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We introduce MiniMax-M1, the world’s first open-weight, large-scale hybrid-attention reasoning model.
MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning
attention mechanism. The model is developed based on our previous MiniMax-Text-01 model (MiniMax
et al., 2025), which contains a total of 456 billion parameters with 45.9 billion parameters activated
per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size
of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient
scaling of test-time compute – For example, compared to DeepSeek R1, M1 consumes 25% of the
FLOPs at a generation length of 100K tokens. These properties make M1 particularly suitable for
complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using
large-scale reinforcement learning (RL) on diverse problems ranging from traditional mathematical
reasoning to sandbox-based, real-world software engineering environments. In addition to the inherent
efficiency advantage of lightning attention for RL training, we propose CISPO, a novel RL algorithm to
further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates,
outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-
M1’s full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just
$534,700. We release two versions of MiniMax-M1models with 40K and 80K thinking budgets respectively,
where the 40K model represents an intermediate phase of the 80K training. Experiments on standard
benchmarks show that our models are comparable or superior to strong open-weight models such as
the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering,
tool utilization, and long-context tasks. Through efficient scaling of test-time compute, MiniMax-M1
serves as a strong foundation for next-generation language model agents to reason and tackle real-world
challenges. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.
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Figure 1 | Left: Benchmark performance comparison of leading commercial and open-weight models
across competition-level mathematics, coding, software engineering, agentic tool use, and long-context
understanding tasks. We use the MiniMax-M1-80k model here for MiniMax-M1. Right: Theoretical
inference FLOPs scaling with generation length (# tokens).
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1. Introduction

Large reasoning models (LRMs), such as OpenAI o1 (OpenAI, 2024a) and DeepSeek-R1 (DeepSeek-AI
et al., 2025), have demonstrated remarkable success by extending the length of reasoning through
large-scale reinforcement learning (RL). In recent months, both the open-source community and
commercial organizations have followed this trend, achieving significant advances on complex tasks
such as Olympiad mathematics competitions and competitive programming (Anthropic, 2025; Google
DeepMind, 2025; Hu et al., 2025; Kimi Team, 2025; Seed et al., 2025; Yu et al., 2025; Zeng et al.,
2025). The success of LRMs has been primarily attributed to a new scaling dimension of test-time
compute—As more FLOPs are dedicated to extended reasoning processes during generation, model
performance shows consistent improvement, particularly for complex real-world applications (Jimenez
et al., 2024; OpenAI, 2025).

However, continuously extending the reasoning process is challenging within the traditional trans-
former architecture (Vaswani et al., 2017), due to the inherent quadratic computational complexity
of the softmax attention mechanism. While previous works have proposed various techniques to
mitigate this issue—such as sparse attention (Beltagy et al., 2020; Lu et al., 2025; Yuan et al., 2025;
Zaheer et al., 2020), linear attention (Arora et al., 2024; Choromanski et al., 2021; Du et al., 2025;
He et al., 2024; Katharopoulos et al., 2020; Peng et al., 2024b, 2021; Qin et al., 2021, 2022a,b,
2024a,c; Shen et al., 2024; Sun et al., 2025, 2023; Zhang et al., 2024), linear attention with delta
decay (Peng et al., 2025; Yang et al., 2024a,b), state space models (Dao and Gu, 2024; Glorioso
et al., 2024; Gu and Dao, 2024; Gu et al., 2020, 2022, 2023; Gupta et al., 2022; Jamba Team, 2024;
Ren et al., 2024), and linear RNNs (Behrouz et al., 2024; Chou et al., 2024; Chung and Ç, 2014;
Hochreiter and Schmidhuber, 1997; Martin and Cundy, 2018; Peng et al., 2023, 2024a; Qin et al.,
2023, 2024d; Siems et al., 2025; Sun et al., 2024; von Oswald et al., 2025)—these approaches have
not been fully validated in large-scale reasoning models, and nearly all competitive LRMs to date still
rely on traditional attention designs. An exception is the Hunyuan-T1 model (Tencent AI Lab, 2025)
that employs the Mamba architecture (Dao and Gu, 2024; Gu and Dao, 2024). However, this model is
not open-sourced and few details are disclosed. In this work, we aim to build and open-source a large
reasoning model that can efficiently scale up test-time compute and compete with the state-of-the-art
reasoning models.

We introduce MiniMax-M1, a reasoning model with a hybrid Mixture-of-Experts (MoE) architec-
ture and Lightning Attention (Qin et al., 2024b), an I/O-aware implementation of a linear attention
variant (Qin et al., 2022a). MiniMax-M1 is developed based on our previous MiniMax-Text-01 (Mini-
Max et al., 2025) model, and comprises 456 billion parameters in total, with 45.9 billion activations
and 32 experts. In our attention design, a transformer block with softmax attention follows every
seven transnormer blocks (Qin et al., 2022a) with lightning attention. This design theoretically
enables efficient scaling of reasoning lengths to hundreds of thousands of tokens, as illustrated in
Figure 1 (Right). For example, compared to DeepSeek R1, M1 consumes less than 50% of the FLOPs
at a generation length of 64K tokens, and approximately 25% of the FLOPs at a length of 100K tokens.
This substantial reduction in computational cost makes M1 significantly more efficient during both
inference and large-scale RL training. Furthermore, owing to its lightning attention mechanism and in
line with MiniMax-Text-01, our M1 model natively supports a context length of up to 1 million tokens
– eight times the context size of DeepSeek R1 and an order of magnitude greater than all open-weight
LRMs available to date. These features make M1 particularly well-suited for addressing complex,
real-world tasks that require processing long inputs and generating extended thinking. A comparison
of the maximum input and output lengths of M1 and other leading models is demonstrated in Table 1.

