|
|
import streamlit as st
|
|
|
import joblib
|
|
|
import json
|
|
|
import re
|
|
|
import nltk
|
|
|
from nltk.corpus import stopwords
|
|
|
from nltk.tokenize import word_tokenize
|
|
|
from nltk.stem import WordNetLemmatizer
|
|
|
import os
|
|
|
|
|
|
|
|
|
try:
|
|
|
nltk.download('punkt')
|
|
|
nltk.download('stopwords')
|
|
|
nltk.download('wordnet')
|
|
|
except:
|
|
|
pass
|
|
|
|
|
|
class SentimentAnalyzer:
|
|
|
def __init__(self, model_dir="saved_models"):
|
|
|
try:
|
|
|
|
|
|
self.vectorizer = joblib.load(f"{model_dir}/tfidf_vectorizer.pkl")
|
|
|
self.lr_model = joblib.load(f"{model_dir}/logistic_regression_model.pkl")
|
|
|
self.nb_model = joblib.load(f"{model_dir}/naive_bayes_model.pkl")
|
|
|
|
|
|
|
|
|
with open(f"{model_dir}/model_metadata.json", 'r') as f:
|
|
|
self.metadata = json.load(f)
|
|
|
|
|
|
self.models_loaded = True
|
|
|
except Exception as e:
|
|
|
st.error(f"Error loading models: {e}")
|
|
|
self.models_loaded = False
|
|
|
|
|
|
def preprocess_text(self, text):
|
|
|
|
|
|
text = text.lower()
|
|
|
|
|
|
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
|
|
|
|
|
tokens = word_tokenize(text)
|
|
|
|
|
|
stop_words = set(stopwords.words('english'))
|
|
|
tokens = [word for word in tokens if word not in stop_words]
|
|
|
|
|
|
lemmatizer = WordNetLemmatizer()
|
|
|
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
|
|
|
|
|
return ' '.join(tokens)
|
|
|
|
|
|
def predict(self, text, model_type='both'):
|
|
|
if not self.models_loaded:
|
|
|
return None
|
|
|
|
|
|
|
|
|
cleaned_text = self.preprocess_text(text)
|
|
|
|
|
|
|
|
|
text_vector = self.vectorizer.transform([cleaned_text])
|
|
|
|
|
|
results = {}
|
|
|
|
|
|
if model_type in ['lr', 'both']:
|
|
|
lr_pred = self.lr_model.predict(text_vector)[0]
|
|
|
lr_prob = self.lr_model.predict_proba(text_vector)[0]
|
|
|
results['logistic_regression'] = {
|
|
|
'prediction': 'positive' if lr_pred == 1 else 'negative',
|
|
|
'confidence': float(max(lr_prob)),
|
|
|
'probabilities': {
|
|
|
'negative': float(lr_prob[0]),
|
|
|
'positive': float(lr_prob[1])
|
|
|
}
|
|
|
}
|
|
|
|
|
|
if model_type in ['nb', 'both']:
|
|
|
nb_pred = self.nb_model.predict(text_vector)[0]
|
|
|
nb_prob = self.nb_model.predict_proba(text_vector)[0]
|
|
|
results['naive_bayes'] = {
|
|
|
'prediction': 'positive' if nb_pred == 1 else 'negative',
|
|
|
'confidence': float(max(nb_prob)),
|
|
|
'probabilities': {
|
|
|
'negative': float(nb_prob[0]),
|
|
|
'positive': float(nb_prob[1])
|
|
|
}
|
|
|
}
|
|
|
|
|
|
return results
|
|
|
|
|
|
def main():
|
|
|
st.set_page_config(
|
|
|
page_title="IMDb Sentiment Analysis",
|
|
|
page_icon="π¬",
|
|
|
layout="wide"
|
|
|
)
|
|
|
|
|
|
st.title("π¬ IMDb Review Sentiment Analysis")
|
|
|
st.markdown("---")
|
|
|
|
|
|
|
|
|
if not os.path.exists("saved_models"):
|
|
|
st.error("β Models not found! Please run `python train_and_save_model.py` first to train and save the models.")
