Upload 4 files
Browse files- README.md +111 -0
- config.json +53 -0
- depth_anything_v2_vitb.safetensors +3 -0
- preprocessor_config.json +26 -0
README.md
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
pipeline_tag: depth-estimation
|
| 7 |
+
tags:
|
| 8 |
+
- depth
|
| 9 |
+
- relative depth
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Depth-Anything-V2-Base
|
| 13 |
+
|
| 14 |
+
## Introduction
|
| 15 |
+
Depth Anything V2 is trained from 595K synthetic labeled images & 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features:
|
| 16 |
+
- more fine-grained details than Depth Anything V1
|
| 17 |
+
- more robust than Depth Anything V1 & SD-based models (e.g., Marigold, Geowizard)
|
| 18 |
+
- more efficient (10x faster) & more lightweight than SD-based models
|
| 19 |
+
- impressive fine-tuned performance with our pre-trained models
|
| 20 |
+
|
| 21 |
+
## Installation
|
| 22 |
+
|
| 23 |
+
```bash
|
| 24 |
+
git clone https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2.git
|
| 25 |
+
cd Upgraded-Depth-Anything-V2
|
| 26 |
+
one_click_install.bat
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
## Usage
|
| 30 |
+
|
| 31 |
+
Please refer to the [README.md](https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2/blob/main/README.md) for actual usage.
|
| 32 |
+
|
| 33 |
+
## Test Code
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
cd Upgraded-Depth-Anything-V2
|
| 37 |
+
venv\scripts\activate
|
| 38 |
+
python test.py /path/to/your/image.jpg (or .png)
|
| 39 |
+
```
|
| 40 |
+
Create a test.py script using the code below:
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
import cv2
|
| 44 |
+
import torch
|
| 45 |
+
import numpy as np
|
| 46 |
+
import os
|
| 47 |
+
import argparse
|
| 48 |
+
|
| 49 |
+
from safetensors.torch import load_file
|
| 50 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 51 |
+
|
| 52 |
+
# Argument parser for input image path
|
| 53 |
+
parser = argparse.ArgumentParser(description="Depth map inference using DepthAnythingV2 model.")
|
| 54 |
+
parser.add_argument("input_image_path", type=str, help="Path to the input image")
|
| 55 |
+
args = parser.parse_args()
|
| 56 |
+
|
| 57 |
+
# Determine the directory of this script
|
| 58 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 59 |
+
|
| 60 |
+
# Set output path relative to the script directory
|
| 61 |
+
output_image_path = os.path.join(script_dir, "base_udav2_hf-code-test.png")
|
| 62 |
+
checkpoint_path = os.path.join(script_dir, "checkpoints", "depth_anything_v2_vitb.safetensors")
|
| 63 |
+
|
| 64 |
+
# Device selection: CUDA, MPS, or CPU
|
| 65 |
+
if torch.cuda.is_available():
|
| 66 |
+
device = torch.device('cuda')
|
| 67 |
+
elif torch.backends.mps.is_available():
|
| 68 |
+
device = torch.device('mps')
|
| 69 |
+
else:
|
| 70 |
+
device = torch.device('cpu')
|
| 71 |
+
|
| 72 |
+
model = DepthAnythingV2(encoder='vitb', features=128, out_channels=[96, 192, 384, 768])
|
| 73 |
+
|
| 74 |
+
state_dict = load_file(checkpoint_path, device='cpu')
|
| 75 |
+
|
| 76 |
+
model.load_state_dict(state_dict)
|
| 77 |
+
model.to(device)
|
| 78 |
+
model.eval()
|
| 79 |
+
|
| 80 |
+
# Load the input image
|
| 81 |
+
raw_img = cv2.imread(args.input_image_path)
|
| 82 |
+
|
| 83 |
+
# Infer the depth map
|
| 84 |
+
depth = model.infer_image(raw_img) # HxW raw depth map
