Model save
Browse files- README.md +92 -0
- model.safetensors +1 -1
README.md
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: google/vit-base-patch16-224-in21k
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
datasets:
|
| 7 |
+
- imagefolder
|
| 8 |
+
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
+
- f1
|
| 11 |
+
- precision
|
| 12 |
+
- recall
|
| 13 |
+
model-index:
|
| 14 |
+
- name: VIT-MFCC-Synthetic-Voice-Detection
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
name: Image Classification
|
| 18 |
+
type: image-classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: imagefolder
|
| 21 |
+
type: imagefolder
|
| 22 |
+
config: default
|
| 23 |
+
split: validation
|
| 24 |
+
args: default
|
| 25 |
+
metrics:
|
| 26 |
+
- name: Accuracy
|
| 27 |
+
type: accuracy
|
| 28 |
+
value: 0.9804379327000483
|
| 29 |
+
- name: F1
|
| 30 |
+
type: f1
|
| 31 |
+
value: 0.9892177308426143
|
| 32 |
+
- name: Precision
|
| 33 |
+
type: precision
|
| 34 |
+
value: 0.9787514268153481
|
| 35 |
+
- name: Recall
|
| 36 |
+
type: recall
|
| 37 |
+
value: 0.9999102978112666
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 41 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 42 |
+
|
| 43 |
+
# VIT-MFCC-Synthetic-Voice-Detection
|
| 44 |
+
|
| 45 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
| 46 |
+
It achieves the following results on the evaluation set:
|
| 47 |
+
- Loss: 0.1213
|
| 48 |
+
- Accuracy: 0.9804
|
| 49 |
+
- F1: 0.9892
|
| 50 |
+
- Precision: 0.9788
|
| 51 |
+
- Recall: 0.9999
|
| 52 |
+
|
| 53 |
+
## Model description
|
| 54 |
+
|
| 55 |
+
More information needed
|
| 56 |
+
|
| 57 |
+
## Intended uses & limitations
|
| 58 |
+
|
| 59 |
+
More information needed
|
| 60 |
+
|
| 61 |
+
## Training and evaluation data
|
| 62 |
+
|
| 63 |
+
More information needed
|
| 64 |
+
|
| 65 |
+
## Training procedure
|
| 66 |
+
|
| 67 |
+
### Training hyperparameters
|
| 68 |
+
|
| 69 |
+
The following hyperparameters were used during training:
|
| 70 |
+
- learning_rate: 5e-05
|
| 71 |
+
- train_batch_size: 8
|
| 72 |
+
- eval_batch_size: 8
|
| 73 |
+
- seed: 42
|
| 74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 75 |
+
- lr_scheduler_type: linear
|
| 76 |
+
- num_epochs: 3.0
|
| 77 |
+
|
| 78 |
+
### Training results
|
| 79 |
+
|
| 80 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 81 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 82 |
+
| 0.0283 | 1.0 | 3173 | 0.0958 | 0.9797 | 0.9888 | 0.9782 | 0.9996 |
|
| 83 |
+
| 0.0227 | 2.0 | 6346 | 0.0597 | 0.9874 | 0.9930 | 0.9890 | 0.9971 |
|
| 84 |
+
| 0.0036 | 3.0 | 9519 | 0.1213 | 0.9804 | 0.9892 | 0.9788 | 0.9999 |
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
### Framework versions
|
| 88 |
+
|
| 89 |
+
- Transformers 4.36.2
|
| 90 |
+
- Pytorch 2.1.2+cu121
|
| 91 |
+
- Datasets 2.15.0
|
| 92 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 343223968
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:681140c7a7b2871a6850461370bfe88f26c1562e26828bc6e9be5c9675bb7599
|
| 3 |
size 343223968
|