Mitchins commited on
Commit
2667b42
·
verified ·
1 Parent(s): 14adf7d

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ images/confusion_matrix.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # Model Card Metadata (YAML Front Matter)
3
+ license: mit
4
+ base_model: microsoft/deberta-v3-small
5
+ tags:
6
+ - text-classification
7
+ - character-analysis
8
+ - plot-arc
9
+ - narrative-analysis
10
+ - deberta
11
+ - transformers
12
+ language: en
13
+ datasets:
14
+ - custom/plot-arc-balanced-101k
15
+ metrics:
16
+ - accuracy
17
+ - f1
18
+ - precision
19
+ - recall
20
+ model_type: sequence-classification
21
+ pipeline_tag: text-classification
22
+ widget:
23
+ - text: "Sir Galahad embarks on a perilous quest to retrieve the stolen Crown of Ages."
24
+ example_title: "External Arc Example"
25
+ - text: "Maria struggles with crippling self-doubt after her mother's harsh words."
26
+ example_title: "Internal Arc Example"
27
+ - text: "Captain Torres must infiltrate enemy lines while battling his own cowardice."
28
+ example_title: "Both Arc Example"
29
+ - text: "A baker who makes bread every morning in his village shop."
30
+ example_title: "No Arc Example"
31
+ library_name: transformers
32
+ ---
33
+
34
+ # Plot Arc Classifier - DeBERTa Small
35
+
36
+ A fine-tuned DeBERTa-v3-small model for classifying character plot arc types in narrative text.
37
+
38
+ ## Model Details
39
+
40
+ ### Model Description
41
+
42
+ This model classifies character descriptions into four plot arc categories:
43
+ - **NONE (0)**: No discernible character development or plot arc
44
+ - **INTERNAL (1)**: Character growth driven by internal conflict/psychology
45
+ - **EXTERNAL (2)**: Character arc driven by external events/missions
46
+ - **BOTH (3)**: Character arc with both internal conflict and external drivers
47
+
48
+ **Model Type:** Text Classification (Sequence Classification)
49
+ **Base Model:** microsoft/deberta-v3-small (~60M parameters)
50
+ **Language:** English
51
+ **License:** MIT
52
+
53
+ ### Model Architecture
54
+
55
+ - **Base:** DeBERTa-v3-Small (60M parameters)
56
+ - **Task:** 4-class sequence classification
57
+ - **Input:** Character descriptions (max 512 tokens)
58
+ - **Output:** Classification logits + probabilities for 4 classes
59
+
60
+ ## Training Data
61
+
62
+ ### Dataset Statistics
63
+ - **Total Examples:** 101,348
64
+ - **Training Split:** 91,213 examples (90%)
65
+ - **Validation Split:** 10,135 examples (10%)
66
+ - **Perfect Class Balance:** 25,337 examples per class
67
+
68
+ ### Data Sources
69
+ - Systematic scanning of 1.8M+ character descriptions
70
+ - LLM validation using Llama-3.2-3B for quality assurance
71
+ - SHA256-based deduplication to prevent data leakage
72
+ - Carefully curated and balanced dataset across all plot arc types
73
+
74
+ ### Class Distribution
75
+ | Class | Count | Percentage |
76
+ |-------|-------|------------|
77
+ | NONE | 25,337 | 25% |
78
+ | INTERNAL | 25,337 | 25% |
79
+ | EXTERNAL | 25,337 | 25% |
80
+ | BOTH | 25,337 | 25% |
81
+
82
+ ## Performance
83
+
84
+ ### Key Metrics
85
+ - **Accuracy:** 0.7286
86
+ - **F1 (Weighted):** 0.7283
87
+ - **F1 (Macro):** 0.7275
88
+
89
+ ### Per-Class Performance
90
+ | Class | Precision | Recall | F1-Score | Support |
91
+ |-------|-----------|--------|----------|---------|
92
+ | NONE | 0.697 | 0.613 | 0.653 | 2,495 |
93
+ | INTERNAL | 0.677 | 0.683 | 0.680 | 2,571 |
94
+ | EXTERNAL | 0.892 | 0.882 | 0.887 | 2,568 |
95
+ | BOTH | 0.652 | 0.732 | 0.690 | 2,501 |
96
+
97
+ ### Training Details
98
+ - **Training Time:** 9.7 hours on Apple Silicon MPS
99
+ - **Final Training Loss:** 0.635
100
+ - **Epochs:** 3.86 (early stopping)
101
+ - **Batch Size:** 16 (effective: 32 with gradient accumulation)
102
+ - **Learning Rate:** 2e-5 with warmup
103
+ - **Optimizer:** AdamW with weight decay (0.01)
104
+
105
+
106
+ ## Confusion Matrix
107
+
108
+ ![Confusion Matrix](images/confusion_matrix.png)
109
+
110
+ ## Usage
111
+
112
+ ### Basic Usage
113
+
114
+ ```python
115
+ from transformers import DebertaV2Tokenizer, DebertaV2ForSequenceClassification
116
+ import torch
117
+
118
+ # Load model and tokenizer
119
+ model_name = "plot-arc-classifier-deberta-small"
120
+ tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
121
+ model = DebertaV2ForSequenceClassification.from_pretrained(model_name)
122
+
123
+ # Example text
124
+ text = "Sir Galahad embarks on a perilous quest to retrieve the stolen Crown of Ages."