To develop our M1 model, we first continue pretraining MiniMax-Text-01 on 7.5T tokens from a
carefully curated, reasoning-intensive corpus. Subsequently, we perform supervised fine-tuning (SFT)
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Table 1 | The maximum supported input length and output length (# tokens) of different reason-
ing models. For Claude-4 we refer to the Claude-4-Opus model. “DS-R1” represents the latest
DeepSeek-R1-0528 model.

o3 Gemini 2.5 Pro Claude 4 DS-R1 Qwen3-235B MiniMax-M1-80k

Max Input 200K 1M 200K 128K 128K 1M
Max Output 100K 64K 32K 64K 32K 80K

to inject certain chain-of-thought (CoT) (Wei et al., 2022) patterns, establishing a strong foundation
for reinforcement learning, the core stage of M1 development. Notably, our RL scaling with M1 is
made efficient through innovations from two key perspectives: (1) We propose a novel RL algorithm,
CISPO, which abandons the trust region constraint and instead clips the importance sampling weights
to stabilize training. This approach always leverages all tokens for gradient computations, achieving
enhanced efficiency compared to GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025) empirically
– For example, on a controlled study based on Qwen2.5-32B models (Qwen et al., 2025), CISPO
achieves a 2x speedup compared to DAPO; (2) Although the hybrid-attention design in M1 naturally
allows for efficient RL scaling, unique challenges arise when scaling RL with this architecture. For
instance, we find a precision mismatch between the training and inference kernels of our architecture,
which prevents reward growth during RL training. We develop targeted solutions to address these
challenges and successfully scale up RL with this hybrid architecture. In the end, our efficient RL
framework enables us to complete a full RL run of MiniMax-M1 within 3 weeks using 512 H800
GPUs—equivalent to a rental cost of approximately $0.53M USD.

In addition to methodological innovations, we curate a diverse set of problems and environments
for RL training. Our data encompasses both verifiable and non-verifiable problems. For verifiable
problems that are typically considered critical for reasoning learning, we not only include mathematical
reasoning and competitive programming problems as commonly used in related works, but also
leverage our previous data synthesis framework SynLogic (Liu et al., 2025a) to generate diverse
logical reasoning problems spanning 41 distinct tasks. Furthermore, we construct sandboxes for
complex software engineering (SE) environments derived from SWE-bench (Jimenez et al., 2024), and
conduct RL on real-world SE problems with execution-based rewards to improve M1’s performance in
challenging SE scenarios. Our unverifiable problems span a broad range of domains such as question
answering and creative writing, where we use generative reward models to provide the feedback.

We train two versions of MiniMax-M1 models with 40K and 80K tokens of maximum generation
length respectively, which leads to two models MiniMax-M1-40k and MiniMax-M1-80k. MiniMax-M1-
80k outperforms MiniMax-M1-40k on complex mathematical and coding tasks, further demonstrating
the benefits of scaling test-time compute. As shown in Figure 1 (Left), MiniMax-M1 surpasses previous
leading open-weight models such as the original DeepSeek-R1 and Qwen-235B overall, with particular
advantages in complex software engineering, tool-using, and long-context tasks. Compared to the
latest DeepSeek-R1-0528 model, MiniMax-M1 lags in mathematical and coding competitions but
achieves comparable or superior performance in more realistic tool-using and long-context scenarios.
Notably, MiniMax-M1 outperforms Gemini 2.5 Pro on the agentic tool use benchmark TAU-Bench (Yao
et al., 2025), and surpasses OpenAI o3 and Claude 4 Opus on long-context understanding benchmarks.
With efficient test-time scaling, we contend that MiniMax-M1 establishes a strong foundation for
next-generation language model agents to address real-world challenges.

To facilitate collaboration and advancement in the field, we have made our models publicly
available at GitHub and Hugging Face. They are now supported by both the vLLM and Transformers
frameworks, with detailed deployment guides available at vLLM and Transformers respectively. This
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enables easy integration of MiniMax-M1 into modern inference pipelines. We also provide commercial
standard API at minimax.io.

2. Preparation for Scalable RL: Continual Pretraining and SFT

In this work, we focus on scaling up reinforcement learning to enhance reasoning capabilities of
Minimax-Text-01. To facilitate scalable RL training, we first carry out continual pretraining of our base
model to strengthen its intrinsic reasoning abilities. Subsequently, we perform a cold-start supervised
fine-tuning (SFT) stage to inject specific reasoning patterns to the model, thereby providing a stronger
foundation for the subsequent RL phase.

2.1. Continual Pre-Training: Foundation for RL Scaling

To enhance the reasoning and long context capabilities of the foundation model while ensuring
diversity, we continue training the MiniMax-Text-01 model with additional 7.5T tokens with optimized
data quality and mixture.

Training Data. We refine our pretraining Web and PDF parsing mechanisms and enhance our heuristic
cleaning rules to ensure a high recall rate for mathematical and code-related data. We prioritize the
extraction of natural Question-Answer (QA) pairs from a diverse range of sources, including webpages,
forums, and textbooks, while strictly avoiding the use of synthetic data. Additionally, we conduct
semantic deduplication on the QA data to maintain its diversity and uniqueness. Furthermore, we
increase the proportion of STEM (Science, Technology, Engineering, and Mathematics), code, book,
and reasoning-related data to 70%. This significantly enhances the foundation model’s ability to
handle complex tasks without compromising its other general capabilities.

Training Recipe. We decrease the coefficient of the MoE auxiliary loss and adjust the parallel training
strategy to support a larger training micro batch size, which mitigates the detrimental effects of the
auxiliary loss on overall model performance. Based on MiniMax-Text-01, we continue training with a
constant learning rate of 8e-5 for 2.5T tokens, followed by a decay schedule over 5T tokens down to
8e-6.

Long Context Extension. For a hybrid-lightning architecture model with higher convergence com-
plexity, we have observed that excessively aggressive extensions of the training length can lead to a
sudden gradient explosion that may occur during the training process. This makes the optimization
process extremely challenging. We attribute this to the parameter optimization of the earlier layers
not keeping up with the changes in the later layers – For lightning attention, the earlier and later
layers have different decay rates, which makes the earlier layers focus more on local information. We
alleviate this issue by adapting a smoother extension of context length across four stages, starting
from a 32K context window length and ultimately extending the training context to 1M tokens.

