Depth Anything V2 - Large as MlPackage
Browse files
DepthAnything_v2-Large.mlpackage.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4eecd277bf3394055bd9faa60960d6e279a1f7bed47ec5ad063f788680e65c91
|
| 3 |
+
size 618122036
|
DepthAnything_v2-Large_Mac.mlperf.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff701611f6b35cf21f928c7a9c83c8cc0a42daf7602b5be2735d489ebcd21095
|
| 3 |
+
size 75878
|
DepthAnything_v2-Large_iPhone16ProMax.mlperf.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba032b19dc9d98260aa878cad8962a01ecbf60d241900f01080cd4a6bb2acacb
|
| 3 |
+
size 76022
|
PyTorch2CoreML-dpt.ipynb
ADDED
|
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "1e99de7a",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"--2024-06-20 13:18:56-- https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt\n",
|
| 14 |
+
"Resolving docs-assets.developer.apple.com (docs-assets.developer.apple.com)... 17.253.73.203, 17.253.73.201\n",
|
| 15 |
+
"Connecting to docs-assets.developer.apple.com (docs-assets.developer.apple.com)|17.253.73.203|:443... connected.\n",
|
| 16 |
+
"HTTP request sent, awaiting response... 416 Requested Range Not Satisfiable\n",
|
| 17 |
+
"\n",
|
| 18 |
+
" The file is already fully retrieved; nothing to do.\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"--2024-06-20 13:18:58-- https://raw.githubusercontent.com/apple/ml-mobileclip/main/mobileclip/configs/mobileclip_s0.json\n",
|
| 21 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
|
| 22 |
+
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
|
| 23 |
+
"HTTP request sent, awaiting response... 416 Range Not Satisfiable\n",
|
| 24 |
+
"\n",
|
| 25 |
+
" The file is already fully retrieved; nothing to do.\n",
|
| 26 |
+
"\n"
|
| 27 |
+
]
|
| 28 |
+
}
|
| 29 |
+
],
|
| 30 |
+
"source": [
|
| 31 |
+
"#!git clone https://huggingface.co/spaces/depth-anything/Depth-Anything-V2\n",
|
| 32 |
+
"#!pip install -r Depth-Anything-V2/requirements.txt\n",
|
| 33 |
+
"#!pip install -q --upgrade coremltools"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "code",
|
| 38 |
+
"execution_count": 1,
|
| 39 |
+
"id": "d6cb8a61",
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"import os\n",
|
| 44 |
+
"os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'"
|
| 45 |
+
]
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"cell_type": "code",
|
| 49 |
+
"execution_count": 2,
|
| 50 |
+
"id": "801db364",
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"outputs": [
|
| 53 |
+
{
|
| 54 |
+
"name": "stderr",
|
| 55 |
+
"output_type": "stream",
|
| 56 |
+
"text": [
|
| 57 |
+
"scikit-learn version 1.6.0 is not supported. Minimum required version: 0.17. Maximum required version: 1.5.1. Disabling scikit-learn conversion API.\n"
|
| 58 |
+
]
|
| 59 |
+
}
|
| 60 |
+
],
|
| 61 |
+
"source": [
|
| 62 |
+
"import torch\n",
|
| 63 |
+
"import coremltools as ct\n",
|
| 64 |
+
"import numpy as np\n",
|
| 65 |
+
"from PIL import Image\n",
|
| 66 |
+
"import tempfile\n",
|
| 67 |
+
"from huggingface_hub import hf_hub_download\n",
|
| 68 |
+
"import sys\n",
|
| 69 |
+
"sys.path.append('./Depth-Anything-V2')\n",
|
| 70 |
+
"\n"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": 15,
|
| 76 |
+
"id": "73882c02",
