LamaDiab commited on
Commit
91a7557
·
verified ·
1 Parent(s): 5013de5

Training in progress, epoch 1, checkpoint

Browse files
checkpoint-5231/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-5231/README.md ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:1339067
9
+ - loss:MultipleNegativesSymmetricRankingLoss
10
+ base_model: sentence-transformers/all-MiniLM-L6-v2
11
+ widget:
12
+ - source_sentence: kids' slippers with a sporty neon green design (size 24-25)
13
+ sentences:
14
+ - slipper
15
+ - colorful slipper
16
+ - black winter hoodie
17
+ - source_sentence: male teacher figurine
18
+ sentences:
19
+ - home decor accessory
20
+ - ' figurine'
21
+ - natural hair flat oil brush 579 size 5
22
+ - source_sentence: diana emerald
23
+ sentences:
24
+ - lantana crochet handbag
25
+ - emerald earrings
26
+ - earring
27
+ - source_sentence: brown smoked salmon wrap + small orange juice
28
+ sentences:
29
+ - deli
30
+ - ' orange juice'
31
+ - boncafe puro arabica nespresso compatible
32
+ - source_sentence: black seed oil
33
+ sentences:
34
+ - essentials lip gloss temptation - rusty brown
35
+ - essential oils
36
+ - natural black seed oil
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ metrics:
40
+ - cosine_accuracy
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
43
+ results:
44
+ - task:
45
+ type: triplet
46
+ name: Triplet
47
+ dataset:
48
+ name: Unknown
49
+ type: unknown
50
+ metrics:
51
+ - type: cosine_accuracy
52
+ value: 0.9725332856178284
53
+ name: Cosine Accuracy
54
+ ---
55
+
56
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
57
+
58
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
59
+
60
+ ## Model Details
61
+
62
+ ### Model Description
63
+ - **Model Type:** Sentence Transformer
64
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
65
+ - **Maximum Sequence Length:** 256 tokens
66
+ - **Output Dimensionality:** 384 dimensions
67
+ - **Similarity Function:** Cosine Similarity
68
+ <!-- - **Training Dataset:** Unknown -->
69
+ <!-- - **Language:** Unknown -->
70
+ <!-- - **License:** Unknown -->
71
+
72
+ ### Model Sources
73
+
74
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
75
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
76
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
77
+
78
+ ### Full Model Architecture
79
+
80
+ ```
81
+ SentenceTransformer(
82
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
83
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
84
+ (2): Normalize()
85
+ )
86
+ ```
87
+
88
+ ## Usage
89
+
90
+ ### Direct Usage (Sentence Transformers)
91
+
92
+ First install the Sentence Transformers library:
93
+
94
+ ```bash
95
+ pip install -U sentence-transformers
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+ ```python
100
+ from sentence_transformers import SentenceTransformer
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SentenceTransformer("LamaDiab/MiniLM-v2-v36-overlapbatch-SemanticEngine")
104
+ # Run inference
105
+ sentences = [
106
+ 'black seed oil',
107
+ 'natural black seed oil',
108
+ 'essentials lip gloss temptation - rusty brown',
109
+ ]
110
+ embeddings = model.encode(sentences)
111
+ print(embeddings.shape)
112
+ # [3, 384]
113
+
114
+ # Get the similarity scores for the embeddings
115
+ similarities = model.similarity(embeddings, embeddings)
116
+ print(similarities)
117
+ # tensor([[1.0000, 0.9853, 0.6113],
118
+ # [0.9853, 1.0000, 0.6004],
119
+ # [0.6113, 0.6004, 1.0000]])
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Triplet
151
+
152