125
+
126
+ # Tokenize and predict
127
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
128
+ with torch.no_grad():
129
+ outputs = model(**inputs)
130
+ probabilities = torch.softmax(outputs.logits, dim=-1)
131
+ predicted_class = torch.argmax(probabilities, dim=-1)
132
+
133
+ # Class mapping
134
+ class_names = ['NONE', 'INTERNAL', 'EXTERNAL', 'BOTH']
135
+ prediction = class_names[predicted_class.item()]
136
+ confidence = probabilities[0][predicted_class].item()
137
+
138
+ print(f"Predicted class: {prediction} (confidence: {confidence:.3f})")
139
+ ```
140
+
141
+ ### Pipeline Usage
142
+
143
+ ```python
144
+ from transformers import pipeline
145
+
146
+ classifier = pipeline(
147
+ "text-classification",
148
+ model="plot-arc-classifier-deberta-small",
149
+ return_all_scores=True
150
+ )
151
+
152
+ result = classifier("Captain Torres must infiltrate enemy lines while battling his own cowardice.")
153
+ print(result)
154
+ ```
155
+
156
+ ## Limitations
157
+
158
+ - **Domain:** Optimized for character descriptions in narrative fiction
159
+ - **Length:** Maximum 512 tokens (longer texts are truncated)
160
+ - **Language:** English only
161
+ - **Context:** Works best with character-focused descriptions rather than plot summaries
162
+ - **Ambiguity:** Some edge cases may be inherently ambiguous between INTERNAL/BOTH
163
+
164
+ ## Ethical Considerations
165
+
166
+ - **Bias:** Training data may contain genre/cultural biases toward certain character archetypes
167
+ - **Interpretation:** Classifications reflect Western narrative theory; other storytelling traditions may not map perfectly
168
+ - **Automation:** Should complement, not replace, human literary analysis
169
+
170
+ ## Citation
171
+
172
+ ```bibtex
173
+ @model{plot_arc_classifier_2025,
174
+ title={Plot Arc Classifier - DeBERTa Small},
175
+ author={Claude Code Assistant},
176
+ year={2025},
177
+ url={https://github.com/your-org/plot-arc-classifier},
178
+ note={Fine-tuned DeBERTa-v3-small for character plot arc classification}
179
+ }
180
+ ```
181
+
182
+ ## Model Card Contact
183
+
184
+ For questions about this model, please open an issue in the repository or contact the maintainers.
