--- library_name: transformers tags: [] --- # Model Card for Model ID --- language: lo tags: - audio - automatic-speech-recognition - wav2vec2 - lao license: apache-2.0 model-index: - name: Wav2Vec2 Lao Fine-tuned results: [] --- # Wav2Vec2 Lao Fine-tuned This model is a fine-tuned version of [`facebook/wav2vec2-xls-r-300m`](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Lao speech data. It was trained for automatic speech recognition (ASR) using [SiangLao](https://huggingface.co/datasets/sianglao) or similar datasets. ## Intended Use - Lao language ASR tasks - Research in low-resource language modeling ## Training Details - Base model: facebook/wav2vec2-xls-r-300m - Framework: Hugging Face Transformers - Fine-tuned on: Lao speech dataset - Tokenizer and processor: see [`wav2vec2-lao-processor`](https://huggingface.co/YourUsername/wav2vec2-lao-processor) ## How to Use ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import torchaudio processor = Wav2Vec2Processor.from_pretrained("YourUsername/wav2vec2-lao-processor") model = Wav2Vec2ForCTC.from_pretrained("YourUsername/wav2vec2-lao-finetuned") # Load audio waveform, sample_rate = torchaudio.load("your_audio.wav") # Preprocess inputs = processor(waveform.squeeze(), sampling_rate=sample_rate, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(**inputs).logits # Decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ```