper to the front left corner of the table",
|
| 361 |
+
"take cup off plate",
|
| 362 |
+
"take bowl off plate",
|
| 363 |
+
"pick up pan from stove distractors",
|
| 364 |
+
"Place the baster in the pot.",
|
| 365 |
+
"Move the green spatula behind the yellow cloth.",
|
| 366 |
+
"Place the spatula behind the vessel.",
|
| 367 |
+
"close fridge",
|
| 368 |
+
"open microwave",
|
| 369 |
+
"Move the orange object to the left of the pot.",
|
| 370 |
+
"put lid on pot or pan",
|
| 371 |
+
"Move the mushroom into the pot.",
|
| 372 |
+
"Move and place the spoon to the right side of the silver vessel.",
|
| 373 |
+
"move the fish behind the towel across from the pot",
|
| 374 |
+
"Put the shaker into the pot.",
|
| 375 |
+
"Place the green cloth next to the red chili",
|
| 376 |
+
"put knife on cutting board",
|
| 377 |
+
"Video format not showing.",
|
| 378 |
+
"flip pot upright in sink distractors",
|
| 379 |
+
"pick up scissors and put into drawer",
|
| 380 |
+
"turn lever vertical to front",
|
| 381 |
+
"open fridge",
|
| 382 |
+
"Move the knife under the towel.",
|
| 383 |
+
"put saltcontainer on plate and ketchupbottle in pot or pan in sink",
|
| 384 |
+
"PICK UP THE FRUIT AND PUT NEAR PURPLE TOWEL",
|
| 385 |
+
"Move the pan to the right of the bottle and banana.",
|
| 386 |
+
"Put the pear to the right of the pot.",
|
| 387 |
+
"put detergent in sink",
|
| 388 |
+
"put blueberry on plate and spoon in pot or pan in sink",
|
| 389 |
+
"Move the pan to the middle left edge of the table.",
|
| 390 |
+
"Move the hot dog towards the top of the table.",
|
| 391 |
+
"Pick up the yellow flower and place it behind the pot",
|
| 392 |
+
"Pick up pot and drop onto the blue towel",
|
| 393 |
+
"put cup from sink to drying rack",
|
| 394 |
+
"moved fork to the back of the counter",
|
| 395 |
+
"Move the silver pot to the center of the table.",
|
| 396 |
+
"put the Spoon on the towel",
|
| 397 |
+
"Place the red spoon on middle of the table",
|
| 398 |
+
"open drawer of box",
|
| 399 |
+
"Move the brush nearby the lower right corner.",
|
| 400 |
+
"turn lever vertical to front distractors",
|
| 401 |
+
"Move pot to the right of the spoon.",
|
| 402 |
+
"fold cloth in half",
|
| 403 |
+
"put cup from counter to sink",
|
| 404 |
+
"move yellow knife to left of blue object",
|
| 405 |
+
"Pick up the green spatula and place it on the green cloth",
|
| 406 |
+
"pick up green mug",
|
| 407 |
+
"put cup from counter to sink",
|
| 408 |
+
"Put the green spatula in the upper left corner of the table",
|
| 409 |
+
"put potato on plate",
|
| 410 |
+
"take sushi out of pot cardboard fence",
|
| 411 |
+
"put eggplant into pot or pan",
|
| 412 |
+
"Move the blue cloth to the left of the silver bowl",
|
| 413 |
+
"put sushi on plate",
|
| 414 |
+
"Move the spoon between the cans and the mushroom"
|
| 415 |
+
],
|
| 416 |
+
"desc_act": false,
|
| 417 |
+
"exllama_config": {
|
| 418 |
+
"version": 1
|
| 419 |
+
},
|
| 420 |
+
"group_size": 128,
|
| 421 |
+
"max_input_length": null,
|
| 422 |
+
"meta": {
|
| 423 |
+
"quantizer": [
|
| 424 |
+
"optimum:1.26.1",
|
| 425 |
+
"auto_gptq:0.7.1"
|
| 426 |
+
]
|
| 427 |
+
},
|
| 428 |
+
"model_seqlen": null,
|
| 429 |
+
"module_name_preceding_first_block": null,
|
| 430 |
+
"modules_in_block_to_quantize": null,
|
| 431 |
+
"pad_token_id": null,
|
| 432 |
+
"quant_method": "gptq",
|
| 433 |
+
"sym": true,
|
| 434 |
+
"tokenizer": null,
|
| 435 |
+
"true_sequential": true,
|
| 436 |
+
"use_cuda_fp16": false,
|
| 437 |
+
"use_exllama": true
|
| 438 |
+
},
|
| 439 |
+
"text_config": {
|
| 440 |
+
"attention_bias": false,
|
| 441 |
+
"attention_dropout": 0.0,
|
| 442 |
+
"head_dim": 128,
|
| 443 |
+
"hidden_act": "silu",
|
| 444 |
+
"hidden_size": 4096,
|
| 445 |
+
"initializer_range": 0.02,
|
| 446 |
+
"intermediate_size": 11008,
|
| 447 |
+
"max_position_embeddings": 2048,
|
| 448 |
+
"mlp_bias": false,
|
| 449 |
+
"model_type": "llama",
|
| 450 |
+
"num_attention_heads": 32,
|
| 451 |
+
"num_hidden_layers": 32,
|
| 452 |
+
"num_key_value_heads": 32,
|
| 453 |
+
"pad_token_id": 32000,
|
| 454 |
+
"pretraining_tp": 1,
|
| 455 |
+
"rms_norm_eps": 1e-06,
|
| 456 |
+
"rope_scaling": null,
|
| 457 |
+
"rope_theta": 10000.0,
|
| 458 |
+
"torch_dtype": "bfloat16",
|
| 459 |
+
"use_cache": true,
|
| 460 |
+
"vocab_size": 32064
|
| 461 |
+
},
|
| 462 |
+
"timm_model_ids": [
|
| 463 |
+
"vit_large_patch14_reg4_dinov2.lvd142m",
|
| 464 |
+
"vit_so400m_patch14_siglip_224"
|
| 465 |
+
],
|
| 466 |
+
"timm_override_act_layers": [
|
| 467 |
+
null,
|
| 468 |
+
null
|
| 469 |
+
],
|
| 470 |
+
"torch_dtype": "float16",
|
| 471 |
+
"transformers_version": "4.53.1",
|
| 472 |
+
"use_cache": false,
|
| 473 |
+
"use_fused_vision_backbone": true,
|
| 474 |
+
"vision_backbone_id": "dinosiglip-vit-so-224px"
|
| 475 |
+
}
|
configuration_prismatic.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
configuration_prismatic.py
|
| 3 |
+
|
| 4 |
+
HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
|
| 5 |
+
Default configuration specifies `siglip-224px+7b`.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import Any, Dict, List, Optional
|
| 9 |
+
|
| 10 |
+
from transformers import PretrainedConfig
|
| 11 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 12 |
+
|
| 13 |
+
# === Utilities for Mapping Prismatic names to HF names ===
|
| 14 |
+
# fmt: off
|
| 15 |
+
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
|
| 16 |
+
"clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
|
| 17 |
+
|
| 18 |
+
"clip-vit-l-336px": [336],
|
| 19 |
+
"siglip-vit-so400m-384px": [384],
|
| 20 |
+
|
| 21 |
+