|
|
|
st.info("This will create the 'saved_models' directory with your trained models.")
|
|
|
return
|
|
|
|
|
|
|
|
|
with st.spinner("Loading models..."):
|
|
|
analyzer = SentimentAnalyzer()
|
|
|
|
|
|
if not analyzer.models_loaded:
|
|
|
st.error("Failed to load models. Please check if the model files exist in the 'saved_models' directory.")
|
|
|
return
|
|
|
|
|
|
|
|
|
st.success("β
Models loaded successfully!")
|
|
|
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
with col1:
|
|
|
st.metric("Logistic Regression Accuracy", f"{analyzer.metadata['lr_accuracy']:.2%}")
|
|
|
with col2:
|
|
|
st.metric("Naive Bayes Accuracy", f"{analyzer.metadata['nb_accuracy']:.2%}")
|
|
|
|
|
|
st.markdown("---")
|
|
|
|
|
|
|
|
|
st.subheader("π Enter a Movie Review")
|
|
|
|
|
|
|
|
|
user_input = st.text_area(
|
|
|
"Write your movie review here:",
|
|
|
height=150,
|
|
|
placeholder="Example: This movie was absolutely fantastic! The acting was superb and the plot was engaging..."
|
|
|
)
|
|
|
|
|
|
|
|
|
model_choice = st.selectbox(
|
|
|
"Choose model for prediction:",
|
|
|
["Both Models", "Logistic Regression Only", "Naive Bayes Only"],
|
|
|
help="Select which model(s) to use for prediction"
|
|
|
)
|
|
|
|
|
|
|
|
|
if st.button("π Analyze Sentiment", type="primary"):
|
|
|
if user_input.strip():
|
|
|
with st.spinner("Analyzing sentiment..."):
|
|
|
|
|
|
model_type = 'both'
|
|
|
if model_choice == "Logistic Regression Only":
|
|
|
model_type = 'lr'
|
|
|
elif model_choice == "Naive Bayes Only":
|
|
|
model_type = 'nb'
|
|
|
|
|
|
|
|
|
results = analyzer.predict(user_input, model_type)
|
|
|
|
|
|
if results:
|
|
|
st.markdown("---")
|
|
|
st.subheader("π Analysis Results")
|
|
|
|
|
|
|
|
|
if model_type == 'both' or model_choice == "Both Models":
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
|
|
with col1:
|
|
|
st.subheader("π€ Logistic Regression")
|
|
|
lr_result = results['logistic_regression']
|
|
|
if lr_result['prediction'] == 'positive':
|
|
|
st.success(f"β
Positive Sentiment")
|
|
|
else:
|
|
|
st.error(f"β Negative Sentiment")
|
|
|
st.metric("Confidence", f"{lr_result['confidence']:.2%}")
|
|
|
|
|
|
|
|
|
st.write("**Probabilities:**")
|
|
|
st.progress(lr_result['probabilities']['positive'])
|
|
|
st.write(f"Positive: {lr_result['probabilities']['positive']:.2%}")
|
|
|
st.progress(lr_result['probabilities']['negative'])
|
|
|
st.write(f"Negative: {lr_result['probabilities']['negative']:.2%}")
|
|
|
|
|
|
with col2:
|
|
|
st.subheader("π§ Naive Bayes")
|
|
|
nb_result = results['naive_bayes']
|
|
|
if nb_result['prediction'] == 'positive':
|
|
|
st.success(f"β
Positive Sentiment")
|
|
|
else:
|
|
|
st.error(f"β Negative Sentiment")
|
|
|
st.metric("Confidence", f"{nb_result['confidence']:.2%}")
|
|
|
|
|
|
|
|
|
st.write("**Probabilities:**")
|
|
|
st.progress(nb_result['probabilities']['positive'])
|
|
|
st.write(f"Positive: {nb_result['probabilities']['positive']:.2%}")
|
|
|
st.progress(nb_result['probabilities']['negative'])
|
|
|
st.write(f"Negative: {nb_result['probabilities']['negative']:.2%}")
