File size: 15,762 Bytes
29c0409 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import re
import torch
import torchaudio.functional as F
import torchaudio
import uroman as ur
import logging
import traceback
def convert_to_list_with_punctuation_mixed(text):
"""处理中文文本(可能包含英文单词) - 中文按字符分割,英文单词保持完整"""
result = []
text = text.strip()
if not text:
return result
def is_chinese(char):
"""检查是否是汉字"""
return '\u4e00' <= char <= '\u9fff'
# 使用更精确的正则表达式来分割文本
# 匹配:英文单词(含数字)、单个汉字、标点符号
pattern = r'[a-zA-Z]+[a-zA-Z0-9]*|[\u4e00-\u9fff]|[^\w\s\u4e00-\u9fff]'
tokens = re.findall(pattern, text)
for token in tokens:
if not token.strip(): # 跳过空字符
continue
if re.match(r'^[a-zA-Z]+[a-zA-Z0-9]*$', token): # 英文单词(可能包含数字)
result.append(token)
elif is_chinese(token): # 单个汉字
result.append(token)
else: # 标点符号等其他字符
# 标点符号加到前一个词后面
if result:
result[-1] += token
else:
# 如果是文本开头的标点,单独作为一项
result.append(token)
return result
def split_and_merge_punctuation(text):
"""处理英文 - 按单词分割,保持单词完整性"""
# 先按空格拆分文本
elements = text.split()
# 用于保存最终的结果
result = []
# 遍历每个拆分后的元素
for ele in elements:
# 使用正则表达式提取连续字母、数字和标点
parts = re.findall(r'[a-zA-Z0-9]+|[^\w\s]+', ele)
# 用于保存拆分后的部分
merged_parts = []
for i in range(len(parts)):
if i % 2 == 0: # 如果是字母或数字部分
# 将字母或数字部分添加到结果中
merged_parts.append(parts[i])
else: # 如果是标点或其他符号部分
# 将标点部分与前面的字母或数字部分合并
if merged_parts:
merged_parts[-1] += parts[i]
else:
merged_parts.append(parts[i])
# 将合并后的部分加入最终结果
result.extend(merged_parts)
return result
def get_aligned_result_text_with_punctuation(alignment_result, text, language):
"""
将对齐结果转换为正确的文本tokens,英文保持单词级别,中文保持字符级别(但英文单词完整)
"""
logging.info("start change text to text_tokens")
if language == "EN":
text_tokens = split_and_merge_punctuation(text) # 英文按单词分词
elif language == "ZH":
text_tokens = convert_to_list_with_punctuation_mixed(text) # 中文按字符分割,但英文单词保持完整
else:
raise ValueError(f"Unsupported language: {language}")
logging.info(f"Text tokens count: {len(text_tokens)}, Alignment result count: {len(alignment_result)}")
punctuations = set(',.!?;:()[]<>\'\"…·,。;:!?()【】《》''""\、')
logging.info("start get align result text with punctuation")
updated_alignment_result = []
token_idx = 0
for index, align_item in enumerate(alignment_result):
if token_idx >= len(text_tokens):
# 如果text_tokens用完了但还有对齐结果,跳出循环
logging.warning(f"Text tokens exhausted at index {token_idx}, but alignment has more items")
break
start = align_item["start"]
end = align_item["end"]
text_token = text_tokens[token_idx]
# 检查该 token 后是否有连续标点(仅对中文)
if language == "ZH":
while token_idx + 1 < len(text_tokens) and text_tokens[token_idx + 1] in punctuations:
assert False, "???" # 这里理论上应该进不去??