"dinoclip-vit-l-336px": [336, 336],
|
| 22 |
+
"dinosiglip-vit-so-224px": [224, 224],
|
| 23 |
+
"dinosiglip-vit-so-384px": [384, 384],
|
| 24 |
+
}
|
| 25 |
+
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
|
| 26 |
+
"clip-vit-l": ["vit_large_patch14_clip_224.openai"],
|
| 27 |
+
"clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
|
| 28 |
+
|
| 29 |
+
"dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
|
| 30 |
+
"in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
|
| 31 |
+
|
| 32 |
+
"siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
|
| 33 |
+
"siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
|
| 34 |
+
|
| 35 |
+
"dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
|
| 36 |
+
"dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
|
| 37 |
+
"dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
|
| 38 |
+
}
|
| 39 |
+
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
|
| 40 |
+
"clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
|
| 41 |
+
"dinov2-vit-l": [None], "in1k-vit-l": [None],
|
| 42 |
+
"siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
|
| 43 |
+
"dinoclip-vit-l-336px": [None, "quick_gelu"],
|
| 44 |
+
"dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
LLM_BACKBONE_TO_HF_PATH = {
|
| 48 |
+
"llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
|
| 49 |
+
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
|
| 50 |
+
|
| 51 |
+
"vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
|
| 52 |
+
|
| 53 |
+
"mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
|
| 54 |
+
"mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
|
| 55 |
+
|
| 56 |
+
"phi-2-3b": "microsoft/phi-2",
|
| 57 |
+
}
|
| 58 |
+
LLM_BACKBONE_TO_HF_METACLASS = {
|
| 59 |
+
"llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
|
| 60 |
+
"vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
|
| 61 |
+
|
| 62 |
+
"mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
|
| 63 |
+
|
| 64 |
+
"phi-2-3b": "phi",
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
|
| 68 |
+
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
|
| 69 |
+
# fmt: on
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class PrismaticConfig(PretrainedConfig):
|
| 73 |
+
model_type: str = "prismatic"
|
| 74 |
+
is_composition: bool = False
|
| 75 |
+
|
| 76 |
+
def __init__(
|
| 77 |
+
self,
|
| 78 |
+
vision_backbone_id: str = "siglip-vit-so400m",
|
| 79 |
+
llm_backbone_id: str = "vicuna-v15-7b",
|
| 80 |
+
arch_specifier: str = "no-align+gelu-mlp",
|
| 81 |
+
use_fused_vision_backbone: Optional[bool] = None,
|
| 82 |
+
image_resize_strategy: str = "letterbox",
|
| 83 |
+
text_config: Optional[Dict[str, Any]] = None,
|
| 84 |
+
llm_max_length: int = 2048,
|
| 85 |
+
pad_token_id: int = 32000,
|
| 86 |
+
pad_to_multiple_of: int = 64,
|
| 87 |
+
output_projector_states: bool = False,
|
| 88 |
+
**kwargs: str,
|
| 89 |
+
) -> None:
|
| 90 |
+
if vision_backbone_id not in VALID_VISION_BACKBONES:
|
| 91 |
+
raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
|
| 92 |
+
|
| 93 |
+
if llm_backbone_id not in VALID_LLM_BACKBONES:
|
| 94 |
+
raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
|
| 95 |
+
|
| 96 |
+
# Set Prismatic Configuration Fields
|
| 97 |
+
self.vision_backbone_id = vision_backbone_id
|
| 98 |
+
self.llm_backbone_id = llm_backbone_id
|
| 99 |
+
self.arch_specifier = arch_specifier
|
| 100 |
+
self.output_projector_states = output_projector_states
|
| 101 |
+
|
| 102 |
+
# [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
|
| 103 |
+
self.use_fused_vision_backbone = (
|
| 104 |
+
use_fused_vision_backbone
|
| 105 |
+
if use_fused_vision_backbone is not None
|
| 106 |
+
else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
|
| 110 |
+
self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
|
| 111 |
+
self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
|
| 112 |
+
self.image_resize_strategy = image_resize_strategy
|
| 113 |
+
|
| 114 |
+
self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
|
| 115 |
+
self.llm_max_length = llm_max_length
|
| 116 |
+
self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
|
| 117 |
+
|
| 118 |
+
# [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
|
| 119 |
+
self.text_config = (
|
| 120 |
+
CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
|
| 121 |
+
if text_config is not None
|
| 122 |
+
else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
|
| 126 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class OpenVLAConfig(PrismaticConfig):
|
| 130 |
+
model_type: str = "openvla"
|
| 131 |
+
|
| 132 |
+
def __init__(
|
| 133 |
+
self,
|
| 134 |
+
norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
|
| 135 |
+
n_action_bins: int = 256,
|
| 136 |
+
**kwargs: str,
|
| 137 |
+
) -> None:
|
| 138 |
+
self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
|
| 139 |
+
|
| 140 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 32000,
|
| 6 |
+
"transformers_version": "4.53.1"
|
| 7 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09689720229c37f98dd41ffcdf4121c390e7714bf1ed56c840967cf853fa8592
|
| 3 |
+
size 4979533016
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65a6500969c155fcf62b2a6e5c6b32241b940e988ff6d71890747cbbef86615e
|
| 3 |
+
size 520182600
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_prismatic.py
ADDED
|
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
modeling_prismatic.py
|
| 3 |
+
|
| 4 |
+
Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
|
| 5 |
+
from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
|
| 6 |
+
logic in `prismatic.models.vlms.prismatic.py`.
