| # coding=utf-8 | |
| # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch Falcon model.""" | |
| import math | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss | |
| from torch.nn import functional as F | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| QuestionAnsweringModelOutput, | |
| SequenceClassifierOutputWithPast, | |
| TokenClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging | |
| from .configuration_falcon import FalconConfig | |
| logger = logging.get_logger(__name__) | |
| FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "tiiuae/falcon-40b", | |
| "tiiuae/falcon-40b-instruct", | |
| "tiiuae/falcon-7b", | |
| "tiiuae/falcon-7b-instruct", | |
| "tiiuae/falcon-rw-7b", | |
| "tiiuae/falcon-rw-1b", | |
| ] | |
| _CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b" | |
| _CONFIG_FOR_DOC = "FalconConfig" | |
| # NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations. | |
| # In order not to degrade the quality of our HF-port, we keep these characteristics in the final model. | |
| class FalconLinear(nn.Linear): | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| hidden_states = input @ self.weight.T | |
| if self.bias is None: | |
| return hidden_states | |
| return hidden_states + self.bias | |
| # rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...) | |
| def rotate_half(x): | |
| x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| class FalconRotaryEmbedding(nn.Module): | |
| """Implementation of RotaryEmbedding from GPT-NeoX. | |
| This implementation is designed to operate on queries and keys that are compatible with `[batch_size, | |
| n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format). | |
| """ | |
| def __init__(self, head_dim: int, base=10000): | |
| super().__init__() | |
| inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim)) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| self.head_dim = head_dim | |
| self.seq_len_cached = -1 | |
| self.cos_cached: torch.Tensor | None = None | |
| self.sin_cached: torch.Tensor | None = None | |
| def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor: | |
| total_length = seq_len + past_key_values_length | |
| if total_length > self.seq_len_cached: | |
| self.seq_len_cached = total_length | |
| t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype) | |
| freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
| emb = torch.cat((freqs, freqs), dim=-1).to(device) | |
| if dtype in [torch.float16, torch.bfloat16]: | |
| emb = emb.float() | |
| self.cos_cached = emb.cos()[None, :, :] | |
| self.sin_cached = emb.sin()[None, :, :] | |
| self.cos_cached = self.cos_cached.type(dtype) | |
| self.sin_cached = self.sin_cached.type(dtype) | |
| return ( | |
| self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length], | |
| self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length], | |
| ) | |
| def forward(self, query, key, past_key_values_length=0): | |
| batch, seq_len, head_dim = query.shape | |
| cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype) | |
| return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin) | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| """ | |
| Make causal mask used for self-attention. This mask does not take the existing attention mask into account - it | |
| just blocks tokens from attending forwards in the sequence. The output shape will be `[batch_size, 1, | |
| target_length, target_length+past_key_values_length]`. | |
| """ | |
| batch_size, target_length = input_ids_shape | |
| mask = torch.triu(torch.ones((target_length, target_length), dtype=torch.bool, device=device), diagonal=1) | |
| # If past_key_values_length is 0 this is an empty tensor and the concatenation is a no-op. | |
| # This code style is an unfortunate consequence of getting your TF engineer to port models; doing it this | |
| # way avoids a data-dependent conditional, which will help me when I have to port this to XLA later. | |
| past_mask = torch.zeros((target_length, past_key_values_length), dtype=torch.bool, device=device) | |
| mask = torch.cat([past_mask, mask], dim=-1) | |
| expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) | |
| return expanded_mask | |
| def _expand_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor: | |
| """ | |
| Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`. | |
| """ | |
| batch_size, total_length = mask.shape | |
| seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length | |
| expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) | |
| return expanded_mask.expand(batch_size, 1, seq_length, total_length) | |
| def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: | |
| batch_size, seq_length = attention_mask.shape | |
| closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) | |
| base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.pow(base, powers) | |
| if closest_power_of_2 != num_heads: | |
| extra_base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) | |
| extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