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"from depth_anything_v2.dpt import DepthAnythingV2\n",
|
| 81 |
+
"from depth_anything_v2.util.transform import Resize, NormalizeImage, PrepareForNet\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"import torch.nn.functional as F"
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "markdown",
|
| 88 |
+
"id": "26f7dcff",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"source": [
|
| 91 |
+
"# 1. Load Depth-Anything-V2's vitl checkpoint"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": 4,
|
| 97 |
+
"id": "e67aa722",
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": [
|
| 101 |
+
"DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'\n",
|
| 102 |
+
"model_configs = {\n",
|
| 103 |
+
" 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},\n",
|
| 104 |
+
" 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},\n",
|
| 105 |
+
" 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},\n",
|
| 106 |
+
" 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}\n",
|
| 107 |
+
"}\n",
|
| 108 |
+
"encoder2name = {\n",
|
| 109 |
+
" 'vits': 'Small',\n",
|
| 110 |
+
" 'vitb': 'Base',\n",
|
| 111 |
+
" 'vitl': 'Large',\n",
|
| 112 |
+
" 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint\n",
|
| 113 |
+
"}\n",
|
| 114 |
+
"encoder = 'vitl'\n",
|
| 115 |
+
"model_name = encoder2name[encoder]\n",
|
| 116 |
+
"model = DepthAnythingV2(**model_configs[encoder])\n",
|
| 117 |
+
"filepath = hf_hub_download(repo_id=f\"depth-anything/Depth-Anything-V2-{model_name}\", filename=f\"depth_anything_v2_{encoder}.pth\", repo_type=\"model\")\n",
|
| 118 |
+
"state_dict = torch.load(filepath, map_location=\"cpu\")\n",
|
| 119 |
+
"model.load_state_dict(state_dict)\n",
|
| 120 |
+
"model = model.to(DEVICE).eval()"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": 8,
|
| 126 |
+
"id": "a632e6b4",
|
| 127 |
+
"metadata": {},
|
| 128 |
+
"outputs": [
|
| 129 |
+
{
|
| 130 |
+
"name": "stdout",
|
| 131 |
+
"output_type": "stream",
|
| 132 |
+
"text": [
|
| 133 |
+
"(3024, 4032, 3)\n"
|
| 134 |
+
]
|
| 135 |
+
}
|
| 136 |
+
],
|
| 137 |
+
"source": [
|
| 138 |
+
"image = Image.open(\"./sample_images/IMG_4061.jpeg\")\n",
|
| 139 |
+
"img = np.array(image)\n",
|
| 140 |
+
"print(img.shape)\n",
|
| 141 |
+
"h, w = img.shape[:2]\n",
|
| 142 |
+
"depth = model.infer_image(img)\n",
|
| 143 |
+
"depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0\n",
|
| 144 |
+
"depth = depth.astype(np.uint8)\n",
|
| 145 |
+
"depth_image = Image.fromarray(depth)\n",
|
| 146 |
+
"depth_image.save(\"depth_image.jpg\")"
|
| 147 |
+
]
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"cell_type": "code",
|
| 151 |
+
"execution_count": 36,
|
| 152 |
+
"id": "77477217",
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"outputs": [
|
| 155 |
+
{
|
| 156 |
+
"name": "stdout",
|
| 157 |
+
"output_type": "stream",
|
| 158 |
+
"text": [
|
| 159 |
+
"(3024, 4032, 3)\n"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"name": "stderr",
|
| 164 |
+
"output_type": "stream",
|
| 165 |
+
"text": [
|
| 166 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:73: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
| 167 |
+