|
| 7 |
+
|
| 8 |
+
Note =>> for the time being, not adding the custom HF "docstring" formatting.
|
| 9 |
+
|
| 10 |
+
References [LLaVa, IDEFICS-2]:
|
| 11 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
|
| 12 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import logging
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from functools import partial
|
| 18 |
+
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import timm
|
| 22 |
+
import tokenizers
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn as nn
|
| 25 |
+
import transformers
|
| 26 |
+
from timm.models.vision_transformer import LayerScale
|
| 27 |
+
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
| 28 |
+
from transformers.modeling_outputs import ModelOutput
|
| 29 |
+
|
| 30 |
+
from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
|
| 31 |
+
|
| 32 |
+
# Get Logger
|
| 33 |
+
logger = logging.getLogger(__name__)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
|
| 37 |
+
IGNORE_INDEX = -100
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# === Utility Functions for Monkey-Patching ===
|
| 41 |
+
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
|
| 42 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
| 43 |
+
result = fn(*args, **kwargs)
|
| 44 |
+
return result[0] if isinstance(result, tuple) else result
|
| 45 |
+
|
| 46 |
+
return wrapper
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
|
| 50 |
+
# =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
|
| 51 |
+
# =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
|
| 52 |
+
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def ls_apply_patch(ls_module: LayerScale):
|
| 57 |
+
ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
|
| 58 |
+
ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
|
| 59 |
+
del ls_module.gamma
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
|
| 63 |
+
class PrismaticVisionBackbone(nn.Module):
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
use_fused_vision_backbone: bool,
|
| 67 |
+
image_sizes: List[int],
|
| 68 |
+
timm_model_ids: List[str],
|
| 69 |
+
timm_override_act_layers: List[Optional[str]],
|
| 70 |
+
) -> None:
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 73 |
+
|
| 74 |
+
# [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
|
| 75 |
+
# =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
|
| 76 |
+
# Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
|
| 77 |
+
assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
|
| 78 |
+
self.featurizer = timm.create_model(
|
| 79 |
+
timm_model_ids[0],
|
| 80 |
+
pretrained=False,
|
| 81 |
+
num_classes=0,
|
| 82 |
+
img_size=image_sizes[0],
|
| 83 |
+
act_layer=timm_override_act_layers[0],
|
| 84 |
+
)
|
| 85 |
+
self.featurizer.forward = unpack_tuple(
|
| 86 |
+
partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2})
|
| 87 |
+
)
|
| 88 |
+
self.embed_dim = self.featurizer.embed_dim
|
| 89 |
+
|
| 90 |
+
# If `use_fused_vision_backbone` =>> create "beta" featurizer
|
| 91 |
+
if self.use_fused_vision_backbone:
|
| 92 |
+
self.fused_featurizer = timm.create_model(
|
| 93 |
+
timm_model_ids[1],
|
| 94 |
+
pretrained=False,
|
| 95 |
+
num_classes=0,
|
| 96 |
+
img_size=image_sizes[1],
|
| 97 |
+
act_layer=timm_override_act_layers[1],
|
| 98 |
+
)
|
| 99 |
+
self.fused_featurizer.forward = unpack_tuple(
|
| 100 |
+
partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2})
|
| 101 |
+
)
|
| 102 |
+
self.embed_dim += self.fused_featurizer.embed_dim
|
| 103 |
+
|
| 104 |
+
# Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale
|
| 105 |
+
for module in self.featurizer.modules():
|
| 106 |
+
if isinstance(module, LayerScale):
|
| 107 |
+
ls_apply_patch(module)
|
| 108 |
+
|
| 109 |
+
if self.use_fused_vision_backbone:
|
| 110 |
+
for module in self.fused_featurizer.modules():
|
| 111 |
+
if isinstance(module, LayerScale):
|
| 112 |
+
ls_apply_patch(module)
|
| 113 |
+
|
| 114 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
| 115 |
+
"""Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
|
| 116 |
+
if not self.use_fused_vision_backbone:
|
| 117 |
+
return self.featurizer(pixel_values)
|
| 118 |
+
|
| 119 |
+
# Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
|
| 120 |
+
img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
|
| 121 |
+
patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
|
| 122 |
+
|
| 123 |
+
return torch.cat([patches, patches_fused], dim=2)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# === Prismatic Projector (nn.Module) Definitions ===
|
| 127 |
+
class PrismaticProjector(nn.Module):
|
| 128 |
+
def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 131 |
+
self.vision_dim, self.llm_dim = vision_dim, llm_dim
|
| 132 |
+
|
| 133 |
+
# Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
|
| 134 |
+
if not self.use_fused_vision_backbone:
|
| 135 |
+
self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
|
| 136 |
+
self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
| 137 |
+
self.act_fn1 = nn.GELU()
|
| 138 |
+
else:
|
| 139 |
+
initial_projection_dim = 4 * vision_dim
|
| 140 |
+
self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
|
| 141 |
+
self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
|
| 142 |
+
self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
| 143 |
+
self.act_fn1 = nn.GELU()
|
| 144 |
+
self.act_fn2 = nn.GELU()
|
| 145 |
+
|
| 146 |
+
def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
|
| 147 |
+
if not self.use_fused_vision_backbone:
|
| 148 |
+
projected_features = self.fc1(img_patches)
|
| 149 |
+
projected_features = self.act_fn1(projected_features)
|
| 150 |
+
projected_features = self.fc2(projected_features)
|
| 151 |
+
else:
|
| 152 |
+
projected_features = self.fc1(img_patches)
|
| 153 |
+
projected_features = self.act_fn1(projected_features)
|
| 154 |
+
projected_features = self.fc2(projected_features)
|
| 155 |
+
projected_features = self.act_fn2(projected_features)
|
| 156 |
+
projected_features = self.fc3(projected_features)
|
| 157 |
+
|
| 158 |
+
return projected_features
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# === Main HF Class Definitions ===
|
| 162 |
+
@dataclass
|
| 163 |
+
class PrismaticCausalLMOutputWithPast(ModelOutput):
|
| 164 |
+
"""Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
|
| 165 |
+
|
| 166 |
+
loss: Optional[torch.FloatTensor] = None
|
| 167 |
+
logits: torch.FloatTensor = None
|
| 168 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 169 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 170 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 171 |
+
|
| 172 |
+
# Additions for VLMs
|
| 173 |
+
projector_features: Optional[torch.FloatTensor] = None
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class PrismaticPreTrainedModel(PreTrainedModel):
|
| 177 |
+
config_class: PretrainedConfig = PrismaticConfig
|
| 178 |
+
base_model_prefix: str = "model"
|
| 179 |
+
supports_gradient_checkpointing: bool = True
|
| 180 |
+
|
| 181 |
+
_no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
|
| 182 |
+
_skip_keys_device_placement: str = "past_key_values"
|
| 183 |
+
_supports_flash_attn_2: bool = True
|
| 184 |
+
|
| 185 |
+
def _init_weights(self, module: nn.Module) -> None:
|
| 186 |
+
# Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
|
| 187 |
+
# => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
|
| 188 |
+
# https://github.com/TRI-ML/prismatic-vlms
|
| 189 |
+
std = (
|
| 190 |
+
self.config.initializer_range
|
| 191 |
+
if hasattr(self.config, "initializer_range")
|
| 192 |
+
else self.config.text_config.initializer_range
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
if hasattr(module, "class_embedding"):
|
| 196 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 197 |
+
|
| 198 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 199 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 200 |
+
if module.bias is not None:
|
| 201 |
+
module.bias.data.zero_()
|
| 202 |
+
elif isinstance(module, nn.Embedding):
|
| 203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 204 |
+
if module.padding_idx is not None:
|
| 205 |
+
module.weight.data[module.padding_idx].zero_()
|
| 206 |
+
|
| 207 |
+
@property
|
| 208 |
+
def _supports_sdpa(self) -> bool:
|
| 209 |
+
"""Check LLM supports SDPA Attention"""
|
| 210 |
+
return self.language_model._supports_sdpa
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
|
| 214 |
+
def __init__(self, config: PrismaticConfig) -> None:
|
| 215 |
+
super().__init__(config)
|
| 216 |
+
|
| 217 |
+
# [Validation] Lightweight Validate on `config` Fields + Dependency Versions
|
| 218 |
+
if config.use_fused_vision_backbone is None:
|
| 219 |
+
raise ValueError("Missing config field `use_fused_vision_backbone`")
|
| 220 |
+
|
| 221 |
+
if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
|
| 222 |
+
raise NotImplementedError(
|
| 223 |
+
"TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
|
| 224 |
+
"if you urgently need support for latest TIMM versions."
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
|
| 228 |
+
logger.warning(
|
| 229 |
+
f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
|
| 230 |
+
f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
|
| 231 |
+
f"there might be inference-time regressions due to dependency changes. If in doubt, please"
|
| 232 |
+
f"use the above versions."
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
|
| 236 |
+
self.vision_backbone = PrismaticVisionBackbone(
|
| 237 |
+
config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Create Multimodal Projector
|
| 241 |
+
self.projector = PrismaticProjector(
|
| 242 |
+
config.use_fused_vision_backbone,
|
| 243 |
+
vision_dim=self.vision_backbone.embed_dim,
|
| 244 |
+
llm_dim=config.text_config.hidden_size,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# Instantiate LLM Backbone
|
| 248 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
| 249 |
+
config.text_config, attn_implementation=config._attn_implementation
|
| 250 |
+
)
|
| 251 |
+
self.vocab_size = config.text_config.vocab_size
|
| 252 |
+
self.pad_token_id = config.pad_token_id
|
| 253 |
+
|
| 254 |
+
# HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
|
| 255 |
+
self.post_init()
|
| 256 |
+
|
| 257 |
+
# === `PreTrainedModel` Boilerplate ===
|
| 258 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 259 |
+
return self.language_model.get_input_embeddings()
|
| 260 |
+
|
| 261 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
| 262 |
+
self.language_model.set_input_embeddings(value)
|
| 263 |
+
|
| 264 |
+
def get_output_embeddings(self) -> nn.Module:
|
| 265 |
+
return self.language_model.get_output_embeddings()
|
| 266 |
+
|
| 267 |
+
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
|
| 268 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 269 |
+
|
| 270 |
+
def get_decoder(self) -> nn.Module:
|
| 271 |
+
return self.language_model.get_decoder()
|
| 272 |
+
|
| 273 |
+
def set_decoder(self, decoder: nn.Module) -> None:
|
| 274 |
+
self.language_model.set_decoder(decoder)
|
| 275 |
+
|
| 276 |
+
def tie_weights(self) -> None:
|
| 277 |
+
self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
|
| 278 |
+
|
| 279 |
+
def resize_token_embeddings(
|
| 280 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
| 281 |
+
) -> nn.Embedding:
|
| 282 |
+
updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
| 283 |
+
|
| 284 |
+
# Update config/instance variables
|
| 285 |
+
self.config.text_config.vocab_size = updated_embeddings.num_embeddings
|
| 286 |
+
self.vocab_size = updated_embeddings.num_embeddings
|
| 287 |
+
|
| 288 |
+
return updated_embeddings
|
| 289 |
+
|
| 290 |
+
# === Core Prismatic VLM `forward()` Logic ===
|
| 291 |
+
def forward(
|
| 292 |
+
self,
|
| 293 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 294 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 295 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 296 |
+
labels: Optional[torch.LongTensor] = None,
|
| 297 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 298 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 299 |
+
use_cache: Optional[bool] = None,
|
| 300 |
+
output_attentions: Optional[bool] = None,
|
| 301 |
+
output_hidden_states: Optional[bool] = None,
|
| 302 |
+
output_projector_features: Optional[bool] = None,
|
| 303 |
+
return_dict: Optional[bool] = None,
|
| 304 |
+
) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
|
| 305 |
+
"""Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
|
| 306 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 307 |
+
output_hidden_states = (
|
| 308 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 309 |
+
)
|
| 310 |
+
output_projector_features = output_projector_features if output_projector_features is not None else False
|
| 311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 312 |
+
|
| 313 |
+
# Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
|
| 314 |
+
use_cache = use_cache and not self.training
|
| 315 |
+
|
| 316 |
+
# Instantiate Placeholder for Projector Features
|
| 317 |
+
projected_patch_embeddings = None
|
| 318 |
+
|
| 319 |
+
# Note :: We only support forward passes with the following cases:
|
| 320 |
+
# => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
|
| 321 |
+
# => Unimodal Forward :: (pixel_values is None)
|
| 322 |
+
# => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
|
| 323 |
+
|
| 324 |
+
# === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
|
| 325 |
+
if input_ids.shape[1] == 1:
|
| 326 |
+
assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
|
| 327 |
+
assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
|
| 328 |
+
assert labels is None, "Unexpected key `labels` provided during cached generation!"