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
153
+
154
+ | Metric | Value |
155
+ |:--------------------|:-----------|
156
+ | **cosine_accuracy** | **0.9725** |
157
+
158
+ <!--
159
+ ## Bias, Risks and Limitations
160
+
161
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
162
+ -->
163
+
164
+ <!--
165
+ ### Recommendations
166
+
167
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
168
+ -->
169
+
170
+ ## Training Details
171
+
172
+ ### Training Dataset
173
+
174
+ #### Unnamed Dataset
175
+
176
+ * Size: 1,339,067 training samples
177
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>itemCategory</code>
178
+ * Approximate statistics based on the first 1000 samples:
179
+ | | anchor | positive | itemCategory |
180
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
181
+ | type | string | string | string |
182
+ | details | <ul><li>min: 3 tokens</li><li>mean: 10.44 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.12 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.03 tokens</li><li>max: 9 tokens</li></ul> |
183
+ * Samples:
184
+ | anchor | positive | itemCategory |
185
+ |:----------------------------------------------------|:--------------------------------------------------|:----------------------|
186
+ | <code>adults tie-dye pant</code> | <code>pants</code> | <code>trousers</code> |
187
+ | <code>manicure remover vanilla</code> | <code>fruit fragrances nail polish remover</code> | <code>nailcare</code> |
188
+ | <code>canvas frame painting acrylic colors 5</code> | <code>canvas</code> | <code>painting</code> |
189
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
190
+ ```json
191
+ {
192
+ "scale": 20.0,
193
+ "similarity_fct": "cos_sim",
194
+ "gather_across_devices": false
195
+ }
196
+ ```
197
+
198
+ ### Evaluation Dataset
199
+
200
+ #### Unnamed Dataset
201
+
202
+ * Size: 9,466 evaluation samples
203
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, and <code>itemCategory</code>
204
+ * Approximate statistics based on the first 1000 samples:
205
+ | | anchor | positive | negative | itemCategory |
206
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
207
+ | type | string | string | string | string |
208
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.65 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 5.83 tokens</li><li>max: 131 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.09 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.82 tokens</li><li>max: 9 tokens</li></ul> |
209
+ * Samples:
210
+ | anchor | positive | negative | itemCategory |
211
+ |:-------------------------------------------------------|:-----------------------------|:---------------------------------------------|:----------------------|
212
+ | <code>extra bubblemint sugar free chewing gum</code> | <code> extra gum</code> | <code>céleste belgian chocolate sablé</code> | <code>sweet</code> |
213
+ | <code>golden pothos</code> | <code>evergreen plant</code> | <code>spider-man action figure</code> | <code>plant</code> |
214
+ | <code>effortless style slit linen pants - beige</code> | <code>soft pants</code> | <code>the one lilac</code> | <code>trousers</code> |
215
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
216
+ ```json
217
+ {
218
+ "scale": 20.0,
219
+ "similarity_fct": "cos_sim",
220
+ "gather_across_devices": false
221
+ }
222
+ ```
223
+
224
+ ### Training Hyperparameters
225
+ #### Non-Default Hyperparameters
226
+
227
+ - `eval_strategy`: steps
228
+ - `per_device_train_batch_size`: 256
229
+ - `per_device_eval_batch_size`: 256