|
| 85 |
+
|
| 86 |
+
# Normalize the depth map to 0-255 for saving as an image
|
| 87 |
+
depth_normalized = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX)
|
| 88 |
+
depth_normalized = depth_normalized.astype(np.uint8)
|
| 89 |
+
|
| 90 |
+
cv2.imwrite(output_image_path, depth_normalized)
|
| 91 |
+
print(f"Depth map saved at {output_image_path}")
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
## Citation
|
| 95 |
+
|
| 96 |
+
If you find this project useful, please consider citing [MackinationsAi](https://github.com/MackinationsAi/) & the following:
|
| 97 |
+
|
| 98 |
+
```bibtex
|
| 99 |
+
@article{depth_anything_v2,
|
| 100 |
+
title={Depth Anything V2},
|
| 101 |
+
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Zhao, Zhen & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang},
|
| 102 |
+
journal={arXiv:2406.09414},
|
| 103 |
+
year={2024}
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
@inproceedings{depth_anything_v1,
|
| 107 |
+
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
|
| 108 |
+
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang},
|
| 109 |
+
booktitle={CVPR},
|
| 110 |
+
year={2024}
|
| 111 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DepthAnythingV2ForDepthEstimation"
|
| 5 |
+
],
|
| 6 |
+
"backbone": null,
|
| 7 |
+
"backbone_config": {
|
| 8 |
+
"architectures": [
|
| 9 |
+
"Dinov2Model"
|
| 10 |
+
],
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"image_size": 518,
|
| 13 |
+
"model_type": "dinov2",
|
| 14 |
+
"num_attention_heads": 12,
|
| 15 |
+
"out_features": [
|
| 16 |
+
"stage9",
|
| 17 |
+
"stage10",
|
| 18 |
+
"stage11",
|
| 19 |
+
"stage12"
|
| 20 |
+
],
|
| 21 |
+
"out_indices": [
|
| 22 |
+
9,
|
| 23 |
+
10,
|
| 24 |
+
11,
|
| 25 |
+
12
|
| 26 |
+
],
|
| 27 |
+
"patch_size": 14,
|
| 28 |
+
"reshape_hidden_states": false,
|
| 29 |
+
"torch_dtype": "float32"
|
| 30 |
+
},
|
| 31 |
+
"fusion_hidden_size": 128,
|
| 32 |
+
"head_hidden_size": 32,
|
| 33 |
+
"head_in_index": -1,
|
| 34 |
+
"initializer_range": 0.02,
|
| 35 |
+
"model_type": "depth_anything_v2",
|
| 36 |
+
"neck_hidden_sizes": [
|
| 37 |
+
96,
|
| 38 |
+
192,
|
| 39 |
+
384,
|
| 40 |
+
768
|
| 41 |
+
],
|
| 42 |
+
"patch_size": 14,
|
| 43 |
+
"reassemble_factors": [
|
| 44 |
+
4,
|
| 45 |
+
2,
|
| 46 |
+
1,
|
| 47 |
+
0.5
|
| 48 |
+
],
|
| 49 |
+
"reassemble_hidden_size": 768,
|
| 50 |
+
"torch_dtype": "float32",
|
| 51 |
+
"transformers_version": null,
|
| 52 |
+
"use_pretrained_backbone": false
|
| 53 |
+
}
|
depth_anything_v2_vitb.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:386758cbd2a2cac62ca62286d3ba810734561b3097d86a585dd3dac357153941
|
| 3 |
+
size 194967018
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"do_pad": false,
|
| 4 |
+
"do_rescale": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"ensure_multiple_of": 14,
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.485,
|
| 9 |
+
0.456,
|
| 10 |
+
0.406
|
| 11 |
+
],
|
| 12 |
+
"image_processor_type": "DPTImageProcessor",
|
| 13 |
+
"image_std": [
|
| 14 |
+
0.229,
|
| 15 |
+
0.224,
|
| 16 |
+
0.225
|
| 17 |
+
],
|
| 18 |
+
"keep_aspect_ratio": true,
|
| 19 |
+
"resample": 3,
|
| 20 |
+
"rescale_factor": 0.00392156862745098,
|
| 21 |
+
"size": {
|
| 22 |
+
"height": 518,
|
| 23 |
+
"width": 518
|
| 24 |
+
},
|
| 25 |
+
"size_divisor": null
|
| 26 |
+
}
|