|
| 329 |
+
|
| 330 |
+
language_model_output = self.language_model(
|
| 331 |
+
input_ids=input_ids,
|
| 332 |
+
attention_mask=None,
|
| 333 |
+
position_ids=None,
|
| 334 |
+
past_key_values=past_key_values,
|
| 335 |
+
inputs_embeds=None,
|
| 336 |
+
labels=None,
|
| 337 |
+
use_cache=use_cache,
|
| 338 |
+
output_attentions=output_attentions,
|
| 339 |
+
output_hidden_states=output_hidden_states,
|
| 340 |
+
return_dict=return_dict,
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
# === Handle Unimodal Forward ===
|
| 344 |
+
elif pixel_values is None:
|
| 345 |
+
assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
|
| 346 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
| 347 |
+
|
| 348 |
+
language_model_output = self.language_model(
|
| 349 |
+
input_ids=input_ids,
|
| 350 |
+
attention_mask=attention_mask,
|
| 351 |
+
position_ids=None,
|
| 352 |
+
past_key_values=None,
|
| 353 |
+
inputs_embeds=None,
|
| 354 |
+
labels=labels,
|
| 355 |
+
use_cache=use_cache,
|
| 356 |
+
output_attentions=output_attentions,
|
| 357 |
+
output_hidden_states=output_hidden_states,
|
| 358 |
+
return_dict=return_dict,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# === Handle Multimodal Forward ===
|
| 362 |
+
elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
|
| 363 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
| 364 |
+
|
| 365 |
+
# Visual Feature Extraction
|
| 366 |
+
patch_features = self.vision_backbone(pixel_values)
|
| 367 |
+
|
| 368 |
+
# Projection Logic =>> Update Attention Mask
|
| 369 |
+
projected_patch_embeddings = self.projector(patch_features)
|
| 370 |
+
projected_patch_attention_mask = None
|
| 371 |
+
if attention_mask is not None:
|
| 372 |
+
projected_patch_attention_mask = torch.full(
|
| 373 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
| 374 |
+
fill_value=True,
|
| 375 |
+
dtype=attention_mask.dtype,
|
| 376 |
+
device=attention_mask.device,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
# Get Input Embeddings (from Language Model Embeddings)
|
| 380 |
+
input_embeddings = self.get_input_embeddings()(input_ids)
|
| 381 |
+
|
| 382 |
+
# Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
|
| 383 |
+
multimodal_embeddings = torch.cat(
|
| 384 |
+
[input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
|
| 385 |
+
)
|
| 386 |
+
multimodal_attention_mask = None
|
| 387 |
+
if attention_mask is not None:
|
| 388 |
+
multimodal_attention_mask = torch.cat(
|
| 389 |
+
[attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
|
| 393 |
+
multimodal_labels = None
|
| 394 |
+
if labels is not None:
|
| 395 |
+
projected_patch_labels = torch.full(
|
| 396 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
| 397 |
+
fill_value=IGNORE_INDEX,
|
| 398 |
+
dtype=labels.dtype,
|
| 399 |
+
device=labels.device,
|
| 400 |
+
)
|
| 401 |
+
multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
|
| 402 |
+
|
| 403 |
+
# Dispatch to Language Model
|
| 404 |
+
language_model_output = self.language_model(
|
| 405 |
+
input_ids=None,
|
| 406 |
+
attention_mask=multimodal_attention_mask,
|
| 407 |
+
position_ids=None,
|
| 408 |
+
past_key_values=None,
|
| 409 |
+
inputs_embeds=multimodal_embeddings,
|
| 410 |
+
labels=multimodal_labels,
|
| 411 |
+
use_cache=use_cache,
|
| 412 |
+
output_attentions=output_attentions,
|
| 413 |
+
output_hidden_states=output_hidden_states,
|
| 414 |
+
return_dict=return_dict,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
# === Otherwise =>> Assume Invalid! ===
|
| 418 |
+
elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
|
| 419 |
+
raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
|
| 420 |
+
|
| 421 |
+
else:
|
| 422 |
+
raise ValueError(
|
| 423 |
+
"Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
|
| 424 |
+
f"=> `input_ids` = {input_ids is not None}\n"
|
| 425 |
+
f"=> `attention_mask` = {attention_mask is not None}\n"
|
| 426 |
+
f"=> `pixel_values` = {pixel_values is not None}\n"
|
| 427 |
+
f"=> `labels` = {labels is not None}\n"
|
| 428 |
+
f"=> `input_embeds` = {inputs_embeds is not None}\n"
|
| 429 |
+
f"=> `past_key_values` = {past_key_values is not None}\n"
|
| 430 |
+
f"=> `use_cache` = {use_cache}"
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
# Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
|
| 434 |
+
if not return_dict:
|
| 435 |
+
if output_projector_features and (projected_patch_embeddings is not None):
|
| 436 |
+
return *language_model_output, projected_patch_embeddings
|
| 437 |
+
|
| 438 |
+
return language_model_output
|
| 439 |
+
|
| 440 |
+
return PrismaticCausalLMOutputWithPast(
|
| 441 |
+
loss=language_model_output.loss,
|
| 442 |
+
logits=language_model_output.logits,
|
| 443 |
+
past_key_values=language_model_output.past_key_values,
|
| 444 |
+
hidden_states=language_model_output.hidden_states,
|
| 445 |
+
attentions=language_model_output.attentions,
|
| 446 |
+
projector_features=projected_patch_embeddings,
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# === GenerationMixin Methods ===
|
| 450 |
+
def prepare_inputs_for_generation(
|
| 451 |
+
self,
|
| 452 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 453 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 454 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 455 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 456 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 457 |
+
**kwargs: str,
|
| 458 |
+
) -> Dict[str, torch.Tensor]:
|
| 459 |
+
"""Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
|
| 460 |
+
if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
|
| 461 |
+
(inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
|
| 462 |
+
):
|
| 463 |
+
raise ValueError("Generation with batch size > 1 is not currently supported!")