230
+ - `learning_rate`: 3e-05
231
+ - `weight_decay`: 0.01
232
+ - `warmup_ratio`: 0.1
233
+ - `fp16`: True
234
+ - `dataloader_num_workers`: 1
235
+ - `dataloader_prefetch_factor`: 2
236
+ - `dataloader_persistent_workers`: True
237
+ - `push_to_hub`: True
238
+ - `hub_model_id`: LamaDiab/MiniLM-v2-v36-overlapbatch-SemanticEngine
239
+ - `hub_strategy`: all_checkpoints
240
+
241
+ #### All Hyperparameters
242
+ <details><summary>Click to expand</summary>
243
+
244
+ - `overwrite_output_dir`: False
245
+ - `do_predict`: False
246
+ - `eval_strategy`: steps
247
+ - `prediction_loss_only`: True
248
+ - `per_device_train_batch_size`: 256
249
+ - `per_device_eval_batch_size`: 256
250
+ - `per_gpu_train_batch_size`: None
251
+ - `per_gpu_eval_batch_size`: None
252
+ - `gradient_accumulation_steps`: 1
253
+ - `eval_accumulation_steps`: None
254
+ - `torch_empty_cache_steps`: None
255
+ - `learning_rate`: 3e-05
256
+ - `weight_decay`: 0.01
257
+ - `adam_beta1`: 0.9
258
+ - `adam_beta2`: 0.999
259
+ - `adam_epsilon`: 1e-08
260
+ - `max_grad_norm`: 1.0
261
+ - `num_train_epochs`: 3
262
+ - `max_steps`: -1
263
+ - `lr_scheduler_type`: linear
264
+ - `lr_scheduler_kwargs`: {}
265
+ - `warmup_ratio`: 0.1
266
+ - `warmup_steps`: 0
267
+ - `log_level`: passive
268
+ - `log_level_replica`: warning
269
+ - `log_on_each_node`: True
270
+ - `logging_nan_inf_filter`: True
271
+ - `save_safetensors`: True
272
+ - `save_on_each_node`: False
273
+ - `save_only_model`: False
274
+ - `restore_callback_states_from_checkpoint`: False
275
+ - `no_cuda`: False
276
+ - `use_cpu`: False
277
+ - `use_mps_device`: False
278
+ - `seed`: 42
279
+ - `data_seed`: None
280
+ - `jit_mode_eval`: False
281
+ - `use_ipex`: False
282
+ - `bf16`: False
283
+ - `fp16`: True
284
+ - `fp16_opt_level`: O1
285
+ - `half_precision_backend`: auto
286
+ - `bf16_full_eval`: False
287
+ - `fp16_full_eval`: False
288
+ - `tf32`: None
289
+ - `local_rank`: 0
290
+ - `ddp_backend`: None
291
+ - `tpu_num_cores`: None
292
+ - `tpu_metrics_debug`: False
293
+ - `debug`: []
294
+ - `dataloader_drop_last`: False
295
+ - `dataloader_num_workers`: 1
296
+ - `dataloader_prefetch_factor`: 2
297
+ - `past_index`: -1
298
+ - `disable_tqdm`: False
299
+ - `remove_unused_columns`: True
300
+ - `label_names`: None
301
+ - `load_best_model_at_end`: False
302
+ - `ignore_data_skip`: False
303
+ - `fsdp`: []
304
+ - `fsdp_min_num_params`: 0
305
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
306
+ - `fsdp_transformer_layer_cls_to_wrap`: None
307
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
308
+ - `deepspeed`: None
309
+ - `label_smoothing_factor`: 0.0
310
+ - `optim`: adamw_torch
311
+ - `optim_args`: None
312
+ - `adafactor`: False
313
+ - `group_by_length`: False
314
+ - `length_column_name`: length
315
+ - `ddp_find_unused_parameters`: None
316
+ - `ddp_bucket_cap_mb`: None
317
+ - `ddp_broadcast_buffers`: False
318
+ - `dataloader_pin_memory`: True
319
+ - `dataloader_persistent_workers`: True
320
+ - `skip_memory_metrics`: True
321
+ - `use_legacy_prediction_loop`: False
322
+ - `push_to_hub`: True
323
+ - `resume_from_checkpoint`: None
324
+ - `hub_model_id`: LamaDiab/MiniLM-v2-v36-overlapbatch-SemanticEngine
325
+ - `hub_strategy`: all_checkpoints
326
+ - `hub_private_repo`: None
327
+ - `hub_always_push`: False
328
+ - `hub_revision`: None
329
+ - `gradient_checkpointing`: False
330
+ - `gradient_checkpointing_kwargs`: None
331
+ - `include_inputs_for_metrics`: False
332
+ - `include_for_metrics`: []
333