| # Note: alibi will added to the attention bias that will be applied to the query, key product of attention | |
| # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) | |
| # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) | |
| # => the query_length dimension will then be broadcasted correctly | |
| # This is more or less identical to T5's relative position bias: | |
| # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 | |
| arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] | |
| alibi = slopes[..., None].bfloat16() * arange_tensor | |
| return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) | |
| # Copied from transformers.models.bloom.modeling_bloom.dropout_add | |
| def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: | |
| """ | |
| Dropout add function | |
| Args: | |
| x (`torch.tensor`, *required*): | |
| input tensor | |
| residual (`torch.tensor`, *required*): | |
| residual tensor | |
| prob (`float`, *required*): | |
| dropout probability | |
| training (`bool`, *required*): | |
| training mode | |
| """ | |
| out = F.dropout(x, p=prob, training=training) | |
| out = residual + out | |
| return out | |
| class FalconAttention(nn.Module): | |
| def __init__(self, config: FalconConfig): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.split_size = self.hidden_size | |
| self.hidden_dropout = config.hidden_dropout | |
| if self.head_dim * self.num_heads != self.hidden_size: | |
| raise ValueError( | |
| f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.maybe_rotary = FalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k) | |
| # Layer-wise attention scaling | |
| self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) | |
| self.beta = self.inv_norm_factor | |
| if config.new_decoder_architecture: | |
| qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim | |
| elif config.multi_query: | |
| qkv_out_dim = self.hidden_size + 2 * self.head_dim | |
| else: | |
| qkv_out_dim = 3 * self.hidden_size | |
| self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias) | |
| self.new_decoder_architecture = config.new_decoder_architecture | |
| self.multi_query = config.multi_query | |
| self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias) | |
| self.attention_dropout = nn.Dropout(config.attention_dropout) | |
| self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1 | |
| def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ | |
| Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv` | |
| Args: | |
| fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] | |
| Returns: | |
| query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] | |
| value: [batch_size, seq_length, num_heads, head_dim] | |
| """ | |
| if self.new_decoder_architecture: | |
| batch, seq_len, _ = fused_qkv.shape | |
| qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim) | |
| query = qkv[:, :, :, :-2] | |
| key = qkv[:, :, :, [-2]] | |
| value = qkv[:, :, :, [-1]] | |
| key = torch.broadcast_to(key, query.shape) | |
| value = torch.broadcast_to(value, query.shape) | |
| query, key, value = [x.flatten(2, 3) for x in (query, key, value)] | |
| return query, key, value | |
| elif not self.multi_query: | |
| batch_size, seq_length, three_times_hidden_size = fused_qkv.shape | |
| fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) | |
| return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] | |
| else: | |
| batch_size, seq_length, three_times_hidden_size = fused_qkv.shape | |
| fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim) | |
| return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :] | |
| # Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads | |
| def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Merge heads together over the last dimenstion | |
| Args: | |
| x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] | |
| Returns: | |
| torch.tensor: [batch_size, seq_length, num_heads * head_dim] | |
| """ | |
| # What we want to achieve is: | |
| # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim | |
| batch_size_and_num_heads, seq_length, _ = x.shape | |
| batch_size = batch_size_and_num_heads // self.num_heads | |
| # First view to decompose the batch size | |
| # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim | |
| x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) | |
| # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim | |
| x = x.permute(0, 2, 1, 3) | |
| # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim | |
| return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| alibi: Optional[torch.Tensor], | |
| attention_mask: torch.Tensor, | |
| layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| use_cache: bool = False, | |
| output_attentions: bool = False, | |
| ): | |
| fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] | |
| num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads | |
| # 3 x [batch_size, seq_length, num_heads, head_dim] | |
| (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) | |
| batch_size, query_length, _, _ = query_layer.shape | |