|
| 464 |
+
|
| 465 |
+
# Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
|
| 466 |
+
if past_key_values is not None:
|
| 467 |
+
input_ids = input_ids[:, -1:]
|
| 468 |
+
|
| 469 |
+
# If `input_embeds` are passed, we only want to use them in the 1st generation step
|
| 470 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 471 |
+
model_inputs = {"input_embeds": inputs_embeds}
|
| 472 |
+
else:
|
| 473 |
+
model_inputs = {"input_ids": input_ids}
|
| 474 |
+
|
| 475 |
+
# Make sure `pixel_values` are preserved in `model_inputs`
|
| 476 |
+
model_inputs.update(
|
| 477 |
+
{
|
| 478 |
+
"attention_mask": attention_mask,
|
| 479 |
+
"pixel_values": pixel_values,
|
| 480 |
+
"past_key_values": past_key_values,
|
| 481 |
+
"use_cache": kwargs.get("use_cache"),
|
| 482 |
+
}
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
return model_inputs
|
| 486 |
+
|
| 487 |
+
# Defer to Language Model (all handle this differently, with different return types)
|
| 488 |
+
def _reorder_cache(self, *args, **kwargs) -> Any:
|
| 489 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
|
| 493 |
+
config_class: PretrainedConfig = OpenVLAConfig
|
| 494 |
+
|
| 495 |
+
def __init__(self, config: OpenVLAConfig) -> None:
|
| 496 |
+
super().__init__(config)
|
| 497 |
+
self.norm_stats = config.norm_stats
|
| 498 |
+
|
| 499 |
+
# Compute action bins
|
| 500 |
+
self.bins = np.linspace(-1, 1, config.n_action_bins)
|
| 501 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
| 502 |
+
|
| 503 |
+
# Compute vocab size for de-tokenization -- revert added "multiple of"
|
| 504 |
+
self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
|
| 505 |
+
|
| 506 |
+
def predict_action(
|
| 507 |
+
self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs: str
|
| 508 |
+
) -> np.ndarray:
|
| 509 |
+
"""Thin wrapper around .generate() that decodes predicted actions and unnormalizes them."""
|
| 510 |
+
# If the special empty token ('') does not already appear after the colon (':') token in the prompt
|
| 511 |
+
# (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
|
| 512 |
+
if not torch.all(input_ids[:, -1] == 29871):
|
| 513 |
+
input_ids = torch.cat(
|
| 514 |
+
(input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# Run VLA inference
|
| 518 |
+
generated_ids = self.generate(input_ids, max_new_tokens=self.get_action_dim(unnorm_key), **kwargs)
|
| 519 |
+
|
| 520 |
+
# Extract predicted action tokens and translate into (normalized) continuous actions
|
| 521 |
+
predicted_action_token_ids = generated_ids[0, -self.get_action_dim(unnorm_key) :].cpu().numpy()
|
| 522 |
+
discretized_actions = self.vocab_size - predicted_action_token_ids
|
| 523 |
+
discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
| 524 |
+
normalized_actions = self.bin_centers[discretized_actions]
|
| 525 |
+
|
| 526 |
+
# Unnormalize actions
|
| 527 |
+
action_norm_stats = self.get_action_stats(unnorm_key)
|
| 528 |
+
mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
|
| 529 |
+
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
|
| 530 |
+
actions = np.where(
|
| 531 |
+
mask,
|
| 532 |
+
0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
|
| 533 |
+
normalized_actions,
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
return actions
|
| 537 |
+
|
| 538 |
+
@staticmethod
|
| 539 |
+
def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
|
| 540 |
+
if unnorm_key is None:
|
| 541 |
+
assert len(norm_stats) == 1, (
|
| 542 |
+
f"Your model was trained on more than one dataset, "
|
| 543 |
+
f"please pass a `unnorm_key` from the following options to choose the statistics "
|
| 544 |
+
f"used for un-normalizing actions: {norm_stats.keys()}"
|
| 545 |
+
)
|
| 546 |
+
unnorm_key = next(iter(norm_stats.keys()))
|
| 547 |
+
|
| 548 |
+
assert unnorm_key in norm_stats, (
|
| 549 |
+
f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
|
| 550 |
+
f"please choose from: {norm_stats.keys()}"
|
| 551 |
+
)
|
| 552 |
+
return unnorm_key
|
| 553 |
+
|
| 554 |
+
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
|
| 555 |
+
"""Get the dimensionality of the policy's action space."""
|
| 556 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
| 557 |
+
return len(self.norm_stats[unnorm_key]["action"]["q01"])
|
| 558 |
+
|
| 559 |
+
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
|
| 560 |
+
"""Get all the logged statistics for the given dataset."""