185
+
186
+ ---
187
+
188
+ *Model trained on 2025-09-02 using transformers library.*
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DebertaV2ForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 1,
7
+ "dtype": "float32",
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0",
14
+ "1": "LABEL_1",
15
+ "2": "LABEL_2",
16
+ "3": "LABEL_3"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "LABEL_0": 0,
22
+ "LABEL_1": 1,
23
+ "LABEL_2": 2,
24
+ "LABEL_3": 3
25
+ },
26
+ "layer_norm_eps": 1e-07,
27
+ "legacy": true,
28
+ "max_position_embeddings": 512,
29
+ "max_relative_positions": -1,
30
+ "model_type": "deberta-v2",
31
+ "norm_rel_ebd": "layer_norm",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 6,
34
+ "pad_token_id": 0,
35
+ "pooler_dropout": 0,
36
+ "pooler_hidden_act": "gelu",
37
+ "pooler_hidden_size": 768,
38
+ "pos_att_type": [
39
+ "p2c",
40
+ "c2p"
41
+ ],
42
+ "position_biased_input": false,
43
+ "position_buckets": 256,
44
+ "problem_type": "single_label_classification",
45
+ "relative_attention": true,
46
+ "share_att_key": true,
47
+ "transformers_version": "4.56.0",
48
+ "type_vocab_size": 0,
49
+ "vocab_size": 128100
50
+ }
evaluation_results.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_info": {
3
+ "base_model": "microsoft/deberta-v3-small",
4
+ "model_type": "sequence-classification",
5
+ "num_classes": 4,
6
+ "class_names": [
7
+ "NONE",
8
+ "INTERNAL",
9
+ "EXTERNAL",
10
+ "BOTH"
11
+ ]
12
+ },
13
+ "performance": {
14
+ "accuracy": 0.7285643808584115,
15
+ "f1_weighted": 0.7283043705111875,
16
+ "f1_macro": 0.7275298614210632
17
+ },
18
+ "per_class_metrics": {
19
+ "NONE": {
20
+ "precision": 0.6973564266180492,
21
+ "recall": 0.6132264529058116,
22
+ "f1-score": 0.6525911708253359,
23
+ "support": 2495.0
24
+ },
25
+ "INTERNAL": {
26
+ "precision": 0.6770712909441233,
27
+ "recall": 0.6833916763905096,
28
+ "f1-score": 0.6802168021680217,
29
+ "support": 2571.0
30
+ },
31
+ "EXTERNAL": {
32
+ "precision": 0.8924773532886964,
33
+ "recall": 0.882398753894081,
34
+ "f1-score": 0.8874094380262385,
35
+ "support": 2568.0
36
+ },
37
+ "BOTH": {
38
+ "precision": 0.6522978268614179,
39
+ "recall": 0.7321071571371451,
40
+ "f1-score": 0.6899020346646572,
41
+ "support": 2501.0
42
+ }
43
+ },
44
+ "confusion_matrix": [
45
+ [
46
+ 1530,
47
+ 388,
48
+ 160,
49
+ 417
50
+ ],
51
+ [
52
+ 323,
53
+ 1757,
54
+ 45,
55
+ 446
56
+ ],
57
+ [
58
+ 131,
59
+ 58,
60
+ 2266,
61
+ 113
62
+ ],
63
+ [
64
+ 210,
65
+ 392,
66
+ 68,
67
+ 1831
68
+ ]
69
+ ],
70
+ "training_info": {
71
+ "total_examples": 101348,
72
+ "train_examples": 91213,
73
+ "val_examples": 10135,
74
+ "examples_per_class": 25337,
75
+ "training_time_hours": 9.7,
76
+ "final_epoch": 3.86
77
+ }
78
+ }
images/confusion_matrix.png ADDED

Git LFS Details

  • SHA256: baddea324208244b82249a69e81a809df078b2cfcaafffa65eb4bf9922575513
  • Pointer size: 131 Bytes
  • Size of remote file: 144 kB
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9344c35266b171e7f56af4f92b3a0cc28964da72beb685d5f4f11b56d895a86
3
+ size 567604704
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch>=2.0.0
2
+ transformers>=4.30.0
3
+ numpy>=1.21.0
4
+ scikit-learn>=1.0.0
5
+ matplotlib>=3.5.0
6
+ seaborn>=0.11.0
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
test_model.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Test script for plot arc classifier
4
+ """
5
+
6
+ import json
7
+ import torch
8
+ from transformers import DebertaV2Tokenizer, DebertaV2ForSequenceClassification
9
+
10
+ def load_tests():
11
+ """Load synthetic test cases"""
12
+ with open('tests/synthetic_tests.json', 'r') as f:
13
+ return json.load(f)
14
+
15
+ def run_tests():
16
+ """Run all synthetic tests"""
17
+ print("Loading model...")
