---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:790756
- loss:MultipleNegativesSymmetricRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: creamy black varnish for black leathers
sentences:
- shoe accessory
- the first product scented, nourishing, polishing and preserving all types of leather
50 gr.
- steal the scene t-shirt
- source_sentence: beige lounge set
sentences:
- pajamas
- women pajama set
- not so basic sports bra
- source_sentence: not not donner
sentences:
- sesame bites
- stuffed dough
- deli
- source_sentence: seaboat-5 240/2 sea fishing combo
sentences:
- fishing
- vertical fishing rod
- small pool ball - red
- source_sentence: eva a.bacterial h.sanitizer han.gel350m#
sentences:
- blue balloon collection
- sanitizer
- ' hand gel'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9748573899269104
name: Cosine Accuracy
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/MiniLM-v35-SemanticEngine")
# Run inference
sentences = [
'eva a.bacterial h.sanitizer han.gel350m#',
' hand gel',
'blue balloon collection',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.4571, -0.0845],
# [ 0.4571, 1.0000, 0.0257],
# [-0.0845, 0.0257, 1.0000]])
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9749** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 790,756 training samples
* Columns: anchor, positive, and itemCategory
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | itemCategory |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string |
| details |
m&g acrylic marker, apl976d966, viridescent, s500 | m&g acrylic marker, apl976d966, green, s500 | marker |
| daky raspberry 48h deo r.on 2x50m@# | deodorant | women's deodorant |
| melatex sun yellow spf(50+)50m | melatex cream spf(50+)50m | skin whitening |
* Loss: [MultipleNegativesSymmetricRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 9,466 evaluation samples
* Columns: anchor, positive, negative, and itemCategory
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | itemCategory |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | extra bubblemint sugar free chewing gum | gum | zumra coconut milk 17-19% fats | sweet |
| golden pothos | evergreen plant | stainless steel insulated hiking bottle 1 l blue | plant |
| effortless style slit linen pants - beige | women pants | cool grey camouflage training short sleeve top | trousers |
* Loss: [MultipleNegativesSymmetricRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 2
- `dataloader_persistent_workers`: True
- `push_to_hub`: True
- `hub_model_id`: LamaDiab/MiniLM-v35-SemanticEngine
- `hub_strategy`: all_checkpoints
#### All Hyperparameters