text_token += text_tokens[token_idx + 1] # 将标点加入
token_idx += 1
else:
# 英文不需要特殊的标点处理,因为标点已经在split_and_merge_punctuation中处理了
pass
# 更新对齐结果
updated_item = {
"start": start,
"end": end,
"transcript": text_token
}
updated_item.update({key: align_item[key] for key in align_item if key not in ["start", "end", "transcript"]})
updated_alignment_result.append(updated_item)
token_idx += 1
logging.info("end get align result text with punctuation")
return updated_alignment_result
class AlignmentModel:
def __init__(self, device, model_dir='/data-mnt/data/wy/X-Codec-2.0/checkpoints'):
"""
初始化对齐模型并加载必要的资源
:param device: 设备类型 ("cuda" 或 "cpu")
:param model_dir: 模型目录路径
"""
self.device = torch.device(device)
self.bundle = torchaudio.pipelines.MMS_FA
self.align_model = self.bundle.get_model(with_star=False, dl_kwargs={'model_dir': model_dir}).to(self.device)
self.uroman = ur.Uroman()
self.DICTIONARY = self.bundle.get_dict()
def align(self, emission, tokens):
"""
执行强对齐
:param emission: 模型的输出
:param tokens: 目标 tokens
:return: 对齐的 tokens 和分数
"""
alignments, scores = F.forced_align(
log_probs=emission,
targets=tokens,
blank=0
)
alignments, scores = alignments[0], scores[0]
scores = scores.exp()
return alignments, scores
def unflatten(self, list_, lengths):
"""
将一个长列表按照长度拆分成子列表
:param list_: 长列表
:param lengths: 各子列表的长度
:return: 拆分后的子列表
"""
assert len(list_) == sum(lengths)
i = 0
ret = []
for l in lengths:
ret.append(list_[i:i + l])
i += l
return ret
def preview_word(self, waveform, spans, num_frames, transcript, sample_rate):
"""
预览每个单词的开始时间和结束时间
:param waveform: 音频波形
:param spans: 单词的跨度
:param num_frames: 帧数
:param transcript: 转录文本
:param sample_rate: 采样率
:return: 单词的对齐信息
"""
end = 0
alignment_result = []
for span, trans in zip(spans, transcript):
ratio = waveform.size(1) / num_frames
x0 = int(ratio * span[0].start)
x1 = int(ratio * span[-1].end)
align_info = {
"transcript": trans,
"start": round(x0 / sample_rate, 3),
"end": round(x1 / sample_rate, 3)
}
align_info["pause"] = round(align_info["start"] - end, 3)
align_info["duration"] = round(align_info["end"] - align_info["start"], 3)
end = align_info["end"]
alignment_result.append(align_info)
return alignment_result
def make_wav_batch(self, wav_list):
"""
将 wav_list 中的每个 wav 张量填充为相同的长度,返回填充后的张量和每个张量的原始长度。
:param wav_list: wav 文件列表
:return: 填充后的音频张量和原始长度
"""
wav_lengths = torch.tensor([wav.size(0) for wav in wav_list], dtype=torch.long)
max_length = max(wav_lengths)
# 确保张量在正确的设备上
wavs_tensors = torch.zeros(len(wav_list), max_length, device=self.device)
for i, wav in enumerate(wav_list):
wav = wav.to(self.device) # 确保wav在正确的设备上
wavs_tensors[i, :wav_lengths[i]] = wav
return wavs_tensors, wav_lengths.to(self.device)
def get_target(self, transcript, language):
"""
获取给定转录文本的目标 tokens - 修正版本,保持英文单词完整性
"""
original_transcript = transcript # 保存原始文本用于调试
if language == "ZH":
# 中文处理:保持英文单词完整,只对中文字符进行romanization
# 使用相同的分词逻辑
pattern = r'[a-zA-Z]+[a-zA-Z0-9]*|[\u4e00-\u9fff]|[^\w\s\u4e00-\u9fff]'
tokens = re.findall(pattern, transcript)
# 分别处理中文字符和英文单词
processed_parts = []
for token in tokens:
if not token.strip():
continue
elif re.match(r'^[a-zA-Z]+[a-zA-Z0-9]*$', token): # 英文单词
# 英文单词保持原样,不进行romanization
processed_parts.append(token.lower())
elif '\u4e00' <= token <= '\u9fff': # 中文字符
# 只对中文字符进行romanization
romanized = self.uroman.romanize_string(token)
processed_parts.append(romanized)
else: # 标点符号等
# 标点符号直接添加,但会在后续步骤中被过滤掉
processed_parts.append(token)
# 用空格连接所有部分
transcript = ' '.join(processed_parts)
elif language == "EN":
# 英文处理:保持单词结构,只是清理标点
pass
else:
assert False, f"Unsupported language: {language}"
# 清理标点符号
transcript = re.sub(r'[^\w\s]', r' ', transcript)
TRANSCRIPT = transcript.lower().split()
# 提前获取字典中的特殊符号 token
star_token = self.DICTIONARY['*']
tokenized_transcript = []
# 统一的tokenization逻辑
for word in TRANSCRIPT:
# 对每个word中的字符进行token化
word_tokens = []
for c in word:
if c in self.DICTIONARY and c != '-':
word_tokens.append(self.DICTIONARY[c])
else:
word_tokens.append(star_token)
tokenized_transcript.extend(word_tokens)