2.2. Supervised Fine-Tuning: Focused Alignment for Efficient RL

After continual pretraining, we conduct Supervised Fine-Tuning (SFT) to instill desired behaviors like
reflection-based Chain-of-Thought (CoT) reasoning using high-quality examples, creating a strong
starting point for more efficient and stable RL in the next stage. Specifically, we curate data samples
with long CoT responses. These data samples cover diverse domains such as math, coding, STEM,
writing, QA, and multi-turn chat. Math and coding samples account for around 60% of all the data.
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3. Efficient RL Scaling: Algorithms and Lightning Attention

As shown in Figure 1 (Right), the M1 architecture demonstrates a clear efficiency advantage during
inference. This naturally facilitates efficient RL scaling where increasingly longer responses are
generated. However, as pioneers in scaling up RL with this hybrid architecture, we encounter unique
challenges during the process, and the RL procedure can become unstable or even fail due to various
issues. To address these difficulties, we develop targeted solutions that enable us to successfully scale
up RL training for M1. In addition, we propose a new RL algorithm that achieves greater RL efficiency
compared to existing methods. These dual contributions yield an efficient and scalable RL framework
for training M1, where the complete training cycle requires 3 weeks on 512 H800 GPUs—equivalent
to a rental cost of approximately $0.53M USD. In this section, we first provide general context on
RL and present our novel RL algorithm, and then describe the specific challenges we face with the
hybrid architecture, along with the solutions we devise to overcome them.

3.1. Efficient RL Scaling with CISPO

Background. For questions 𝑞 from a dataset D, we denote 𝜋 as the policy model parameterized by
𝜃, and 𝑜 as the response generated by the policy. PPO (Schulman et al., 2017) adopts the following
objective to optimize the policy to maximize the expected return, and a clipping operation is applied
to stabilize training:

JPPO(𝜃) = 𝔼𝑞∼D,𝑜𝑖∼𝜋𝜃old ( · |𝑞)[
1
|𝑜𝑖 |

|𝑜𝑖 |∑︁
𝑡=1
min

(
𝑟𝑖,𝑡 (𝜃)𝐴𝑖,𝑡, clip

(
𝑟𝑖,𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖

)
𝐴𝑖,𝑡

)
− 𝛽𝐷𝐾𝐿(𝜋𝜃 | |𝜋ref)

]
,

(1)

where 𝑟𝑖,𝑡 (𝜃) =
𝜋𝜃 (𝑜𝑖,𝑡 |𝑞,𝑜𝑖,<𝑡 )
𝜋𝜃old (𝑜𝑖,𝑡 |𝑞,𝑜𝑖,<𝑡 )

is the importance sampling (IS) weight, which is used to correct the
distribution during off-policy updates, because we use 𝜋𝜃old to collect trajectories to update the policy
via multiple steps in a minibatch manner. While PPO requires a separate value model to compute the
advantage 𝐴𝑖,𝑡, GRPO (Shao et al., 2024) eliminates the value model and defines the advantage as
the output reward relative to other responses in the group:

𝐴𝑖,𝑡 =
𝑅𝑖 −mean({𝑅 𝑗}𝐺𝑗=1)
std({𝑅 𝑗}𝐺𝑗=1)

, (2)

where 𝑅𝑖 is the reward of the response, and 𝐺 responses {𝑜𝑖}𝐺𝑖=1 are sampled for each question. The
reward is either from rule-based verifiers such as in mathematical problem solving, or from a reward
model.

Issues of Token Clipping. In our initial experiments with the hybrid architecture under the zero-RL
setting, we observed that the GRPO algorithm adversely affected training performance and failed to
effectively promote the emergence of long CoT reasoning behaviors. Through a series of controlled
ablation studies, we ultimately identified the undesirable clipping operation in the original PPO/GRPO
loss as the primary factor contributing to degraded learning performance. Specifically, we found that
tokens associated with reflective behaviors (e.g., However, Recheck, Wait, Aha), which often serve
as “forks” in reasoning paths, were typically rare and assigned low probabilities by our base model.
During policy updates, these tokens were likely to exhibit high 𝑟𝑖,𝑡 values. As a result, these tokens
were clipped out after the first on-policy update, preventing them from contributing to subsequent
off-policy gradient updates. This issue was particularly pronounced in our hybrid-architecture model
and further hindered the scalability of reinforcement learning. These low-probability tokens, however,
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2x speedup

Figure 2 | Comparison of GRPO, DAPO, and our proposed CISPO on AIME 2024, based on Qwen2.5-
32B-base. CISPO outperforms both GRPO and DAPO in terms of performance at the same number of
training steps, and achieves comparable performance to DAPO using 50% of the training steps.

are often crucial for stabilizing entropy (Cui et al., 2025) and facilitating scalable RL (Wang et al.,
2025). Although DAPO attempts to mitigate this issue by increasing the upper clipping bound (Yu
et al., 2025), we found this approach to be less effective in our setup, which involved 16 rounds of
off-policy updates per generation batch.