|
| 561 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
| 562 |
+
return self.norm_stats[unnorm_key]["action"]
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "processing_prismatic.PrismaticImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
| 5 |
+
},
|
| 6 |
+
"image_processor_type": "PrismaticImageProcessor",
|
| 7 |
+
"image_resize_strategy": "resize-naive",
|
| 8 |
+
"input_sizes": [
|
| 9 |
+
[
|
| 10 |
+
3,
|
| 11 |
+
224,
|
| 12 |
+
224
|
| 13 |
+
],
|
| 14 |
+
[
|
| 15 |
+
3,
|
| 16 |
+
224,
|
| 17 |
+
224
|
| 18 |
+
]
|
| 19 |
+
],
|
| 20 |
+
"interpolations": [
|
| 21 |
+
"bicubic",
|
| 22 |
+
"bicubic"
|
| 23 |
+
],
|
| 24 |
+
"means": [
|
| 25 |
+
[
|
| 26 |
+
0.485,
|
| 27 |
+
0.456,
|
| 28 |
+
0.406
|
| 29 |
+
],
|
| 30 |
+
[
|
| 31 |
+
0.5,
|
| 32 |
+
0.5,
|
| 33 |
+
0.5
|
| 34 |
+
]
|
| 35 |
+
],
|
| 36 |
+
"processor_class": "PrismaticProcessor",
|
| 37 |
+
"stds": [
|
| 38 |
+
[
|
| 39 |
+
0.229,
|
| 40 |
+
0.224,
|
| 41 |
+
0.225
|
| 42 |
+
],
|
| 43 |
+
[
|
| 44 |
+
0.5,
|
| 45 |
+
0.5,
|
| 46 |
+
0.5
|
| 47 |
+
]
|
| 48 |
+
],
|
| 49 |
+
"tvf_crop_params": [
|
| 50 |
+
{
|
| 51 |
+
"output_size": [
|
| 52 |
+
224,
|
| 53 |
+
224
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"output_size": [
|
| 58 |
+
224,
|
| 59 |
+
224
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
],
|
| 63 |
+
"tvf_do_letterbox": false,
|
| 64 |
+
"tvf_letterbox_fill": null,
|
| 65 |
+
"tvf_normalize_params": [
|
| 66 |
+
{
|
| 67 |
+
"inplace": false,
|
| 68 |
+
"mean": [
|
| 69 |
+
0.484375,
|
| 70 |
+
0.455078125,
|
| 71 |
+
0.40625
|
| 72 |
+
],
|
| 73 |
+
"std": [
|
| 74 |
+
0.228515625,
|
| 75 |
+
0.2236328125,
|
| 76 |
+
0.224609375
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"inplace": false,
|
| 81 |
+
"mean": [
|
| 82 |
+
0.5,
|
| 83 |
+
0.5,
|
| 84 |
+
0.5
|
| 85 |
+
],
|
| 86 |
+
"std": [
|
| 87 |
+
0.5,
|
| 88 |
+
0.5,
|
| 89 |
+
0.5
|
| 90 |
+
]
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"tvf_resize_params": [
|
| 94 |
+
{
|
| 95 |
+
"antialias": true,
|
| 96 |
+
"interpolation": 3,
|
| 97 |
+
"max_size": null,
|
| 98 |
+
"size": [
|
| 99 |
+
224,
|
| 100 |
+
224
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"antialias": true,
|
| 105 |
+
"interpolation": 3,
|
| 106 |
+
"max_size": null,
|
| 107 |
+
"size": [
|
| 108 |
+
224,
|
| 109 |
+
224
|
| 110 |
+
]
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"use_fused_vision_backbone": true
|
| 114 |
+
}
|
processing_prismatic.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
processing_prismatic.py
|
| 3 |
+
|
| 4 |
+
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
|
| 5 |
+
specifies `siglip-224px+7b`.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import Any, ClassVar, List, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import timm.data
|
| 11 |
+
import torch
|
| 12 |
+
import torchvision.transforms.functional as TVF
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
| 15 |
+
from transformers import PreTrainedTokenizerBase
|
| 16 |
+
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
|
| 17 |
+
from transformers.processing_utils import ProcessorMixin
|
| 18 |
+
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
| 19 |
+
from transformers.utils import TensorType
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# === Image Processing ===
|
| 23 |
+
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
|
| 24 |
+
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
|
| 25 |
+
(w, h), max_wh = image.size, max(image.size)
|
| 26 |
+
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
|
| 27 |
+
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
|
| 28 |
+
|
| 29 |
+
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class PrismaticImageProcessor(ImageProcessingMixin):
|
| 33 |
+
model_input_names: ClassVar[List[str]] = ["pixel_values"]
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
use_fused_vision_backbone: bool = False,
|
| 38 |
+
image_resize_strategy: str = "letterbox",
|
| 39 |
+
input_sizes: Optional[List[Tuple[int, int, int]]] = None,
|
| 40 |
+
interpolations: Optional[List[str]] = None,
|
| 41 |
+
means: Optional[List[Tuple[float, float, float]]] = None,
|
| 42 |
+
stds: Optional[List[Tuple[float, float, float]]] = None,
|
| 43 |
+
**kwargs: str,
|
| 44 |
+
) -> None:
|
| 45 |
+
"""
|
| 46 |
+
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
|
| 47 |
+
created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
|
| 48 |
+
|
| 49 |
+
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
|
| 50 |
+
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
|
| 51 |
+
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
|
| 52 |
+
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
|
| 53 |
+
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
|
| 54 |
+
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
|
| 55 |
+
"""
|
| 56 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 57 |
+
self.image_resize_strategy = image_resize_strategy
|
| 58 |
+
|
| 59 |
+
# Handle `None` default values
|
| 60 |
+
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
|
| 61 |
+
means = [(0.5, 0.5, 0.5)] if means is None else means
|
| 62 |
+
stds = [(0.5, 0.5, 0.5)] if stds is None else stds
|
| 63 |
+
|
| 64 |
+
# TIMM `data_cfg` Parameters
|
| 65 |
+
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
|
| 66 |
+
|
| 67 |
+
# Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
|
| 68 |
+
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
|
| 69 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
| 70 |
+
|
| 71 |
+
for idx in range(len(input_sizes)):
|
| 72 |
+
transform = timm.data.create_transform(
|
| 73 |
+
input_size=self.input_sizes[idx],
|
| 74 |
+
interpolation=self.interpolations[idx],
|
| 75 |
+
mean=self.means[idx],
|
| 76 |
+
std=self.stds[idx],
|
| 77 |
+
crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
|
| 78 |
+
crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
|
| 79 |
+
is_training=False, # No image augmentations when loading the transform!