+ - `eval_do_concat_batches`: True
334
+ - `fp16_backend`: auto
335
+ - `push_to_hub_model_id`: None
336
+ - `push_to_hub_organization`: None
337
+ - `mp_parameters`:
338
+ - `auto_find_batch_size`: False
339
+ - `full_determinism`: False
340
+ - `torchdynamo`: None
341
+ - `ray_scope`: last
342
+ - `ddp_timeout`: 1800
343
+ - `torch_compile`: False
344
+ - `torch_compile_backend`: None
345
+ - `torch_compile_mode`: None
346
+ - `include_tokens_per_second`: False
347
+ - `include_num_input_tokens_seen`: False
348
+ - `neftune_noise_alpha`: None
349
+ - `optim_target_modules`: None
350
+ - `batch_eval_metrics`: False
351
+ - `eval_on_start`: False
352
+ - `use_liger_kernel`: False
353
+ - `liger_kernel_config`: None
354
+ - `eval_use_gather_object`: False
355
+ - `average_tokens_across_devices`: False
356
+ - `prompts`: None
357
+ - `batch_sampler`: batch_sampler
358
+ - `multi_dataset_batch_sampler`: proportional
359
+ - `router_mapping`: {}
360
+ - `learning_rate_mapping`: {}
361
+
362
+ </details>
363
+
364
+ ### Training Logs
365
+ | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
366
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
367
+ | 0.0002 | 1 | 2.4739 | - | - |
368
+ | 0.1912 | 1000 | 1.904 | 1.0658 | 0.9567 |
369
+ | 0.3823 | 2000 | 1.4035 | 0.9598 | 0.9651 |
370
+ | 0.5735 | 3000 | 1.1812 | 0.9080 | 0.9709 |
371
+ | 0.7647 | 4000 | 1.1325 | 0.8635 | 0.9729 |
372
+ | 0.9558 | 5000 | 1.6713 | 0.8611 | 0.9725 |
373
+
374
+
375
+ ### Framework Versions
376
+ - Python: 3.11.13
377
+ - Sentence Transformers: 5.1.2
378
+ - Transformers: 4.53.3
379
+ - PyTorch: 2.6.0+cu124
380
+ - Accelerate: 1.9.0
381
+ - Datasets: 4.4.1
382
+ - Tokenizers: 0.21.2
383
+
384
+ ## Citation
385
+
386
+ ### BibTeX
387
+
388
+ #### Sentence Transformers
389
+ ```bibtex
390
+ @inproceedings{reimers-2019-sentence-bert,
391
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
392
+ author = "Reimers, Nils and Gurevych, Iryna",
393
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
394
+ month = "11",
395
+ year = "2019",
396
+ publisher = "Association for Computational Linguistics",
397
+ url = "https://arxiv.org/abs/1908.10084",
398
+ }
399
+ ```
400
+
401
+ <!--
402
+ ## Glossary
403
+
404
+ *Clearly define terms in order to be accessible across audiences.*
405
+ -->
406
+
407
+ <!--
408
+ ## Model Card Authors
409
+
410
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
411
+ -->
412
+
413
+ <!--
414
+ ## Model Card Contact
415
+
416
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
417
+ -->
checkpoint-5231/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
checkpoint-5231/config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.2",
4
+ "transformers": "4.53.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
checkpoint-5231/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79576844ac4ec12c4bc53cbaf351c88156e00538a84d32a4b3f653dbb20d187f
3
+ size 90864192
checkpoint-5231/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-5231/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45f02f416967f04216dbfc52bb701ecfd7ddd850ef269763e20b2951ef41c138
3
+ size 180607738
checkpoint-5231/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd36f2f0f2d19d73061842a6b838d54738923aff5e96191beb0a2ba3bf2011d
3
+ size 14244
checkpoint-5231/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2256bb021d0e10f4875bbb5cb02e97f64ca7f415a89e1ccfce3a25153ed413a9
3
+ size 988
checkpoint-5231/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:235ad107c292e66465db295a31e49db627ff726f391e185abfc46bbb7902c350