The CISPO Algorithm. In response, we propose a new algorithm that explicitly avoids dropping
tokens, even those associated with large updates, while inherently maintaining entropy within a
reasonable range to ensure stable exploration. First, recall that the vanilla REINFORCE objective with
corrected distribution for offline updates is:

JREINFORCE(𝜃) = 𝔼(𝑞,𝑎)∼D,𝑜𝑖∼𝜋𝜃old ( · |𝑞)[
1
|𝑜𝑖 |

|𝑜𝑖 |∑︁
𝑡=1

sg(𝑟𝑖,𝑡 (𝜃))𝐴𝑖,𝑡 log𝜋𝜃(𝑜𝑖,𝑡 | 𝑞, 𝑜𝑖,<𝑡)
]
,

(3)

where sg(·) denotes the stop-gradient operation. Rather than clipping the token updates as in
PPO/GRPO, we instead clip the importance sampling weight in Eq. 3 to stabilize training. We term
our approach CISPO (Clipped IS-weight Policy Optimization). Adopting the group relative advantage
from GRPO and the token-level loss (Liu et al., 2025b; Yu et al., 2025), CISPO optimizes the following
objective:

JCISPO(𝜃) = 𝔼(𝑞,𝑎)∼D,{𝑜𝑖 }𝐺𝑖=1∼𝜋𝜃old ( · |𝑞)[
1∑𝐺

𝑖=1 |𝑜𝑖 |

𝐺∑︁
𝑖=1

|𝑜𝑖 |∑︁
𝑡=1

sg(�̂�𝑖,𝑡 (𝜃))𝐴𝑖,𝑡 log𝜋𝜃(𝑜𝑖,𝑡 | 𝑞, 𝑜𝑖,<𝑡)
]
,

(4)

where �̂�𝑖,𝑡 (𝜃) is the clipped IS weight:

�̂�𝑖,𝑡 (𝜃) = clip
(
𝑟𝑖,𝑡 (𝜃), 1 − 𝜖𝐼𝑆𝑙𝑜𝑤, 1 + 𝜖

𝐼𝑆
ℎ𝑖𝑔ℎ

)
. (5)

We note that without weight clipping, JCISPO reduces to the standard policy gradient objective. In
our experiments, we did not impose a lower bound on the IS weight by setting 𝜖𝐼𝑆

𝑙𝑜𝑤
to a large value;
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instead, we only tuned 𝜖𝐼𝑆
ℎ𝑖𝑔ℎ
. Although the gradient of Eq. 4 is slightly biased due to weight clipping,

this approach preserves gradient contributions from all tokens, especially in long responses. CISPO
proves effective in our experiments, helping reduce variance and stabilizing RL training. In addition,
we utilize the dynamic sampling and length penalty techniques from Yu et al. (2025). There is no KL
penalty term in CISPO similar to other recent works (Hu et al., 2025; Yu et al., 2025).

A General Formulation. While we adopt CISPO in our experiments, here we further present a
unified formulation by introducing a token-wise mask into the CISPO objective. This allows for
hyperparameter tuning to control whether, and under what conditions, gradients from specific tokens
should be dropped:

Junify(𝜃) = 𝔼(𝑞,𝑎)∼D,{𝑜𝑖 }𝐺𝑖=1∼𝜋𝜃old ( · |𝑞)[
1∑𝐺

𝑖=1 |𝑜𝑖 |

𝐺∑︁
𝑖=1

|𝑜𝑖 |∑︁
𝑡=1

sg(�̂�𝑖,𝑡 (𝜃))𝐴𝑖,𝑡 log𝜋𝜃(𝑜𝑖,𝑡 | 𝑞, 𝑜𝑖,<𝑡)𝑀𝑖,𝑡

]
.

(6)

The mask 𝑀𝑖,𝑡 is equivalent to the mask implicitly defined in the PPO trust region:

𝑀𝑖,𝑡 =


0 if 𝐴𝑖,𝑡 > 0 and 𝑟𝑖,𝑡 (𝜃) > 1 + 𝜖high,
0 if 𝐴𝑖,𝑡 < 0 and 𝑟𝑖,𝑡 (𝜃) < 1 − 𝜖low,

1 otherwise.
(7)

This unified loss formulation can flexibly represent different clipping strategies under a common
framework.

Empirical Validation of CISPO. To validate the effectiveness of CISPO, we empirically compare it with
DAPO and GRPO in a zero-RL training setting. Specifically, we apply different RL algorithms to train
the Qwen2.5-32B-base model on the mathematical reasoning dataset from Yu et al. (2025), and report
performance on the AIME 2024 benchmark. As shown in Figure 2, CISPO significantly outperforms
both DAPO and GRPO with the same number of training steps. Notably, CISPO demonstrates superior
training efficiency compared to other approaches; for example, it matches DAPO’s performance with
only 50% of the training steps.

3.2. Efficient RL Scaling with Lightning Attention – Challenges and Recipes

As shown in Figure 1 (Right), we emphasize that our hybrid attention inherently enables more efficient
RL scaling compared to traditional attention designs, since rollout computation and latency are often
the primary bottlenecks in RL training. However, as pioneers in conducting large-scale RL experiments
with this novel architecture, we encountered unique challenges and developed targeted solutions, as
we describe below.

Computational Precision Mismatch in Generation and Training. RL training is highly sensitive
to computational precision. During our RL training, we observed a significant discrepancy in the
probabilities of rolled-out tokens between training-mode and inference-mode, as shown in Figure 3
(Left). This discrepancy arose from a precision mismatch between the training and inference kernels.
The issue was detrimental and prevented reward growth in our experiments. Interestingly, this issue
did not appear in smaller, dense models with softmax attention. Through layer-by-layer analysis, we
identified high-magnitude activations in the LM head at the output layer as the primary source of
error. To address this, we increased the precision of the LM output head to FP32, thereby realigning
the two theoretically identical probabilities, as demonstrated in Figure 3 (Right). This adjustment
improved the correlation between training and inference probabilities from approximately 0.9x to
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Figure 3 | Probability of tokens in training-mode code vs. probability of tokens in inference-mode
code. Each point in the figures represents an individual token. The Pearson correlation coefficient is
indicated in the figures. Theoretically, the two probabilities should be identical, and all the tokens
should be exactly on the diagonal line. Left: Correlation of the M1 model before our fix; Right:
Correlation of the M1 model after applying our fix of using FP32 precision for the LM output head.

0.99x. Notably, this correlation metric remained stable throughout training, enabling successful
reward increase.

