--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0309P3 results: [] --- # V0309P3 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 20 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9399 | 0.09 | 10 | 0.3747 | | 0.1877 | 0.17 | 20 | 0.0934 | | 0.1061 | 0.26 | 30 | 0.0782 | | 0.0988 | 0.34 | 40 | 0.0751 | | 0.0879 | 0.43 | 50 | 0.0729 | | 0.0823 | 0.51 | 60 | 0.0776 | | 0.0735 | 0.6 | 70 | 0.0698 | | 0.0775 | 0.68 | 80 | 0.0778 | | 0.0716 | 0.77 | 90 | 0.0703 | | 0.0687 | 0.85 | 100 | 0.0701 | | 0.0718 | 0.94 | 110 | 0.0686 | | 0.0679 | 1.02 | 120 | 0.0699 | | 0.0579 | 1.11 | 130 | 0.0769 | | 0.0559 | 1.19 | 140 | 0.0664 | | 0.0527 | 1.28 | 150 | 0.0621 | | 0.05 | 1.37 | 160 | 0.0753 | | 0.0526 | 1.45 | 170 | 0.0628 | | 0.0499 | 1.54 | 180 | 0.0685 | | 0.0487 | 1.62 | 190 | 0.0711 | | 0.0514 | 1.71 | 200 | 0.0705 | | 0.0572 | 1.79 | 210 | 0.0724 | | 0.0487 | 1.88 | 220 | 0.0700 | | 0.0485 | 1.96 | 230 | 0.0693 | | 0.0405 | 2.05 | 240 | 0.0706 | | 0.0338 | 2.13 | 250 | 0.0833 | | 0.0319 | 2.22 | 260 | 0.0897 | | 0.0277 | 2.3 | 270 | 0.0941 | | 0.0351 | 2.39 | 280 | 0.0891 | | 0.0333 | 2.47 | 290 | 0.0839 | | 0.0352 | 2.56 | 300 | 0.0867 | | 0.0357 | 2.65 | 310 | 0.0839 | | 0.0304 | 2.73 | 320 | 0.0842 | | 0.0308 | 2.82 | 330 | 0.0859 | | 0.0291 | 2.9 | 340 | 0.0856 | | 0.0335 | 2.99 | 350 | 0.0857 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1