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# [Validation] Ensure appropriate transform structure, expected sizes
|
| 83 |
+
if not (
|
| 84 |
+
isinstance(transform, Compose)
|
| 85 |
+
and (len(transform.transforms) == 4)
|
| 86 |
+
and isinstance(transform.transforms[0], Resize)
|
| 87 |
+
and isinstance(transform.transforms[1], CenterCrop)
|
| 88 |
+
and isinstance(transform.transforms[2], ToTensor)
|
| 89 |
+
and isinstance(transform.transforms[3], Normalize)
|
| 90 |
+
and (transform.transforms[0].size == self.input_sizes[idx][-1])
|
| 91 |
+
and (transform.transforms[1].size == self.input_sizes[idx][-2:])
|
| 92 |
+
):
|
| 93 |
+
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
|
| 94 |
+
|
| 95 |
+
# HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
|
| 96 |
+
# => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
|
| 97 |
+
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
|
| 98 |
+
self.tvf_resize_params.append(
|
| 99 |
+
{
|
| 100 |
+
"size": resize_t.size,
|
| 101 |
+
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
|
| 102 |
+
"max_size": None,
|
| 103 |
+
"antialias": True,
|
| 104 |
+
}
|
| 105 |
+
)
|
| 106 |
+
self.tvf_crop_params.append({"output_size": crop_t.size})
|
| 107 |
+
self.tvf_normalize_params.append(
|
| 108 |
+
{
|
| 109 |
+
"mean": norm_t.mean.float().numpy().tolist(),
|
| 110 |
+
"std": norm_t.std.float().numpy().tolist(),
|
| 111 |
+
"inplace": False,
|
| 112 |
+
}
|
| 113 |
+
)
|
| 114 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
| 115 |
+
|
| 116 |
+
# Handle Prismatic `image_resize_strategy`
|
| 117 |
+
if self.image_resize_strategy == "resize-naive":
|
| 118 |
+
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
|
| 119 |
+
elif self.image_resize_strategy == "letterbox":
|
| 120 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
|
| 121 |
+
elif self.image_resize_strategy == "resize-crop":
|
| 122 |
+
pass
|
| 123 |
+
else:
|
| 124 |
+
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
|
| 125 |
+
|
| 126 |
+
# Dispatch **kwargs to super()
|
| 127 |
+
super().__init__(**kwargs)
|
| 128 |
+
|
| 129 |
+
def apply_transform(self, img: Image.Image) -> torch.Tensor:
|
| 130 |
+
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
|
| 131 |
+
if self.tvf_do_letterbox:
|
| 132 |
+
img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
|
| 133 |
+
|
| 134 |
+
# [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
|
| 135 |
+
imgs_t = []
|
| 136 |
+
for idx in range(len(self.input_sizes)):
|
| 137 |
+
img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
|
| 138 |
+
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
|
| 139 |
+
img_idx_t = TVF.to_tensor(img_idx)
|
| 140 |
+
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
|
| 141 |
+
imgs_t.append(img_idx_t)
|
| 142 |
+
|
| 143 |
+
# [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
|
| 144 |
+
img_t = torch.vstack(imgs_t)
|
| 145 |
+
|
| 146 |
+
return img_t
|
| 147 |
+
|
| 148 |
+
def preprocess(
|
| 149 |
+
self,
|
| 150 |
+
images: Union[Image.Image, List[Image.Image]],
|
| 151 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 152 |
+
**_: str,
|
| 153 |
+
) -> BatchFeature:
|
| 154 |
+
"""
|
| 155 |
+
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
|
| 156 |
+
explicitly only handle PIL.Image.Image instances for simplicity.
|
| 157 |
+
|
| 158 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
| 159 |
+
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
|
| 160 |
+
|
| 161 |
+
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
|
| 162 |
+
"""
|
| 163 |
+
if not isinstance(images, list):
|
| 164 |
+
images = [images]
|
| 165 |
+
|
| 166 |
+
# Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
|
| 167 |
+
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
|
| 168 |
+
|
| 169 |
+
# Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
|
| 170 |
+
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
|
| 171 |
+
|
| 172 |
+
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
|
| 173 |
+
return self.preprocess(images, **kwargs)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
|
| 177 |
+
# =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
|
| 178 |
+
class PrismaticProcessor(ProcessorMixin):
|
| 179 |
+
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
|
| 180 |
+
image_processor_class: str = "AutoImageProcessor"
|
| 181 |
+
tokenizer_class: str = "AutoTokenizer"
|
| 182 |
+
|
| 183 |
+
def __init__(
|
| 184 |
+
self,
|
| 185 |
+
image_processor: Optional[ImageProcessingMixin] = None,
|
| 186 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
| 187 |
+
) -> None:
|
| 188 |
+
super().__init__(image_processor, tokenizer)
|
| 189 |
+
|
| 190 |
+
def __call__(
|
| 191 |
+
self,
|
| 192 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
| 193 |
+
images: Union[Image.Image, List[Image.Image]],
|
| 194 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 195 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
| 196 |
+
max_length: Optional[int] = None,
|
| 197 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 198 |
+
) -> BatchFeature:
|
| 199 |
+
"""
|
| 200 |
+
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
|
| 201 |
+
forwards images to PrismaticImageProcessor.
|
| 202 |
+
|
| 203 |
+
@param text: The (batch) of text to encode; must be a string or list of strings.
|
| 204 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
| 205 |
+
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
|
| 206 |
+
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
|
| 207 |
+
@param max_length: Maximum length (in tokens) to truncate
|
| 208 |
+
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
|
| 209 |
+
|
| 210 |
+
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
|
| 211 |
+
"""
|
| 212 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
|
| 213 |
+
text_inputs = self.tokenizer(
|
| 214 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# [Validate] Need same number of images and text inputs!
|
| 218 |
+
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
|
| 219 |
+
raise ValueError("Batch is malformed; expected same number of images and text inputs!")
|
| 220 |
+
|
| 221 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
| 222 |
+
|
| 223 |
+
# === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
|
| 224 |
+
def batch_decode(
|
| 225 |
+
self,
|
| 226 |
+
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
| 227 |
+
skip_special_tokens: bool = False,
|
| 228 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
| 229 |
+
**kwargs: str,
|
| 230 |
+
) -> List[str]:
|
| 231 |
+
return self.tokenizer.batch_decode(
|
| 232 |
+
sequences=sequences,
|
| 233 |
+
skip_special_tokens=skip_special_tokens,
|
| 234 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 235 |
+
**kwargs,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
def decode(
|
| 239 |
+
self,
|
| 240 |
+
token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
| 241 |
+
skip_special_tokens: bool = False,
|
| 242 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
| 243 |
+
**kwargs: str,
|
| 244 |
+
) -> str:
|
| 245 |
+
return self.tokenizer.decode(
|
| 246 |
+
token_ids=token_ids,
|
| 247 |
+
skip_special_tokens=skip_special_tokens,
|
| 248 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 249 |
+
**kwargs,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
@property
|
| 253 |
+
def model_input_names(self) -> List[str]:
|
| 254 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 255 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 256 |
+
|
| 257 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "PrismaticProcessor"
|
| 6 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<PAD>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<PAD>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
"auto_map": {
|
| 40 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
| 41 |
+
},
|
| 42 |
+
"bos_token": "<s>",
|
| 43 |
+
"clean_up_tokenization_spaces": false,
|
| 44 |
+
"eos_token": "</s>",
|
| 45 |
+
"extra_special_tokens": {},
|
| 46 |
+
"legacy": false,
|
| 47 |
+
"model_max_length": 2048,
|
| 48 |
+
"pad_token": "<PAD>",
|
| 49 |
+
"padding_side": "right",
|
| 50 |
+
"processor_class": "PrismaticProcessor",
|
| 51 |
+
"sp_model_kwargs": {},
|
| 52 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 53 |
+
"unk_token": "<unk>",
|
| 54 |
+
"use_default_system_prompt": false
|
| 55 |
+
}
|