Optimizer Hyperparameter Sensitivity. We employ the AdamW (Loshchilov and Hutter, 2019)
optimizer, and inappropriate configurations of 𝛽1, 𝛽2, and 𝜖 can lead to non-convergence during
training. (Molybog et al., 2023). For instance, using the default configuration from VeRL (Sheng
et al., 2024), where betas = (0.9, 0.999) and eps = 1e-8, can result in such issues. We have observed
that the gradient magnitudes in MiniMax-M1 training span a wide range, from 1e-18 to 1e-5, with
the majority of the gradients being smaller than 1e-14. Furthermore, the correlation between the
gradients of adjacent iterations is weak. Based on this, we set 𝛽1 = 0.9, 𝛽2 = 0.95, and eps=1e-15.

Early Truncation via Repetition Detection. During RL training, we found that complex prompts
could induce pathologically long and repetitive responses, whose large gradients threatened model
stability. Our goal was to preemptively terminate these generation loops rather than penalize the
already repetitive text. As simple string-matching is ineffective against varied repetition patterns, we
developed a heuristic based on token probabilities. We observed that once a model enters a repetitive
cycle, the probability for each token soars. Consequently, we implemented an early truncation rule:
generation is halted if 3,000 consecutive tokens each have a probability above 0.99. This method
successfully prevents model instability and improves generation throughput by eliminating these
pathological, long-tail cases.

4. Scaling Reinforcement Learning with Diverse Data

In this section, we describe the data and reward we adopted for our RL stage. We incorporate a diverse
set of environments in our RL training pipeline, including tasks that can be verified by rules and
general tasks that need to be verified through reward models. All these environments are integrated
into the RL stage using a carefully designed curriculum.
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4.1. Reasoning-Intensive Tasks with Rule-based Verification

Below, we introduce our data that can be verified by deterministic rules. For all the following tasks,
we employ rule-based final correctness as the correctness reward, complemented by a format reward.

Mathematical Reasoning. Our initial mathematical dataset comprises hundreds of thousands of
high-quality, competition-level problems, meticulously curated and organized from public sources
and official mathematics competitions. These problems span a wide range of difficulty levels, each
paired with a standard reference solution. Our data cleaning pipeline begins with the removal of
incomplete samples and those exhibiting formatting or typographical errors. We subsequently apply
embedding-based deduplication across the RL data sources and enforce a strict separation from the
SFT dataset to avoid any overlap, as leakage from the SFT phase into the RL stage hinders exploration
and undermines training effectiveness. Additionally, we employ both n-gram and embedding-based
methods to eliminate potential contamination from commonly used mathematical benchmark test sets,
thereby ensuring the integrity and fairness of our evaluations. We filter out samples containingmultiple
sub-problems, proof-based questions, and binary questions (e.g., true/false) that are susceptible to
random guessing. Multiple-choice questions are reformulated into open-ended formats to better
align with our reinforcement learning framework. Next, we employ our internal model to extract
the final answers from the reference solution, retaining only those samples whose extracted answers
can be correctly parsed by our rule-based answer checker. Finally, we use a strong reasoning model
to compute the pass@10 for each question and retain only those samples with a pass rate strictly
between 0 and 0.9, resulting in a curated dataset of nearly 50K high-quality mathematical samples
for our RL training.

Logical Reasoning. For logical reasoning data, we carefully select 41 logical reasoning tasks requiring
non-trivial reasoning ability such as cipher and Sudoku, then we implement a data synthesis framework
to synthesize all the data. Concretely, we utilize our SynLogic framework (Liu et al., 2025a) to
implement the data synthesis pipeline featuring task-specific data generators and rule-based task-
specific verifiers, enabling automatic logical data generation. We meticulously configure the difficulty
parameters during generation, ensuring the appropriate learning challenge of the generated data.
Specifically, to prevent inclusion of overly difficult instances, we establish an upper difficulty bound
based on the solvability limits of current strong reasoning models, requiring their pass@10 rates
greater than zero. Similarly, we set a lower difficulty bound using the lowest difficulty parameters for
which the MiniMax-Text-01 model achieves pass rates between 0 and 0.5. This approach ensures the
data maintains a balance between difficulty and learnability. In addition, as the model capabilities
improve during training, we increase the difficulty of the data in the later stages. Using this framework,
we synthesize approximately 53K logical reasoning samples for RL training.

Competitive Programming. For the competitive programming problems, we collect publicly available
problems from online judge platforms and popular coding websites. For problems lacking test cases,
we develop an LLM-based workflow and use the MiniMax-Text-01 model to generate comprehensive
test suites. Similar to our approach with mathematical reasoning datasets, we filter problems based
on quality and difficulty using pass rates from model sampling, retaining moderately challenging and
high-quality algorithmic problems. Through this process, we generate 30K competitive programming
data samples for RL training.

Software Engineering. For the software engineering domain, inspired by SWE-bench (Jimenez
et al., 2024), we construct verifiable reinforcement learning environments by leveraging real-world
data from public GitHub repositories. Our dataset primarily comprises issues and pull requests (PRs)
that encapsulate common software development challenges, including bug localization, code repair,
and test case synthesis. To facilitate effective reinforcement learning, we develop a sophisticated
containerized sandbox environment that simulates a realistic software development workflow. This
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environment enables the actual execution of code, providing direct and verifiable feedback on the
correctness and efficacy of an agent’s proposed interventions. The pass/fail status of pre-defined or
newly generated test cases serves as the primary reward signal for our RL framework. A successful
execution that passes all relevant test cases yields a positive reward, while compilation errors, runtime
failures, or test case regressions result in a zero or negative reward, thus providing a clear signal for
policy optimization. Through this process, we curate several thousand high-quality data samples.
Each sample includes a problem description (e.g., bug report from an issue), the initial faulty code,
and a set of associated test cases. This setup allows our RL agent to learn to accurately pinpoint bugs,
propose correct code fixes, and even synthesize new, effective test cases, with performance directly
verifiable through the execution within our sandboxed environment.