| query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim) | |
| key_layer = key_layer.transpose(1, 2).reshape( | |
| batch_size * num_kv_heads, | |
| query_length, | |
| self.head_dim, | |
| ) | |
| value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim) | |
| past_kv_length = 0 if layer_past is None else layer_past[0].shape[1] | |
| query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length) | |
| if layer_past is not None: | |
| past_key, past_value = layer_past | |
| # concatenate along seq_length dimension: | |
| # - key: [batch_size * self.num_heads, kv_length, head_dim] | |
| # - value: [batch_size * self.num_heads, kv_length, head_dim] | |
| key_layer = torch.cat((past_key, key_layer), dim=1) | |
| value_layer = torch.cat((past_value, value_layer), dim=1) | |
| _, kv_length, _ = key_layer.shape | |
| if use_cache: | |
| present = (key_layer, value_layer) | |
| else: | |
| present = None | |
| attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype) | |
| query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) | |
| key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim) | |
| value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim) | |
| if alibi is None: | |
| if output_attentions: | |
| # F.scaled_dot_product_attention doesn't return the attention weights, so we have | |
| # to do it by hand if we want them | |
| attention_scores = query_layer_ @ key_layer_.transpose(-1, -2) | |
| attention_scores /= math.sqrt(self.head_dim) | |
| attention_scores = F.softmax( | |
| attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype | |
| ) | |
| attn_output = attention_scores @ value_layer_ | |
| else: | |
| attn_output = F.scaled_dot_product_attention( | |
| query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False | |
| ) | |
| attention_scores = None | |
| attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) | |
| attn_output = attn_output.permute(0, 2, 1, 3) | |
| attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) | |
| output_tensor = self.dense(attn_output) | |
| if output_attentions: | |
| return output_tensor, present, attention_scores | |
| else: | |
| return output_tensor, present | |
| else: | |
| matmul_result = query_layer_ @ key_layer_.transpose(-1, -2) | |
| # change view to [batch_size, num_heads, q_length, kv_length] | |
| attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length) | |
| # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] | |
| input_dtype = attention_scores.dtype | |
| # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` | |
| if input_dtype == torch.float16 or input_dtype == torch.bfloat16: | |
| attention_scores = attention_scores.to(torch.float32) | |
| # Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by | |
| # adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically | |
| # equivalent and more performant, but there might be a numerical difference. If you're reading this | |
| # and you'd like to experiment and maybe file a PR, feel free! | |
| attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1) | |
| attention_logits *= self.inv_norm_factor | |
| attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype) | |
| # [batch_size, num_heads, q_length, kv_length] | |
| attention_probs = self.attention_dropout(attention_probs) | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| # change view [batch_size, num_heads, q_length, kv_length] | |
| attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length) | |
| # matmul: [batch_size * num_heads, q_length, head_dim] | |
| context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1) | |
| # change view [batch_size, num_heads, q_length, head_dim] | |
| context_layer = self._merge_heads(context_layer) | |
| output_tensor = self.dense(context_layer) | |
| if output_attentions: | |
| return output_tensor, present, attention_probs | |
| else: | |
| return output_tensor, present | |
| class FalconMLP(nn.Module): | |
| def __init__(self, config: FalconConfig): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias) | |
| self.act = nn.GELU() | |
| self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias) | |
| self.hidden_dropout = config.hidden_dropout | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.act(self.dense_h_to_4h(x)) | |
| x = self.dense_4h_to_h(x) | |
| return x | |
| class FalconDecoderLayer(nn.Module): | |
| def __init__(self, config: FalconConfig): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.self_attention = FalconAttention(config) | |
| self.mlp = FalconMLP(config) | |
| self.hidden_dropout = config.hidden_dropout | |
| self.config = config | |
| if config.new_decoder_architecture: | |
| # The layer norm before self-attention | |
| self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| # The layer norm before the MLP | |
| self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| else: | |
| self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| if not config.parallel_attn: | |
| self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| alibi: Optional[torch.Tensor], | |
| attention_mask: torch.Tensor, | |
| layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| use_cache: bool = False, | |
| output_attentions: bool = False, | |
| ): | |
| residual = hidden_states | |
| if self.config.new_decoder_architecture: | |
| attention_layernorm_out = self.ln_attn(hidden_states) | |
| mlp_layernorm_out = self.ln_mlp(hidden_states) | |
| else: | |
| attention_layernorm_out = self.input_layernorm(hidden_states) | |
| # Self attention. | |
| attn_outputs = self.self_attention( | |
| attention_layernorm_out, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| alibi=alibi, | |
| head_mask=head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = attn_outputs[0] | |
| if not self.config.new_decoder_architecture: | |
| if self.config.parallel_attn: | |
| mlp_layernorm_out = attention_layernorm_out | |
| else: | |
| residual = dropout_add( | |
| attention_output, residual, self.config.attention_dropout, training=self.training | |
| ) | |
| mlp_layernorm_out = self.post_attention_layernorm(residual) | |
| outputs = attn_outputs[1:] | |
| # MLP. | |
| mlp_output = self.mlp(mlp_layernorm_out) | |
| if self.config.new_decoder_architecture or self.config.parallel_attn: | |
| mlp_output += attention_output | |
| output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) | |
| if use_cache: | |
| outputs = (output,) + outputs | |
| else: | |
| outputs = (output,) + outputs[1:] | |
| return outputs # hidden_states, present, attentions | |
| FALCON_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`FalconConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| FALCON_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
| `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` | |
| (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. | |
| If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
| `input_ids`. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`): | |
| Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
| `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
| their past given to this model should not be passed as `input_ids` as they have already been computed. | |
| Each element of `past_key_values` is a tuple (past_key, past_value): | |
| - past_key: [batch_size * num_heads, head_dim, kv_length] | |
| - past_value: [batch_size * num_heads, kv_length, head_dim] | |
| attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
| `past_key_values`). | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class FalconPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = FalconConfig | |
| base_model_prefix = "transformer" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["FalconDecoderLayer"] | |
| def __init__(self, *inputs, **kwargs): | |
| super().__init__(*inputs, **kwargs) | |
| def _init_weights(self, module: nn.Module): | |
| """Initialize the weights.""" | |
| if isinstance(module, nn.Linear) or isinstance(module, FalconLinear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| # Copied from transformers.models.bloom.modeling_bloom.BloomPreTrainedModel._set_gradient_checkpointing with BloomModel->FalconModel | |
| def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): | |
| if isinstance(module, FalconModel): | |
| module.gradient_checkpointing = value | |
| @staticmethod | |
| def _convert_cache_to_standard_format( | |
| past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
| """ | |
| Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, | |
| num_heads, ...])) | |
| """ | |
| batch_size_times_num_heads, kv_length, head_dim = past_key_value[0][0].shape | |
| # [batch_size * self.num_heads, kv_length, head_dim] -> [batch_size, num_heads, kv_length, head_dim] | |
| # Note that don't want to use self.num_attention_heads because the number of heads may vary depending | |
| # on whether we use multi_query attention. | |
| num_heads = batch_size_times_num_heads // batch_size | |
| return tuple( | |
| ( | |
| layer_past[0].view(batch_size, num_heads, kv_length, head_dim), | |
| layer_past[1].view(batch_size, num_heads, kv_length, head_dim), | |
| ) | |
| for layer_past in past_key_value | |
| ) | |
| @staticmethod | |
| def _convert_to_rw_cache( | |
| past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
| batch_size, num_heads, kv_length, head_dim = past_key_value[0][0].shape | |
| batch_size_times_num_heads = batch_size * num_heads | |
| # [batch_size, num_heads, kv_length, head_dim] -> [batch_size * num_heads, kv_length, head_dim] | |
| return tuple( | |
| ( | |
| layer_past[0].view(batch_size_times_num_heads, kv_length, head_dim), | |
| layer_past[1].view(batch_size_times_num_heads, kv_length, head_dim), | |
| ) | |
| for layer_past in past_key_value | |
| ) | |
| @add_start_docstrings( | |
| "The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.", | |
| FALCON_START_DOCSTRING, | |
| ) | |
| class FalconModel(FalconPreTrainedModel): | |
| def __init__(self, config: FalconConfig): | |
| super().__init__(config) | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.use_alibi = config.alibi | |
| # Embedding + LN Embedding | |