" assert H % patch_H == 0, f\"Input image height {H} is not a multiple of patch height {patch_H}\"\n",
|
| 168 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:74: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
| 169 |
+
" assert W % patch_W == 0, f\"Input image width {W} is not a multiple of patch width: {patch_W}\"\n",
|
| 170 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dinov2.py:183: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
| 171 |
+
" if npatch == N and w == h:\n",
|
| 172 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dpt.py:147: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
| 173 |
+
" out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode=\"bilinear\", align_corners=True)\n"
|
| 174 |
+
]
|
| 175 |
+
}
|
| 176 |
+
],
|
| 177 |
+
"source": [
|
| 178 |
+
"original_image = Image.open(\"./sample_images/IMG_4061.jpeg\")\n",
|
| 179 |
+
"origina_img = np.array(original_image)\n",
|
| 180 |
+
"print(origina_img.shape)\n",
|
| 181 |
+
"original_h, original_w = origina_img.shape[:2]\n",
|
| 182 |
+
"input_size = 518\n",
|
| 183 |
+
"image = original_image.resize((input_size,input_size), Image.Resampling.BILINEAR)\n",
|
| 184 |
+
"img = np.array(image)\n",
|
| 185 |
+
"input_image, (h, w) = model.image2tensor(img, input_size)\n",
|
| 186 |
+
"input_image = input_image.to(DEVICE)\n",
|
| 187 |
+
"with torch.no_grad():\n",
|
| 188 |
+
" depth = model(input_image)\n",
|
| 189 |
+
" depth = F.interpolate(depth[:, None], (h, w), mode=\"bilinear\", align_corners=True)[0, 0]\n",
|
| 190 |
+
" depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0\n",
|
| 191 |
+
" depth = depth.cpu().numpy().astype(np.uint8)\n",
|
| 192 |
+
"depth_image = Image.fromarray(depth).resize((original_w,original_h), Image.Resampling.BILINEAR)\n",
|
| 193 |
+
"depth_image.save(\"depth_image_2.jpg\")\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"traced_model = torch.jit.trace(model, input_image)\n"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": 37,
|
| 201 |
+
"id": "42632870",
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [
|
| 204 |
+
{
|
| 205 |
+
"name": "stdout",
|
| 206 |
+
"output_type": "stream",
|
| 207 |
+
"text": [
|
| 208 |
+
"Traced PyTorch ImageEncoder ckpt out for jpg:\n",
|
| 209 |
+
">>> tensor([[3.8735, 3.9076, 4.0226, ..., 1.8554, 1.7260, 2.5633],\n",
|
| 210 |
+
" [4.3636, 4.1100, 4.1624, ..., 2.1774, 2.2929, 2.2913],\n",
|
| 211 |
+
" [4.3914, 4.2280, 4.2901, ..., 2.3076, 2.3133, 2.2698],\n",
|
| 212 |
+
" ...,\n",
|
| 213 |
+
" [5.8771, 5.8192, 5.8249, ..., 3.9578, 3.9079, 3.7710],\n",
|
| 214 |
+
" [6.1631, 6.1475, 6.1688, ..., 4.2481, 4.2320, 4.0410],\n",
|
| 215 |
+
" [6.4769, 6.4864, 6.4850, ..., 4.6766, 4.6218, 4.4442]],\n",
|
| 216 |
+
" device='mps:0', grad_fn=<SliceBackward0>)\n"
|
| 217 |
+
]
|
| 218 |
+
}
|
| 219 |
+
],
|
| 220 |
+
"source": [
|
| 221 |
+
"example_output = traced_model(input_image)\n",
|
| 222 |
+
"print(\"Traced PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", example_output[0, :10])"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "markdown",
|
| 227 |
+
"id": "3c0d9c70",
|
| 228 |
+
"metadata": {},
|
| 229 |
+
"source": [
|
| 230 |
+
"You can see that there is some loss in precision, but it is still acceptable."
