--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:790756 - loss:MultipleNegativesSymmetricRankingLoss base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: creamy black varnish for black leathers sentences: - shoe accessory - the first product scented, nourishing, polishing and preserving all types of leather 50 gr. - steal the scene t-shirt - source_sentence: beige lounge set sentences: - pajamas - women pajama set - not so basic sports bra - source_sentence: not not donner sentences: - sesame bites - stuffed dough - deli - source_sentence: seaboat-5 240/2 sea fishing combo sentences: - fishing - vertical fishing rod - small pool ball - red - source_sentence: eva a.bacterial h.sanitizer han.gel350m# sentences: - blue balloon collection - sanitizer - ' hand gel' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 results: - task: type: triplet name: Triplet dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 0.9748573899269104 name: Cosine Accuracy --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'}) (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("LamaDiab/MiniLM-v35-SemanticEngine") # Run inference sentences = [ 'eva a.bacterial h.sanitizer han.gel350m#', ' hand gel', 'blue balloon collection', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[ 1.0000, 0.4571, -0.0845], # [ 0.4571, 1.0000, 0.0257], # [-0.0845, 0.0257, 1.0000]]) ``` ## Evaluation ### Metrics #### Triplet * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.9749** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 790,756 training samples * Columns: anchor, positive, and itemCategory * Approximate statistics based on the first 1000 samples: | | anchor | positive | itemCategory | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | itemCategory | |:---------------------------------------------------------------|:---------------------------------------------------------|:-------------------------------| | m&g acrylic marker, apl976d966, viridescent, s500 | m&g acrylic marker, apl976d966, green, s500 | marker | | daky raspberry 48h deo r.on 2x50m@# | deodorant | women's deodorant | | melatex sun yellow spf(50+)50m | melatex cream spf(50+)50m | skin whitening | * Loss: [MultipleNegativesSymmetricRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 9,466 evaluation samples * Columns: anchor, positive, negative, and itemCategory * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | itemCategory | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | type | string | string | string | string | | details | | | | | * Samples: | anchor | positive | negative | itemCategory | |:-------------------------------------------------------|:-----------------------------|:--------------------------------------------------------------|:----------------------| | extra bubblemint sugar free chewing gum | gum | zumra coconut milk 17-19% fats | sweet | | golden pothos | evergreen plant | stainless steel insulated hiking bottle 1 l blue | plant | | effortless style slit linen pants - beige | women pants | cool grey camouflage training short sleeve top | trousers | * Loss: [MultipleNegativesSymmetricRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True - `dataloader_num_workers`: 1 - `dataloader_prefetch_factor`: 2 - `dataloader_persistent_workers`: True - `push_to_hub`: True - `hub_model_id`: LamaDiab/MiniLM-v35-SemanticEngine - `hub_strategy`: all_checkpoints #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 1 - `dataloader_prefetch_factor`: 2 - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: True - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: LamaDiab/MiniLM-v35-SemanticEngine - `hub_strategy`: all_checkpoints - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | |:------:|:-----:|:-------------:|:---------------:|:---------------:| | 0.0003 | 1 | 2.5131 | - | - | | 0.3237 | 1000 | 1.8415 | 1.0824 | 0.9512 | | 0.6475 | 2000 | 1.3696 | 0.9929 | 0.9617 | | 0.9712 | 3000 | 1.4502 | 0.9487 | 0.9656 | | 1.2947 | 4000 | 1.3141 | 0.8925 | 0.9704 | | 1.6182 | 5000 | 1.1692 | 0.8781 | 0.9709 | | 1.9418 | 6000 | 1.1209 | 0.8579 | 0.9718 | | 2.2653 | 7000 | 1.0609 | 0.8649 | 0.9738 | | 2.5888 | 8000 | 1.0507 | 0.8569 | 0.9725 | | 2.9123 | 9000 | 1.0079 | 0.8493 | 0.9736 | | 3.2358 | 10000 | 1.0006 | 0.8392 | 0.9735 | | 3.5594 | 11000 | 0.9947 | 0.8390 | 0.9751 | | 3.8829 | 12000 | 0.9774 | 0.8403 | 0.9749 | ### Framework Versions - Python: 3.11.13 - Sentence Transformers: 5.1.2 - Transformers: 4.53.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.9.0 - Datasets: 4.4.1 - Tokenizers: 0.21.2 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```