from DLM_emb_model import MolEmbDLM from transformers import AutoTokenizer import torch MODEL_DIR = "Kiria-Nozan/ApexOracle" tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) model = MolEmbDLM.from_pretrained(MODEL_DIR) model.eval() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) seq = "[C][C][O]" # ← 替换成你的输入串 batch = tokenizer( seq.replace('][', '] ['), padding=False, truncation=False, return_tensors="pt", ) print(batch) batch.to(device) with torch.no_grad(): embeddings = model( input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], ) # (1, seq_len, hidden_size) print(embeddings.shape)