4.2. General Domain Tasks with Model-based Feedbacks

In this section, we further extend the RL scope to a wider array of general domain tasks. As these
tasks cannot be easily verified by rules, we utilize reward models to provide the feedback.

4.2.1. Data and Reward Models

Our general RL dataset consists of a total of 25K complex samples. These can be broadly categorized
into two types: samples with ground-truth answers that are verifiable but difficult to validate using
rules, and samples without ground-truth answers.

Tasks with Ground Truth. This category primarily includes STEM and other factual problems where
answers are objective but may have multiple valid expressions. Such diversity often renders rule-
based answer checkers inaccurate. Our data cleaning process is similar to that used in mathematical
reasoning, while we use our Generative Reward Model (GenRM) as a verifier, instead of relying on
rule-based checkers. To evaluate consistency between ground-truth answers and model responses,
we adopt a five-grade reward scale to evaluate the two components. First, we construct a human-
annotated reward model benchmark, which covers a range of objective tasks across diverse knowledge
and task domains, especially the pairs of model response–ground truth that rule-based checkers
fail to judge accurately. Second, we evaluate the GenRM’s effectiveness by comparing the Best-of-N
(BoN) responses selected by GenRM against the pass@N metrics across several benchmarks. GenRM
performance is assessed using its accuracy on the human-annotated benchmark and the performance
gap between BoN and pass@N. These metrics guide experiments to optimize both the data distribution
and the prompt design used during the GenRM training.

Tasks without Ground Truth. This category encompasses a wider range of tasks, including instruction-
following, creative writing, etc. Prompts are sampled from a large pool based on our internal tagging
system, ensuring a balanced training distribution across fine-grained domains. Even though these
queries are typically open-ended and do not have a ground-truth answer, we seek to pair a reference
answer for each query, which serves as a reference for reward model judgment. To this end, we
first generate responses by various internal and external models, and then these reference answers
will undergo our internal quality evaluation. During RL training, we adopt a pairwise comparison
framework to evaluate model responses. Each comparison yields a score of -1, 0, or 1, indicating
whether the model’s output is worse than, similar to, or better than a reference answer. For instruction-
following tasks with constraints particularly, we utilize both the rule-based reward to assess whether
the response satisfies the constraint, and model-based reward to evaluate response’s quality. As with
the ground-truth setting, we first build a human-annotated benchmark, incorporating multiple blind
preference judgments from reliable annotators. We then refine our scoring criteria and preference
prompt to optimize accuracy as well as potential biases, which would be mentioned in §4.2.2 below.
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To minimize the potential biases, training data are also optimized by several methods, such as
multiple-blind consistent judgment, position-switched consistent judgment, etc. Once an optimal
GenRM is trained, a Swiss Round scoring system is performed across the training dataset to determine
the most suitable reference answer for RL training.

4.2.2. Addressing Bias of Generative Reward Models for Long CoT

Effective general RL for complex CoT reasoning tasks is critically dependent on accurate and unbiased
reward models. Assessing such CoT responses turns out to be challenging, and we found that GenRMs
preferred longer outputs over potentially superior concise alternatives, irrespective of actual reasoning
quality. This length bias is a significant issue as it may substantially misguide RL policy optimization,
incentivizing verbosity without substance and inducing reward hacking. Our initial efforts to improve
GenRM fidelity include standard offline strategies: (1) Diversifying training data with a wide range
of response lengths, sources, and quality tiers; (2) Incorporating adversarial examples to expose
vulnerabilities; and (3) Refining model architectures. However, empirical analysis revealed that purely
offline evaluation and preemptive mitigation of length bias in GenRMs frequently failed to prevent
length bias during RL training.

Consequently, our core strategy incorporates continuous online monitoring of length bias during RL
training. Specific metrics are established to detect whether the RL policy disproportionately extends
output lengths to maximize GenRMs rewards without gains in task success or reasoning depth. Upon
detecting such detrimental length-seeking behavior, indicative of exploiting GenRMs length bias,
immediate GenRMs recalibration is triggered. This iterative adjustment is vital to preempt reward
hacking related to output length, ensuring the policy prioritized substantive capability enhancement
over superficial text inflation. Complementing this adaptive approach, RL-side techniques including
reward shaping, value clipping, and normalization are systematically employed. These mechanisms
desensitize reward signals to extreme values from superficial characteristics (e.g., length), thereby
directing policy optimization toward substantive quality and correctness of its long CoT reasoning.

4.3. Curriculum of Incorporating Diverse Data

Given that our RL data spans a wide spectrum of categories, a core challenge is training a single
policy capable of excelling on both reasoning-intensive tasks and general domain tasks. To address
this, our approach entails a carefully managed curriculum and dynamic weighting strategy for
reasoning and general-domain tasks during the RL training process with CISPO: we start with only
the reasoning-intensive tasks with rule-based reward, and then gradually mix in the general domain
tasks. This ensures that the model continues to refine its verifiable skills (e.g., in math and code)
while progressively enhancing its performance on a diverse spectrum of general tasks, from complex
instruction following to open-ended CoT reasoning. This mixed RL training encourages the model
to learn context-dependent application of its reasoning abilities—applying rigorous, step-by-step
deduction for verifiable problems and more flexible, adaptive generation for general queries—all
within a unified policy framework. It prevents catastrophic forgetting of specialized skills while
fostering broader generalization.

5. Extending RL Scaling to Longer Thinking

Our first RL training is performed with an output length limit of 40K tokens. Given that the hybrid
architecture of M1 natively supports near-linear scaling for longer sequences, as demonstrated in
Figure 1 (Right), we further extend the generation length during RL training to 80K tokens. This
results in a new model, which we refer to as MiniMax-M1-80k.
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Data. To efficiently train our RL model for an 80K output length, we utilize our previously trained
40K model to guide the data filtering process. First, we evaluate the pass rates on the curated dataset
described in §4 and remove samples that are easily solved. We then adjust the data distribution to
favor more challenging examples, such as difficult mathematical and coding problems. Additionally,
we downsample synthetic reasoning data after observing that it destabilizes long-context RL training.
Specifically, outputs generated from this data type often become repetitive and homogenous, and
continued exposure to these patterns proves detrimental to the model’s overall performance.