| self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) | |
| # Transformer blocks | |
| self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| # Final Layer Norm | |
| self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.word_embeddings | |
| @staticmethod | |
| def _prepare_attn_mask( | |
| attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| # Create a causal mask | |
| # The attention mask we receive as input should cover the whole extended sequence, including any past | |
| # cache, so its shape should be [batch_size, seq_length + past_key_values_length] | |
| # The output shape will be [batch_size, 1, seq_length, seq_length + past_key_values_length] | |
| if input_shape[1] + past_key_values_length != attention_mask.shape[1]: | |
| raise ValueError( | |
| "Attention mask shape should be (batch_size, seq_length + past_key_values_length)" | |
| f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length" | |
| f" {past_key_values_length}." | |
| ) | |
| combined_attention_mask = None | |
| device = attention_mask.device | |
| _, seq_length = input_shape | |
| if seq_length > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, device=device, past_key_values_length=past_key_values_length | |
| ) | |
| # [batch_size, seq_length + past_key_values_length] -> [batch_size, 1, seq_length, seq_length + past_key_values_length] | |
| expanded_attn_mask = _expand_mask(attention_mask, past_key_values_length=past_key_values_length) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def set_input_embeddings(self, new_embeddings: torch.Tensor): | |
| self.word_embeddings = new_embeddings | |
| @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) | |
| @add_code_sample_docstrings( | |
| checkpoint=_CHECKPOINT_FOR_DOC, | |
| output_type=BaseModelOutputWithPastAndCrossAttentions, | |
| config_class=_CONFIG_FOR_DOC, | |
| ) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length, _ = inputs_embeds.shape | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if past_key_values is None: | |
| past_key_values = tuple([None] * len(self.h)) | |
| else: | |
| past_key_values = self._convert_to_rw_cache(past_key_values) | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape batch_size x num_heads x N x N | |
| # head_mask has shape n_layer x batch x num_heads x N x N | |
| head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| hidden_states = inputs_embeds | |
| presents = () if use_cache else None | |
| all_self_attentions = () if output_attentions else None | |
| all_hidden_states = () if output_hidden_states else None | |
| # Compute alibi tensor: check build_alibi_tensor documentation | |
| past_key_values_length = 0 | |
| if past_key_values[0] is not None: | |
| past_key_values_length = past_key_values[0][0].shape[1] # 1 because RW-cache, not standard format | |
| if attention_mask is None: | |
| attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=hidden_states.device) | |
| else: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| if self.use_alibi: | |
| alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) | |
| else: | |
| alibi = None | |
| causal_mask = self._prepare_attn_mask( | |
| attention_mask, | |
| input_shape=(batch_size, seq_length), | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) | |
| return custom_forward | |
| outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| alibi, | |
| causal_mask, | |
| head_mask[i], | |
| ) | |
| else: | |
| outputs = block( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=causal_mask, | |
| head_mask=head_mask[i], | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| alibi=alibi, | |
| ) | |
| hidden_states = outputs[0] | |
| if use_cache is True: | |
| presents = presents + (outputs[1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
| # Add last hidden state | |
| hidden_states = self.ln_f(hidden_states) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if presents is not None: | |
| presents = self._convert_cache_to_standard_format(presents, batch_size) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| @add_start_docstrings( | |
| "The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).", | |
| FALCON_START_DOCSTRING, | |
| ) | |
| class FalconForCausalLM(FalconPreTrainedModel): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config: FalconConfig): | |
| super().__init__(config) | |
| self.transformer = FalconModel(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings: torch.Tensor): | |
| self.lm_head = new_embeddings | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids: torch.LongTensor, | |
| past_key_values: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> dict: | |
| if past_key_values is not None: | |
| input_ids = input_ids[:, -1:] | |
| return { | |
| "input_ids": input_ids, | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "attention_mask": attention_mask, | |
| } | |
| @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) | |
| @add_code_sample_docstrings( | |
| checkpoint=_CHECKPOINT_FOR_DOC, | |
| output_type=CausalLMOutputWithCrossAttentions, | |
| config_class=_CONFIG_FOR_DOC, | |
| ) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
| `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
| are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| lm_logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = lm_logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| batch_size, seq_length, vocab_size = shift_logits.shape | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) | |
| ) | |
| if not return_dict: | |
| output = (lm_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def _reorder_cache( | |
| self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| Output shares the same memory storage as `past`. | |
| """ | |
| # Get a copy of `beam_idx` on all the devices where we need those indices. | |
| device_to_beam_idx = { | |
| past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past | |
| } | |
| reordered_past = tuple( | |
| ( | |
| layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
| layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
| ) | |
| for layer_past in past | |
| ) | |
| return reordered_past | |
| @add_start_docstrings( | |
| """ | |
| The Falcon Model transformer with a sequence classification head on top (linear layer). | |
| [`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models | |
| (e.g. GPT-1) do. | |
| Since it does classification on the last token, it requires to know the position of the last token. If a | |
| `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | |
| no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | |
| padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | |
| each row of the batch). | |
| """, | |
| FALCON_START_DOCSTRING, | |
| ) | |
| class FalconForSequenceClassification(FalconPreTrainedModel): | |
| def __init__(self, config: FalconConfig): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = FalconModel(config) | |
| self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) | |
| @add_code_sample_docstrings( | |
| checkpoint=_CHECKPOINT_FOR_DOC, | |
| output_type=SequenceClassifierOutputWithPast, | |
| config_class=_CONFIG_FOR_DOC, | |
| ) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) | |
| if input_ids is not None: | |
| batch_size = input_ids.shape[0] | |
| else: | |
| batch_size = inputs_embeds.shape[0] | |
| if self.config.pad_token_id is None and batch_size != 1: | |
| raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if input_ids is not None: | |
| sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1 | |
| else: | |
| sequence_lengths = -1 | |
| logger.warning( | |
| f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
| "unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
| ) | |
| pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
| loss = None | |
| if labels is not None: | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| if not return_dict: | |
| output = (pooled_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| @add_start_docstrings( | |
| """ | |
| Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for | |
| Named-Entity-Recognition (NER) tasks. | |
| """, | |
| FALCON_START_DOCSTRING, | |
| ) | |
| class FalconForTokenClassification(FalconPreTrainedModel): | |
| def __init__(self, config: FalconConfig): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = FalconModel(config) | |
| if getattr(config, "classifier_dropout", None) is not None: | |
| classifier_dropout = config.classifier_dropout | |
| elif getattr(config, "hidden_dropout", None) is not None: | |
| classifier_dropout = config.hidden_dropout | |
| else: | |
| classifier_dropout = 0.1 | |
| self.dropout = nn.Dropout(classifier_dropout) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) | |
| @add_code_sample_docstrings( | |
| checkpoint=_CHECKPOINT_FOR_DOC, | |
| output_type=TokenClassifierOutput, | |
| config_class=_CONFIG_FOR_DOC, | |
| ) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| hidden_states = self.dropout(hidden_states) | |
| logits = self.classifier(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| batch_size, seq_length = labels.shape | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) | |
| ) | |
| if not return_dict: | |
| output = (logits,) + transformer_outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| @add_start_docstrings( | |
| """ | |
| The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like | |
| SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). | |
| """, | |
| FALCON_START_DOCSTRING, | |
| ) | |
| class FalconForQuestionAnswering(FalconPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.transformer = FalconModel(config) | |
| self.qa_outputs = nn.Linear(config.hidden_size, 2) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| end_positions: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
| r""" | |
| start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.transformer( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = (start_logits, end_logits) + outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return QuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |