Commit
Β·
57927a6
1
Parent(s):
557abda
Refactor project structure and update dependencies for improved compatibility and performance.
Browse files- streamlit_app.py +284 -0
streamlit_app.py
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import joblib
|
| 3 |
+
import json
|
| 4 |
+
import re
|
| 5 |
+
import nltk
|
| 6 |
+
from nltk.corpus import stopwords
|
| 7 |
+
from nltk.tokenize import word_tokenize
|
| 8 |
+
from nltk.stem import WordNetLemmatizer
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
# Download NLTK resources
|
| 12 |
+
try:
|
| 13 |
+
nltk.download('punkt')
|
| 14 |
+
nltk.download('stopwords')
|
| 15 |
+
nltk.download('wordnet')
|
| 16 |
+
except:
|
| 17 |
+
pass
|
| 18 |
+
|
| 19 |
+
class SentimentAnalyzer:
|
| 20 |
+
def __init__(self, model_dir="saved_models"):
|
| 21 |
+
try:
|
| 22 |
+
# Load models
|
| 23 |
+
self.vectorizer = joblib.load(f"{model_dir}/tfidf_vectorizer.pkl")
|
| 24 |
+
self.lr_model = joblib.load(f"{model_dir}/logistic_regression_model.pkl")
|
| 25 |
+
self.nb_model = joblib.load(f"{model_dir}/naive_bayes_model.pkl")
|
| 26 |
+
|
| 27 |
+
# Load metadata
|
| 28 |
+
with open(f"{model_dir}/model_metadata.json", 'r') as f:
|
| 29 |
+
self.metadata = json.load(f)
|
| 30 |
+
|
| 31 |
+
self.models_loaded = True
|
| 32 |
+
except Exception as e:
|
| 33 |
+
st.error(f"Error loading models: {e}")
|
| 34 |
+
self.models_loaded = False
|
| 35 |
+
|
| 36 |
+
def preprocess_text(self, text):
|
| 37 |
+
# Lowercase
|
| 38 |
+
text = text.lower()
|
| 39 |
+
# Remove special characters and digits
|
| 40 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
| 41 |
+
# Tokenize
|
| 42 |
+
tokens = word_tokenize(text)
|
| 43 |
+
# Remove stopwords
|
| 44 |
+
stop_words = set(stopwords.words('english'))
|
| 45 |
+
tokens = [word for word in tokens if word not in stop_words]
|
| 46 |
+
# Lemmatize
|
| 47 |
+
lemmatizer = WordNetLemmatizer()
|
| 48 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
| 49 |
+
# Join tokens back to string
|
| 50 |
+
return ' '.join(tokens)
|
| 51 |
+
|
| 52 |
+
def predict(self, text, model_type='both'):
|
| 53 |
+
if not self.models_loaded:
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
# Preprocess text
|
| 57 |
+
cleaned_text = self.preprocess_text(text)
|
| 58 |
+
|
| 59 |
+
# Vectorize
|
| 60 |
+
text_vector = self.vectorizer.transform([cleaned_text])
|
| 61 |
+
|
| 62 |
+
results = {}
|
| 63 |
+
|
| 64 |
+
if model_type in ['lr', 'both']:
|
| 65 |
+
lr_pred = self.lr_model.predict(text_vector)[0]
|
| 66 |
+
lr_prob = self.lr_model.predict_proba(text_vector)[0]
|
| 67 |
+
results['logistic_regression'] = {
|
| 68 |
+
'prediction': 'positive' if lr_pred == 1 else 'negative',
|
| 69 |
+
'confidence': float(max(lr_prob)),
|
| 70 |
+
'probabilities': {
|
| 71 |
+
'negative': float(lr_prob[0]),
|
| 72 |
+
'positive': float(lr_prob[1])
|
| 73 |
+
}
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
if model_type in ['nb', 'both']:
|
| 77 |
+
nb_pred = self.nb_model.predict(text_vector)[0]
|
| 78 |
+
nb_prob = self.nb_model.predict_proba(text_vector)[0]
|
| 79 |
+
results['naive_bayes'] = {
|
| 80 |
+
'prediction': 'positive' if nb_pred == 1 else 'negative',
|
| 81 |
+
'confidence': float(max(nb_prob)),
|
| 82 |
+
'probabilities': {
|
| 83 |
+
'negative': float(nb_prob[0]),
|
| 84 |
+
'positive': float(nb_prob[1])
|
| 85 |
+
}
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
return results
|
| 89 |
+
|
| 90 |
+
def main():
|
| 91 |
+
st.set_page_config(
|
| 92 |
+
page_title="IMDb Sentiment Analysis",
|
| 93 |
+
page_icon="π¬",
|
| 94 |
+
layout="wide"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
st.title("π¬ IMDb Review Sentiment Analysis")
|
| 98 |
+
st.markdown("---")
|
| 99 |
+
|
| 100 |
+
# Check if models exist
|
| 101 |
+
if not os.path.exists("saved_models"):
|
| 102 |
+
st.error("β Models not found! Please run `python train_and_save_model.py` first to train and save the models.")
|
| 103 |
+
st.info("This will create the 'saved_models' directory with your trained models.")