Length Scaling Strategy. To gradually increase the output length, we employ a staged window
expansion RL strategy. We begin with an output length of 40K and incrementally expand it to 48K,
56K, 64K, 72K, and ultimately 80K. This staged approach ensures training stability at each step. The
transition to a subsequent length is determined by a set of empirical indicators. These include the
convergence of perplexity on the generated sequences and whether the 99th percentile of the output
lengths is approaching the current context window limit. These signals offer valuable insights into
the model’s readiness for scaling, which allows us to maintain robust training throughout the process.

Addressing Training Instability During Scaling. During the scaling process, we encountered a
critical issue in the later stages of training at each length window. Specifically, the model exhibited
susceptibility to pattern collapse, where the latter portions of generated sequences degraded into
incoherent or garbled text. This phenomenon consistently coincided with increased perplexity,
indicating compromised generation quality and stability. We identify the root cause: during output
length extension, negative samples increase in length substantially faster than positive samples,
frequently reaching the context window limit earlier. Consequently, disproportionately large negative
gradients accumulate in the latter segments of generation sequences. This imbalance originates from
the inherently unequal nature of GRPO’s advantage normalization and the token-level loss we adopt.
To address this, we implement three key solutions: (1) Detecting repetitive patterns (consecutive
high-probability tokens) with early stopping to prevent excessive context window consumption by
repetitive responses; (2) Adopting combined sample-level loss and token-level normalization to
alleviate negative-positive sample imbalance and mitigate adverse effects; (3) Decreasing both the
gradient clipping threshold and 𝜖𝐼𝑆

ℎ𝑖𝑔ℎ
to further stabilize generation.

6. Evaluations

6.1. Core Benchmarks

We conduct a comprehensive evaluation of MiniMax-M1 across several key domains: mathematics,
general coding, software engineering, reasoning & knowledge, long context, agentic tool use, factuality,
and general assistant ability. We evaluate all tasks using temperature 1.0 and top-p 0.95 sampling.

• Mathematics: To evaluate mathematical reasoning capabilities, we utilize several competition
level math benchmarks, including MATH-500 (Hendrycks et al., 2021), AIME 2024, AIME 2025.
For AIME evaluation, we sample 32 times and compute the average passrate as the final score.

• General Coding: We assess general programming proficiency using LiveCodeBench (Jain et al.,
2025) and FullStackBench (Liu et al., 2024), which evaluate code generation across diverse
programming tasks. For both benchmarks, we report scores as the average passrate of 16
samples.

• Reasoning & Knowledge: We assess domain knowledge and reasoning capabilities through
GPQA-Diamond (Rein et al., 2024), MMLU-Pro (Wang et al., 2024), and the challenging HLE
benchmark (Phan et al., 2025). For GPQA-Diamond, we sample 32 times and report the average
passrate. For HLE evaluation, we assess the model without external tools. Additionally, we
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Table 2 | Performance of MiniMax-M1 on core benchmarks.

Tasks
Leading Close-Weights Models Open-Weights Models Our Models

OpenAI-o3 Gemini 2.5
Pro (06-05)

Claude
4 Opus

Seed-
Thinking-

v1.5

DeepSeek-
R1

DeepSeek-
R1-0528

Qwen3-
235B-A22B

MiniMax-
M1-40k

MiniMax-
M1-80k

Extended
Thinking

100K 64K 64K 32K 32K 64K 32K 40K 80K

Mathematics

AIME 2024 91.6 92.0 76.0 86.7 79.8 91.4 85.7 83.3 86.0

AIME 2025 88.9 88.0 75.5 74.0 70.0 87.5 81.5 74.6 76.9

MATH-500 98.1 98.8 98.2 96.7 97.3 98.0 96.2 96.0 96.8

General Coding
LiveCodeBench

(24/8∼25/5)
75.8 77.1 56.6 67.5 55.9 73.1 65.9 62.3 65.0

FullStackBench 69.3 – 70.3 69.9 70.1 69.4 62.9 67.6 68.3

Reasoning & Knowledge

GPQA Diamond 83.3 86.4 79.6 77.3 71.5 81.0 71.1 69.2 70.0

HLE (no tools) 20.3 21.6 10.7 8.2 8.6∗ 17.7∗ 7.6∗ 7.2∗ 8.4∗

ZebraLogic 95.8 91.6 95.1 84.4 78.7 95.1 80.3 80.1 86.8

MMLU-Pro 85.0 86.0 85.0 87.0 84.0 85.0 83.0 80.6 81.1

Software Engineering

SWE-bench Verified 69.1 67.2 72.5 47.0 49.2 57.6 34.4 55.6 56.0

Long Context

OpenAI-MRCR (128k) 56.5 76.8 48.9 54.3 35.8 51.5 27.7 76.1 73.4

OpenAI-MRCR (1M) – 58.8 – – – – – 58.6 56.2

LongBench-v2 58.8 65.0 55.6 52.5 58.3 52.1 50.1 61.0 61.5

Agentic Tool Use

TAU-bench (airline) 52.0 50.0 59.6 44.0 – 53.5 34.7 60.0 62.0

TAU-bench (retail) 73.9 67.0 81.4 55.7 – 63.9 58.6 67.8 63.5

Factuality

SimpleQA 49.4 54.0 – 12.9 30.1 27.8 11.0 17.9 18.5

General Assistant

MultiChallenge 56.5 51.8 45.8 43.0 40.7 45.0 40.0 44.7 44.7

* conducted on the text-only HLE subset.

measure logical reasoning ability using ZebraLogic (Lin et al., 2025).
• Software Engineering: We evaluate software engineering capabilities using SWE-bench Ver-
ified (Jimenez et al., 2024), which measures the ability to resolve real-world GitHub issues.
We report results derived from the Agentless scaffold (Xia et al., 2024). Departing from the
original pipeline, our methodology employs a two-stage localization process (without any
embedding-based retrieval mechanisms): initial coarse-grained file localization followed by
fine-grained localization to specific files and code elements.