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "markdown",
|
| 235 |
+
"id": "ca182b4a",
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"source": [
|
| 238 |
+
"# 2. Export ImageEncoder"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"cell_type": "code",
|
| 243 |
+
"execution_count": 38,
|
| 244 |
+
"id": "ef7af5c5",
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [],
|
| 247 |
+
"source": [
|
| 248 |
+
"image_means = [0.485, 0.456, 0.406]\n",
|
| 249 |
+
"image_stds = [0.229, 0.224, 0.225]"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "code",
|
| 254 |
+
"execution_count": 73,
|
| 255 |
+
"id": "8f66a99c",
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"outputs": [],
|
| 258 |
+
"source": [
|
| 259 |
+
"import torchvision.transforms as transforms\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"class Wrapper(torch.nn.Module): \n",
|
| 262 |
+
" def __init__(self, model):\n",
|
| 263 |
+
" super().__init__()\n",
|
| 264 |
+
" _means = image_means\n",
|
| 265 |
+
" _stds = image_stds\n",
|
| 266 |
+
" self.model = model \n",
|
| 267 |
+
" self.stds = torch.tensor(_stds).half()[:,None,None]\n",
|
| 268 |
+
" self.means = torch.tensor(_means).half()[:,None,None]\n",
|
| 269 |
+
"\n",
|
| 270 |
+
" transform_model = torch.nn.Sequential(\n",
|
| 271 |
+
" transforms.Normalize(mean=image_means, std=image_stds)\n",
|
| 272 |
+
" )\n",
|
| 273 |
+
"\n",
|
| 274 |
+
" def forward(self, input): \n",
|
| 275 |
+
" input = input/255.0\n",
|
| 276 |
+
" intput = self.transform_model(input)\n",
|
| 277 |
+
" output = self.model(input)\n",
|
| 278 |
+
" output = (output - output.min()) / (output.max() - output.min()) \n",
|
| 279 |
+
" # Fix \"Image output, 'depthOutput', must have rank 4. Instead it has rank 3\"\n",
|
| 280 |
+
" output = output.unsqueeze(0)\n",
|
| 281 |
+
" # Fix \"Shape of the RGB/BGR image output, 'depthOutput', must be of kind (1, 3, H, W), i.e., first two dimensions must be (1, 3), instead they are: (1, 1)\"ArithmeticError\n",
|
| 282 |
+
" output = output.repeat(1, 3, 1, 1)\n",
|
| 283 |
+
" output = output * 255.0\n",
|
| 284 |
+
" return output\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"# Instantiate the Wrapper model passing the original PyTorch FCN model\n",
|
| 287 |
+
"wrapped_model = Wrapper(traced_model)"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 74,
|
| 293 |
+
"id": "b3da3350",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [
|
| 296 |
+
{
|
| 297 |
+
"name": "stdout",
|
| 298 |
+
"output_type": "stream",
|
| 299 |
+
"text": [
|
| 300 |
+
"wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
|
| 301 |
+
">>> tensor([[[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
| 302 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
| 303 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
| 304 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
| 305 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
| 306 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
| 307 |
+
" ...,\n",
|
| 308 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
| 309 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
| 310 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
| 311 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
| 312 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
| 313 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
| 314 |
+
"\n",
|
| 315 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
| 316 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
| 317 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
| 318 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
| 319 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
| 320 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
| 321 |
+
" ...,\n",
|
| 322 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
| 323 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
| 324 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
| 325 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
| 326 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