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# Initialize analyzer
|
| 107 |
+
with st.spinner("Loading models..."):
|
| 108 |
+
analyzer = SentimentAnalyzer()
|
| 109 |
+
|
| 110 |
+
if not analyzer.models_loaded:
|
| 111 |
+
st.error("Failed to load models. Please check if the model files exist in the 'saved_models' directory.")
|
| 112 |
+
return
|
| 113 |
+
|
| 114 |
+
# Display model info
|
| 115 |
+
st.success("β
Models loaded successfully!")
|
| 116 |
+
|
| 117 |
+
# Model performance metrics
|
| 118 |
+
col1, col2 = st.columns(2)
|
| 119 |
+
with col1:
|
| 120 |
+
st.metric("Logistic Regression Accuracy", f"{analyzer.metadata['lr_accuracy']:.2%}")
|
| 121 |
+
with col2:
|
| 122 |
+
st.metric("Naive Bayes Accuracy", f"{analyzer.metadata['nb_accuracy']:.2%}")
|
| 123 |
+
|
| 124 |
+
st.markdown("---")
|
| 125 |
+
|
| 126 |
+
# Input section
|
| 127 |
+
st.subheader("π Enter a Movie Review")
|
| 128 |
+
|
| 129 |
+
# Text input
|
| 130 |
+
user_input = st.text_area(
|
| 131 |
+
"Write your movie review here:",
|
| 132 |
+
height=150,
|
| 133 |
+
placeholder="Example: This movie was absolutely fantastic! The acting was superb and the plot was engaging..."
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Model selection
|
| 137 |
+
model_choice = st.selectbox(
|
| 138 |
+
"Choose model for prediction:",
|
| 139 |
+
["Both Models", "Logistic Regression Only", "Naive Bayes Only"],
|
| 140 |
+
help="Select which model(s) to use for prediction"
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Prediction button
|
| 144 |
+
if st.button("π Analyze Sentiment", type="primary"):
|
| 145 |
+
if user_input.strip():
|
| 146 |
+
with st.spinner("Analyzing sentiment..."):
|
| 147 |
+
# Map model choice to parameter
|
| 148 |
+
model_type = 'both'
|
| 149 |
+
if model_choice == "Logistic Regression Only":
|
| 150 |
+
model_type = 'lr'
|
| 151 |
+
elif model_choice == "Naive Bayes Only":
|
| 152 |
+
model_type = 'nb'
|
| 153 |
+
|
| 154 |
+
# Get predictions
|
| 155 |
+
results = analyzer.predict(user_input, model_type)
|
| 156 |
+
|
| 157 |
+
if results:
|
| 158 |
+
st.markdown("---")
|
| 159 |
+
st.subheader("π Analysis Results")
|
| 160 |
+
|
| 161 |
+
# Display results
|
| 162 |
+
if model_type == 'both' or model_choice == "Both Models":
|
| 163 |
+
col1, col2 = st.columns(2)
|
| 164 |
+
|
| 165 |
+
with col1:
|
| 166 |
+
st.subheader("π€ Logistic Regression")
|
| 167 |
+
lr_result = results['logistic_regression']
|
| 168 |
+
if lr_result['prediction'] == 'positive':
|
| 169 |
+
st.success(f"β
Positive Sentiment")
|
| 170 |
+
else:
|
| 171 |
+
st.error(f"β Negative Sentiment")
|
| 172 |
+
st.metric("Confidence", f"{lr_result['confidence']:.2%}")
|
| 173 |
+
|
| 174 |
+
# Progress bar for probabilities
|
| 175 |
+
st.write("**Probabilities:**")
|
| 176 |
+
st.progress(lr_result['probabilities']['positive'])
|
| 177 |
+
st.write(f"Positive: {lr_result['probabilities']['positive']:.2%}")
|
| 178 |
+
st.progress(lr_result['probabilities']['negative'])
|
| 179 |
+
st.write(f"Negative: {lr_result['probabilities']['negative']:.2%}")
|
| 180 |
+
|
| 181 |
+
with col2:
|
| 182 |
+
st.subheader("π§ Naive Bayes")
|
| 183 |
+
nb_result = results['naive_bayes']
|
| 184 |
+
if nb_result['prediction'] == 'positive':
|
| 185 |
+
st.success(f"β
Positive Sentiment")
|
| 186 |
+
else:
|
| 187 |
+
st.error(f"β Negative Sentiment")
|
| 188 |
+
st.metric("Confidence", f"{nb_result['confidence']:.2%}")
|
| 189 |
+
|
| 190 |
+
# Progress bar for probabilities
|
| 191 |
+
st.write("**Probabilities:**")
|
| 192 |
+
st.progress(nb_result['probabilities']['positive'])
|
| 193 |
+
st.write(f"Positive: {nb_result['probabilities']['positive']:.2%}")
|
| 194 |
+
st.progress(nb_result['probabilities']['negative'])
|
| 195 |
+
st.write(f"Negative: {nb_result['probabilities']['negative']:.2%}")
|
| 196 |
+
|
| 197 |
+
else:
|
| 198 |
+
# Single model result
|
| 199 |
+
model_name = "Logistic Regression" if model_type == 'lr' else "Naive Bayes"
|
| 200 |
+
result = results['logistic_regression'] if model_type == 'lr' else results['naive_bayes']
|
| 201 |
+
|
| 202 |
+
st.subheader(f"π€ {model_name}")
|
| 203 |
+
if result['prediction'] == 'positive':
|
| 204 |
+
st.success(f"β
Positive Sentiment")
|
| 205 |
+
else:
|
| 206 |
+
st.error(f"β Negative Sentiment")
|
| 207 |
+
st.metric("Confidence", f"{result['confidence']:.2%}")
|
| 208 |
+
|
| 209 |
+
# Progress bar for probabilities
|
| 210 |
+
st.write("**Probabilities:**")
|
| 211 |
+
st.progress(result['probabilities']['positive'])
|
| 212 |
+
st.write(f"Positive: {result['probabilities']['positive']:.2%}")
|
| 213 |
+
st.progress(result['probabilities']['negative'])
|
| 214 |
+
st.write(f"Negative: {result['probabilities']['negative']:.2%}")
|
| 215 |
+
|
| 216 |
+
# Model comparison
|
| 217 |
+
if model_type == 'both':
|
| 218 |
+
st.markdown("---")
|
| 219 |
+
st.subheader("π Model Comparison")
|
| 220 |
+
|
| 221 |
+
# Create comparison chart
|
| 222 |
+
import plotly.graph_objects as go
|
| 223 |
+
|
| 224 |
+
models = list(results.keys())
|
| 225 |
+
confidences = [results[model]['confidence'] for model in models]
|
| 226 |
+
predictions = [results[model]['prediction'] for model in models]
|
| 227 |
+
|
| 228 |
+
fig = go.Figure(data=[
|
| 229 |
+
go.Bar(
|
| 230 |
+
x=models,
|
| 231 |
+
y=confidences,
|
| 232 |
+
text=[f"{conf:.2%}" for conf in confidences],
|
| 233 |
+
textposition='auto',
|
| 234 |
+
marker_color=['green' if pred == 'positive' else 'red' for pred in predictions]
|
| 235 |
+
)
|
| 236 |
+
])
|
| 237 |
+
|
| 238 |
+
fig.update_layout(
|
| 239 |
+
title="Model Confidence Comparison",
|
| 240 |
+
xaxis_title="Model",
|
| 241 |
+
yaxis_title="Confidence",
|
| 242 |
+
yaxis_range=[0, 1]
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 246 |
+
|
| 247 |
+
else:
|
| 248 |
+
st.error("Failed to get predictions. Please try again.")
|
| 249 |
+
else:
|
| 250 |
+
st.warning("β οΈ Please enter a review to analyze.")
|
| 251 |
+
|
| 252 |
+
# Sidebar with additional info
|
| 253 |
+
with st.sidebar:
|
| 254 |
+
st.header("βΉοΈ About")
|
| 255 |
+
st.write("This app uses machine learning models to analyze the sentiment of movie reviews.")
|
| 256 |
+
st.write("**Models:**")
|
| 257 |
+
st.write("- Logistic Regression")
|
| 258 |
+
st.write("- Naive Bayes")
|
| 259 |
+
|
| 260 |
+
st.header("π Model Details")
|
| 261 |
+
st.write(f"**Training Samples:** {analyzer.metadata['training_samples']:,}")
|
| 262 |
+
st.write(f"**Test Samples:** {analyzer.metadata['test_samples']:,}")
|
| 263 |
+
st.write(f"**Features:** {analyzer.metadata['max_features']:,}")
|
| 264 |
+
|
| 265 |
+
st.header("π§ Preprocessing Steps")
|
| 266 |
+
for step in analyzer.metadata['preprocessing_steps']:
|
| 267 |
+
st.write(f"- {step.replace('_', ' ').title()}")
|
| 268 |
+
|
| 269 |
+
st.header("π Sample Reviews")
|
| 270 |
+
sample_reviews = [
|
| 271 |
+
"This movie was absolutely fantastic! I loved every minute of it.",
|
| 272 |
+
"Terrible film, waste of time. Don't watch it.",
|
| 273 |
+
"It was okay, nothing special but not bad either.",
|
| 274 |
+
"Amazing performance by the actors, great storyline!",
|
| 275 |
+
"Boring and predictable plot, poor acting."
|
| 276 |
+
]
|
| 277 |
+
|
| 278 |
+
for i, review in enumerate(sample_reviews, 1):
|
| 279 |
+
if st.button(f"Sample {i}", key=f"sample_{i}"):
|
| 280 |
+
st.session_state.user_input = review
|
| 281 |
+
st.rerun()
|
| 282 |
+
|
| 283 |
+
if __name__ == "__main__":
|
| 284 |
+
main()
|