3
+ size 1064
checkpoint-5231/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-5231/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-5231/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-5231/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
checkpoint-5231/trainer_state.json ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 1000,
7
+ "global_step": 5231,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.00019116803670426305,
14
+ "grad_norm": 4.81204080581665,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.4739,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.19116803670426305,
21
+ "grad_norm": 3.8444881439208984,
22
+ "learning_rate": 1.9089171974522293e-05,
23
+ "loss": 1.904,
24
+ "step": 1000
25
+ },
26
+ {
27
+ "epoch": 0.19116803670426305,
28
+ "eval_cosine_accuracy": 0.9566870927810669,
29
+ "eval_loss": 1.0658318996429443,
30
+ "eval_runtime": 24.2832,
31
+ "eval_samples_per_second": 389.817,
32
+ "eval_steps_per_second": 1.524,
33
+ "step": 1000
34
+ },
35
+ {
36
+ "epoch": 0.3823360734085261,
37
+ "grad_norm": 3.6171822547912598,
38
+ "learning_rate": 2.9088720526800256e-05,
39
+ "loss": 1.4035,
40
+ "step": 2000
41
+ },
42
+ {
43
+ "epoch": 0.3823360734085261,
44
+ "eval_cosine_accuracy": 0.9651383757591248,
45
+ "eval_loss": 0.9598055481910706,
46
+ "eval_runtime": 28.2382,
47
+ "eval_samples_per_second": 335.22,
48
+ "eval_steps_per_second": 1.31,
49
+ "step": 2000
50
+ },
51
+ {
52
+ "epoch": 0.5735041101127891,
53
+ "grad_norm": 3.25337290763855,
54
+ "learning_rate": 2.696452595057707e-05,
55
+ "loss": 1.1812,
56
+ "step": 3000
57
+ },
58
+ {
59
+ "epoch": 0.5735041101127891,
60
+ "eval_cosine_accuracy": 0.9709486365318298,
61
+ "eval_loss": 0.9080163836479187,
62
+ "eval_runtime": 23.2786,
63
+ "eval_samples_per_second": 406.639,
64
+ "eval_steps_per_second": 1.589,
65
+ "step": 3000
66
+ },
67
+ {
68
+ "epoch": 0.7646721468170522,
69
+ "grad_norm": 3.5734429359436035,
70
+ "learning_rate": 2.4840331374353893e-05,
71
+ "loss": 1.1325,
72
+ "step": 4000
73
+ },
74
+ {
75
+ "epoch": 0.7646721468170522,
76
+ "eval_cosine_accuracy": 0.9728502035140991,
77
+ "eval_loss": 0.8635017275810242,
78
+ "eval_runtime": 23.4355,
79
+ "eval_samples_per_second": 403.918,
80
+ "eval_steps_per_second": 1.579,
81
+ "step": 4000
82
+ },
83
+ {
84
+ "epoch": 0.9558401835213153,
85
+ "grad_norm": 2.7804830074310303,
86
+ "learning_rate": 2.2718260992706933e-05,
87
+ "loss": 1.6713,
88
+ "step": 5000
89
+ },
90
+ {
91
+ "epoch": 0.9558401835213153,
92
+ "eval_cosine_accuracy": 0.9725332856178284,
93
+ "eval_loss": 0.8610901236534119,
94
+ "eval_runtime": 23.4275,
95
+ "eval_samples_per_second": 404.055,
96
+ "eval_steps_per_second": 1.579,
97
+ "step": 5000
98
+ }
99
+ ],
100
+ "logging_steps": 1000,
101
+ "max_steps": 15693,
102
+ "num_input_tokens_seen": 0,
103
+ "num_train_epochs": 3,
104
+ "save_steps": 500,
105
+ "stateful_callbacks": {
106
+ "TrainerControl": {
107
+ "args": {
108
+ "should_epoch_stop": false,
109
+ "should_evaluate": false,
110
+ "should_log": false,
111
+ "should_save": true,
112
+ "should_training_stop": false
113
+ },
114
+ "attributes": {}
115
+ }
116
+ },
117
+ "total_flos": 0.0,
118
+ "train_batch_size": 256,
119
+ "trial_name": null,
120
+ "trial_params": null
121
+ }
checkpoint-5231/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15d81d4b1822dc1e78a2b5ff6baa7169b4b586cf6b5bf76bc24d51f573766384
3
+ size 5752
checkpoint-5231/vocab.txt ADDED
The diff for this file is too large to render. See raw diff