| 327 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
| 328 |
+
"\n",
|
| 329 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
| 330 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
| 331 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
| 332 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
| 333 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
| 334 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
| 335 |
+
" ...,\n",
|
| 336 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
| 337 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
| 338 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
| 339 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
| 340 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
| 341 |
+
" 1.0220e+02, 1.0189e+02]]], device='mps:0')\n",
|
| 342 |
+
"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
|
| 343 |
+
">>> tensor([[[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
| 344 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
| 345 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
| 346 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
| 347 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
| 348 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
| 349 |
+
" ...,\n",
|
| 350 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
| 351 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
| 352 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
| 353 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
| 354 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
| 355 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
| 356 |
+
"\n",
|
| 357 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
| 358 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
| 359 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
| 360 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
| 361 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
| 362 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
| 363 |
+
" ...,\n",
|
| 364 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
| 365 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
| 366 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
| 367 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
| 368 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
| 369 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
| 370 |
+
"\n",
|
| 371 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
| 372 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
| 373 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
| 374 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
| 375 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
| 376 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
| 377 |
+
" ...,\n",
|
| 378 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
| 379 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
| 380 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
| 381 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
| 382 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
| 383 |
+
" 1.0220e+02, 1.0189e+02]]], device='mps:0')\n"
|
| 384 |
+
]
|
| 385 |
+
}
|
| 386 |
+
],
|
| 387 |
+
"source": [
|
| 388 |
+
"i = np.asarray(original_image.resize((518, 518)))\n",
|
| 389 |
+
"i = i.astype(\"float32\")\n",
|
| 390 |
+
"i = np.transpose(i, (2, 0, 1))\n",
|
| 391 |
+
"i = np.expand_dims(i, 0)\n",
|
| 392 |
+
"i = torch.from_numpy(i).to(DEVICE)\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"with torch.no_grad():\n",
|
| 395 |
+
" out = wrapped_model(i)\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"print(\"wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])\n",
|
| 398 |
+
"\n",
|
| 399 |
+
"traced_model_w = torch.jit.trace(wrapped_model, i)\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"with torch.no_grad():\n",
|
| 402 |
+
" out = traced_model_w(i)\n",
|
| 403 |
+
"\n",
|
| 404 |
+
"print(\"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])"
|
| 405 |
+
]