• Long Context: We evaluate long context understanding using OpenAI-MRCR (OpenAI, 2024b),
which tests retrieval and disambiguation of multiple similar items within extended contexts, and
LongBench-v2 (Bai et al., 2024), a challenging benchmark with 503 multiple-choice questions
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across contexts ranging from 8k to 2M words.
• Agentic Tool Use: We assess tool use capabilities through TAU-bench (Yao et al., 2025), which
emulates dynamic conversations where agents must utilize API tools while adhering to domain-
specific policy guidelines. We evaluate TAU-bench with GPT-4.1 as user model, a general system
prompt2 and without any custom tools. The maximum number of interaction steps is 40.

• Factuality: Tomeasure factuality of LLMs, we utilize SimpleQA (Wei et al., 2024), an adversarially-
collected benchmark of fact-seeking questions with single, indisputable answers.

• General Assistant: We evaluate general assistant capabilities using MultiChallenge (Sirdesh-
mukh et al., 2025), which assesses LLMs on conducting realistic multi-turn conversations with
human users. We report our scores judged by GPT-4o.

Results on Math, Coding, and other General Tasks. Table 2 presents our model’s performance
compared to state-of-the-art large reasoning models. In mathematical reasoning, the MiniMax-M1
models demonstrate strong performance across multiple benchmarks, achieving results compara-
ble to the close-weight model Seed-Thinking-v1.5 (Seed et al., 2025). Notably, MiniMax-M1-80k
achieves 86.0% on AIME 2024, placing it second among open-weight models and trailing only the
latest DeepSeek-R1-0528 model. For general coding, MiniMax-M1-80k matches Qwen3-235B on
LiveCodeBench while outperforming it on FullStackBench, demonstrating robust capabilities among
leading open-weight models. On reasoning & knowledge benchmarks, MiniMax-M1-80k similarly
trails DeepSeek-R1-0528 but achieves competitive performance against other top open-weight models.
On the factuality benchmark SimpleQA, Minimax-M1 models underperform DeepSeek-R1 while
outperforming all other open-weight models and Seed-Thinking-v1.5. On MultiChallenge, both
MiniMax models perform comparably to DeepSeek-R1-0528 and Claude 4 Optus, with inferior results
only to o3 and Gemini-2.5-Pro.

Highlights in Complex Scenarios: Software Engineering, Long Context, and Tool use. Benefiting
from our execution-based, software engineering environments during RL, MiniMax-M1-40k and
MiniMax-M1-80k achieve strong scores of 55.6% and 56.0% on SWE-bench verified respectively.
These results are slightly inferior to DeepSeek-R1-0528’s 57.6% and significantly surpass other open-
weights models. Leveraging its 1M context window, the M1 models significantly outperform all other
open-weight models in long-context understanding. They even surpass OpenAI o3 and Claude 4
Opus, ranking second globally and trailing only Gemini 2.5 Pro by a small margin. In agentic tool-use
scenarios (TAU-bench), MiniMax-M1-40k surpasses all open-weight models and even Gemini-2.5
Pro. Moreover, MiniMax-M1-80k consistently outperforms MiniMax-M1-40k across most benchmarks,
confirming the benefits of scaling test-time compute.

6.2. Effect of RL Scaling

To investigate the effect of RL scaling, we track performance and response length throughout training.
Figure 4 presents three representative examples from AIME 2024, AIME 2025, and LiveCodeBench
v5, respectively. We observe consistent improvements in both model performance and response length
during training. Notably, average response lengths on AIME and LiveCodeBench exceed 20,000
tokens, with AIME 2024 accuracy showing substantial gains from 68% to 80%. Crucially, the strong
correlation between accuracy gains and increased response length in these visualizations underscores
the importance of extending RL scaling to facilitate more extensive reasoning processes.

2"In each round, you need to carefully examine the tools provided to you to determine if any can be used. You must
adhere to all of the policies. Pay attention to the details in the terms. Solutions for most situations can be found within
these policies."
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Figure 4 | Accuracy and generation length versus RL training steps for MiniMax-M1.

7. Conclusion and Future work

In this work, we introduce and release MiniMax-M1, the world’s first open-weight, large-scale
reasoning model featuring a lightning attention mechanism. This efficient attention design enables
MiniMax-M1 to natively support inputs of up to 1M tokens and generation lengths of 80K tokens—both
significantly exceeding capabilities of other open-weight models. These capabilities render MiniMax-
M1 uniquely suited for complex, realistic scenarios requiring long context and extended reasoning,
properties empirically validated by its strong performance on software engineering, agentic tool use,
and long-context understanding benchmarks. Beyond the inherent efficiency advantages of lightning
attention for RL training, this work contributes a novel RL algorithm, CISPO, to accelerate training.
Combining architectural advantages with CISPO, we efficiently trained MiniMax-M1, with complete
RL training completed in three weeks using 512 H800 GPUs. Across comprehensive evaluations,
MiniMax-M1 ranks among the world’s best open-weight models alongside DeepSeek-R1 and Qwen3-
235B.

Looking forward, as test-time compute continuously scales to power increasingly complex sce-
narios, we foresee significant potential for such efficient architectures in addressing real-world
challenges. These include automating company workflows (Xu et al., 2025) and conducting scientific
research (OpenAI, 2025; Si et al., 2024). Real-world applications particularly demand LRMs that
function as agents interacting with environments, tools, computers, or other agents—requiring rea-
soning across dozens to hundreds of turns while integrating long-context information from diverse
sources. We envision MiniMax-M1 serving as a strong foundation for such applications with unique
advantages, and we are fully dedicated to further evolving MiniMax-M1 toward this goal.
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