|
|
|
|
|
|
else:
|
|
|
|
|
|
model_name = "Logistic Regression" if model_type == 'lr' else "Naive Bayes"
|
|
|
result = results['logistic_regression'] if model_type == 'lr' else results['naive_bayes']
|
|
|
|
|
|
st.subheader(f"π€ {model_name}")
|
|
|
if result['prediction'] == 'positive':
|
|
|
st.success(f"β
Positive Sentiment")
|
|
|
else:
|
|
|
st.error(f"β Negative Sentiment")
|
|
|
st.metric("Confidence", f"{result['confidence']:.2%}")
|
|
|
|
|
|
|
|
|
st.write("**Probabilities:**")
|
|
|
st.progress(result['probabilities']['positive'])
|
|
|
st.write(f"Positive: {result['probabilities']['positive']:.2%}")
|
|
|
st.progress(result['probabilities']['negative'])
|
|
|
st.write(f"Negative: {result['probabilities']['negative']:.2%}")
|
|
|
|
|
|
|
|
|
if model_type == 'both':
|
|
|
st.markdown("---")
|
|
|
st.subheader("π Model Comparison")
|
|
|
|
|
|
|
|
|
import plotly.graph_objects as go
|
|
|
|
|
|
models = list(results.keys())
|
|
|
confidences = [results[model]['confidence'] for model in models]
|
|
|
predictions = [results[model]['prediction'] for model in models]
|
|
|
|
|
|
fig = go.Figure(data=[
|
|
|
go.Bar(
|
|
|
x=models,
|
|
|
y=confidences,
|
|
|
text=[f"{conf:.2%}" for conf in confidences],
|
|
|
textposition='auto',
|
|
|
marker_color=['green' if pred == 'positive' else 'red' for pred in predictions]
|
|
|
)
|
|
|
])
|
|
|
|
|
|
fig.update_layout(
|
|
|
title="Model Confidence Comparison",
|
|
|
xaxis_title="Model",
|
|
|
yaxis_title="Confidence",
|
|
|
yaxis_range=[0, 1]
|
|
|
)
|
|
|
|
|
|
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
else:
|
|
|
st.error("Failed to get predictions. Please try again.")
|
|
|
else:
|
|
|
st.warning("β οΈ Please enter a review to analyze.")
|
|
|
|
|
|
|
|
|
with st.sidebar:
|
|
|
st.header("βΉοΈ About")
|
|
|
st.write("This app uses machine learning models to analyze the sentiment of movie reviews.")
|
|
|
st.write("**Models:**")
|
|
|
st.write("- Logistic Regression")
|
|
|
st.write("- Naive Bayes")
|
|
|
|
|
|
st.header("π Model Details")
|
|
|
st.write(f"**Training Samples:** {analyzer.metadata['training_samples']:,}")
|
|
|
st.write(f"**Test Samples:** {analyzer.metadata['test_samples']:,}")
|
|
|
st.write(f"**Features:** {analyzer.metadata['max_features']:,}")
|
|
|
|
|
|
st.header("π§ Preprocessing Steps")
|
|
|
for step in analyzer.metadata['preprocessing_steps']:
|
|
|
st.write(f"- {step.replace('_', ' ').title()}")
|
|
|
|
|
|
st.header("π Sample Reviews")
|
|
|
sample_reviews = [
|
|
|
"This movie was absolutely fantastic! I loved every minute of it.",
|
|
|
"Terrible film, waste of time. Don't watch it.",
|
|
|
"It was okay, nothing special but not bad either.",
|
|
|
"Amazing performance by the actors, great storyline!",
|
|
|
"Boring and predictable plot, poor acting."
|
|
|
]
|
|
|
|
|
|
for i, review in enumerate(sample_reviews, 1):
|
|
|
if st.button(f"Sample {i}", key=f"sample_{i}"):
|
|
|
st.session_state.user_input = review
|
|
|
st.rerun()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
main() |