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"cell_type": "code",
|
| 409 |
+
"execution_count": 86,
|
| 410 |
+
"id": "db5cb9b9",
|
| 411 |
+
"metadata": {},
|
| 412 |
+
"outputs": [
|
| 413 |
+
{
|
| 414 |
+
"data": {
|
| 415 |
+
"text/plain": [
|
| 416 |
+
"(torch.Size([1, 3, 518, 518]), torch.Size([1, 3, 518, 518]))"
|
| 417 |
+
]
|
| 418 |
+
},
|
| 419 |
+
"execution_count": 86,
|
| 420 |
+
"metadata": {},
|
| 421 |
+
"output_type": "execute_result"
|
| 422 |
+
}
|
| 423 |
+
],
|
| 424 |
+
"source": [
|
| 425 |
+
"i.shape, out.shape"
|
| 426 |
+
]
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"cell_type": "code",
|
| 430 |
+
"execution_count": 92,
|
| 431 |
+
"id": "681683aa",
|
| 432 |
+
"metadata": {},
|
| 433 |
+
"outputs": [
|
| 434 |
+
{
|
| 435 |
+
"name": "stdout",
|
| 436 |
+
"output_type": "stream",
|
| 437 |
+
"text": [
|
| 438 |
+
"(1, 3, 518, 518) 255.0 0.0 104.07214\n",
|
| 439 |
+
"(518, 518, 3) 255 0 103.57204722648738\n"
|
| 440 |
+
]
|
| 441 |
+
}
|
| 442 |
+
],
|
| 443 |
+
"source": [
|
| 444 |
+
"tmp = out.cpu().numpy()\n",
|
| 445 |
+
"\n",
|
| 446 |
+
"print(tmp.shape, tmp.max(), tmp.min(), tmp.mean())\n",
|
| 447 |
+
"# Convert to 3, 256, 256\n",
|
| 448 |
+
"tmp = np.transpose(tmp, (0, 2, 3, 1)).astype(np.uint8)\n",
|
| 449 |
+
"tmp = tmp.squeeze()\n",
|
| 450 |
+
"print(tmp.shape, tmp.max(), tmp.min(), tmp.mean())\n",
|
| 451 |
+
"Image.fromarray(tmp)\n",
|
| 452 |
+
"tmp_image = Image.fromarray(tmp).resize((original_w,original_h))\n",
|
| 453 |
+
"tmp_image.save(\"depth_image_3.png\")"
|
| 454 |
+
]
|
| 455 |
+
},
|
| 456 |
+
{
|
| 457 |
+
"cell_type": "code",
|
| 458 |
+
"execution_count": 71,
|
| 459 |
+
"id": "9e4f00bd",
|
| 460 |
+
"metadata": {},
|
| 461 |
+
"outputs": [
|
| 462 |
+
{
|
| 463 |
+
"data": {
|
| 464 |
+
"text/plain": [
|
| 465 |
+
"torch.Size([1, 3, 518, 518])"
|
| 466 |
+
]
|
| 467 |
+
},
|
| 468 |
+
"execution_count": 71,
|
| 469 |
+
"metadata": {},
|
| 470 |
+
"output_type": "execute_result"
|
| 471 |
+
}
|
| 472 |
+
],
|
| 473 |
+
"source": [
|
| 474 |
+
"i.shape"
|
| 475 |
+
]
|
| 476 |
+
},
|
| 477 |
+
{
|
| 478 |
+
"cell_type": "code",
|
| 479 |
+
"execution_count": null,
|
| 480 |
+
"id": "304ae7b0",
|
| 481 |
+
"metadata": {},
|
| 482 |
+
"outputs": [
|
| 483 |
+
{
|
| 484 |
+
"name": "stderr",
|
| 485 |
+
"output_type": "stream",
|
| 486 |
+
"text": [
|
| 487 |
+
"Converting PyTorch Frontend ==> MIL Ops: 100%|ββββββββββ| 1247/1248 [00:00<00:00, 6927.17 ops/s]\n",
|
| 488 |
+
"Running MIL frontend_pytorch pipeline: 100%|ββββββββββ| 5/5 [00:00<00:00, 90.46 passes/s]\n",
|
| 489 |
+
"Running MIL default pipeline: 100%|ββββββββββ| 89/89 [00:06<00:00, 13.75 passes/s]\n",
|
| 490 |
+
"Running MIL backend_mlprogram pipeline: 100%|ββββββββββ| 12/12 [00:00<00:00, 99.10 passes/s]\n"
|
| 491 |
+
]
|
| 492 |
+
}
|
| 493 |
+
],
|
| 494 |
+
"source": [
|
| 495 |
+
"traced_model_w.eval()\n",
|
| 496 |
+
"image_input = ct.ImageType(name=\"colorImage\", shape=i.shape)\n",
|
| 497 |
+
"image_encoder_model = ct.converters.convert(\n",
|
| 498 |
+
" traced_model_w,\n",
|
| 499 |
+
" convert_to=\"mlprogram\",\n",
|
| 500 |
+
" inputs=[image_input],\n",
|
| 501 |
+
" outputs=[ct.ImageType(name=\"depthOutput\")],\n",
|
| 502 |
+
" minimum_deployment_target=ct.target.iOS16,\n",
|
| 503 |
+
")\n",
|
| 504 |
+
"image_encoder_model.save(\"DepthAnything_v2_large.mlpackage\")"
|
| 505 |
+
]
|
| 506 |
+
}
|
| 507 |
+
],
|
| 508 |
+
"metadata": {
|
| 509 |
+
"kernelspec": {
|
| 510 |
+
"display_name": "pytorch2",
|
| 511 |
+
"language": "python",
|
| 512 |
+
"name": "python3"
|
| 513 |
+
},
|
| 514 |
+
"language_info": {
|
| 515 |
+
"codemirror_mode": {
|
| 516 |
+
"name": "ipython",
|
| 517 |
+
"version": 3
|
| 518 |
+
},
|
| 519 |
+
"file_extension": ".py",
|
| 520 |
+
"mimetype": "text/x-python",
|
| 521 |
+
"name": "python",
|
| 522 |
+
"nbconvert_exporter": "python",
|
| 523 |
+
"pygments_lexer": "ipython3",
|
| 524 |
+
"version": "3.10.14"
|
| 525 |
+
}
|
| 526 |
+
},
|
| 527 |
+
"nbformat": 4,
|
| 528 |
+
"nbformat_minor": 5
|
| 529 |
+
}
|