logging.info(f"Original transcript: {original_transcript}")
logging.info(f"Processed transcript: {transcript}")
logging.info(f"Final TRANSCRIPT: {TRANSCRIPT}")
return torch.tensor([tokenized_transcript], dtype=torch.int32, device=self.device)
def get_alignment_result(self, emission_padded, emission_length, aligned_tokens, alignment_scores, transcript, waveform, language):
"""
根据给定的 emission 和对齐信息生成对齐结果 - 修正版本
"""
original_transcript = transcript # 保存原始文本
if language == "ZH":
# 使用与get_target相同的处理逻辑
pattern = r'[a-zA-Z]+[a-zA-Z0-9]*|[\u4e00-\u9fff]|[^\w\s\u4e00-\u9fff]'
tokens = re.findall(pattern, transcript)
processed_parts = []
for token in tokens:
if not token.strip():
continue
elif re.match(r'^[a-zA-Z]+[a-zA-Z0-9]*$', token): # 英文单词
processed_parts.append(token.lower())
elif '\u4e00' <= token <= '\u9fff': # 中文字符
romanized = self.uroman.romanize_string(token)
processed_parts.append(romanized)
else: # 标点符号等
processed_parts.append(token)
transcript = ' '.join(processed_parts)
elif language == "EN":
pass
else:
assert False, f"Unsupported language: {language}"
transcript = re.sub(r'[^\w\s]', r' ', transcript)
emission = emission_padded[:emission_length, :].unsqueeze(0)
TRANSCRIPT = transcript.lower().split()
token_spans = F.merge_tokens(aligned_tokens, alignment_scores)
# 统一的分组逻辑
word_spans = self.unflatten(token_spans, [len(word) for word in TRANSCRIPT])
num_frames = emission.size(1)
logging.info(f"Original transcript for alignment: {original_transcript}")
logging.info(f"Processed TRANSCRIPT: {TRANSCRIPT}")
return self.preview_word(waveform.unsqueeze(0), word_spans, num_frames, TRANSCRIPT, self.bundle.sample_rate)
def batch_alignment(self, wav_list, transcript_list, language_list):
"""
批量对齐
:param wav_list: wav 文件列表
:param transcript_list: 转录文本列表
:param language_list: 语言类型列表
:return: 对齐结果列表
"""
wavs_tensors, wavs_lengths_tensor = self.make_wav_batch(wav_list)
logging.info("start alignment model forward")
with torch.inference_mode():
emission, emission_lengths = self.align_model(wavs_tensors.to(self.device), wavs_lengths_tensor)
star_dim = torch.zeros((emission.shape[0], emission.size(1), 1), dtype=emission.dtype, device=self.device)
emission = torch.cat((emission, star_dim), dim=-1)
logging.info("end alignment model forward")
target_list = [self.get_target(transcript, language) for transcript, language in zip(transcript_list, language_list)]
logging.info("align success")
align_results = [
self.align(emission_padded[:emission_length, :].unsqueeze(0), target)
for emission_padded, emission_length, target in zip(emission, emission_lengths, target_list)
]
logging.info("get align result")
batch_aligned_tokens = [align_result[0] for align_result in align_results]
batch_alignment_scores = [align_result[1] for align_result in align_results]
alignment_result_list = [
self.get_alignment_result(emission_padded, emission_length, aligned_tokens, alignment_scores, transcript, waveform, language)
for emission_padded, emission_length, aligned_tokens, alignment_scores, transcript, waveform, language
in zip(emission, emission_lengths, batch_aligned_tokens, batch_alignment_scores, transcript_list, wav_list, language_list)
]
logging.info("get align result success")
return alignment_result_list
def batch_get_alignment_result(alignment_model, wav_list, transcript_list, language_list):
"""
批量获取对齐结果的便捷函数
"""
alignment_results = alignment_model.batch_alignment(
wav_list=wav_list,
transcript_list=transcript_list,
language_list=language_list
)
alignments_results_with_text_and_punctuation = []
for alignment_result, transcript, language in zip(alignment_results, transcript_list, language_list):
try:
result = get_aligned_result_text_with_punctuation(alignment_result, transcript, language)
alignments_results_with_text_and_punctuation.append(result)
except:
logger = logging.getLogger("tokenize")
logger.error(f"Error in processing {alignment_result}")
traceback.print_exc()
alignments_results_with_text_and_punctuation.append(alignment_result)
return alignments_results_with_text_and_punctuation |