18
+ tokenizer = DebertaV2Tokenizer.from_pretrained('.')
19
+ model = DebertaV2ForSequenceClassification.from_pretrained('.')
20
+
21
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
22
+ model.to(device)
23
+ model.eval()
24
+
25
+ class_names = ['NONE', 'INTERNAL', 'EXTERNAL', 'BOTH']
26
+ class_to_idx = {name: idx for idx, name in enumerate(class_names)}
27
+
28
+ tests = load_tests()
29
+
30
+ correct = 0
31
+ total = len(tests)
32
+
33
+ print(f"Running {total} synthetic tests...\n")
34
+
35
+ for i, test in enumerate(tests, 1):
36
+ text = test['description']
37
+ expected = test['expected_class']
38
+ expected_idx = class_to_idx[expected]
39
+
40
+ # Predict
41
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
42
+ inputs = {k: v.to(device) for k, v in inputs.items()}
43
+
44
+ with torch.no_grad():
45
+ outputs = model(**inputs)
46
+ probabilities = torch.softmax(outputs.logits, dim=-1)
47
+ predicted_idx = torch.argmax(probabilities, dim=-1).item()
48
+ confidence = probabilities[0][predicted_idx].item()
49
+
50
+ predicted = class_names[predicted_idx]
51
+ is_correct = predicted == expected
52
+
53
+ if is_correct:
54
+ correct += 1
55
+ status = "✅ PASS"
56
+ else:
57
+ status = "❌ FAIL"
58
+
59
+ print(f"Test {i:2d}: {status}")
60
+ print(f" Text: {text[:100]}{'...' if len(text) > 100 else ''}")
61
+ print(f" Expected: {expected} | Predicted: {predicted} (conf: {confidence:.3f})")
62
+ print(f" Reasoning: {test['reasoning']}")
63
+ print()
64
+
65
+ accuracy = correct / total
66
+ print(f"Results: {correct}/{total} correct ({accuracy:.1%})")
67
+
68
+ return accuracy
69
+
70
+ if __name__ == "__main__":
71
+ run_tests()
tests/synthetic_tests.json ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "description": "A baker who makes bread every morning in his small village shop.",
4
+ "expected_class": "NONE",
5
+ "reasoning": "No character development or conflict indicated"
6
+ },
7
+ {
8
+ "description": "Sir Galahad embarks on a perilous quest to retrieve the stolen Crown of Ages from the dragon's lair.",
9
+ "expected_class": "EXTERNAL",
10
+ "reasoning": "Clear external mission/quest with specific objective"
11
+ },
12
+ {
13
+ "description": "Maria struggles with crippling self-doubt after her mother's harsh words echo in her mind daily.",
14
+ "expected_class": "INTERNAL",
15
+ "reasoning": "Internal psychological conflict, no external events"
16
+ },
17
+ {
18
+ "description": "Captain Torres must infiltrate enemy lines while battling his own cowardice from past failures.",
19
+ "expected_class": "BOTH",
20
+ "reasoning": "External mission (infiltration) + internal conflict (overcoming cowardice)"
21
+ },
22
+ {
23
+ "description": "Dr. Elise Chen, a brilliant neurosurgeon whose perfectionist nature stems from childhood trauma, must perform an experimental procedure to save her estranged brother while confronting the guilt that has haunted her for decades.",
24
+ "expected_class": "BOTH",
25
+ "reasoning": "Complex case: external medical crisis + deep internal psychological journey"
26
+ },
27
+ {
28
+ "description": "The ancient librarian who has catalogued every book in the Grand Archive for three centuries, maintaining perfect order and silence.",
29
+ "expected_class": "NONE",
30
+ "reasoning": "Static character with no indicated change or conflict despite intriguing background"
31
+ },
32
+ {
33
+ "description": "Commander Vex leads the final assault against the rebel stronghold, knowing that victory means destroying the city where his daughter lives.",
34
+ "expected_class": "BOTH",
35
+ "reasoning": "External military objective complicated by internal moral conflict"
36
+ },
37
+ {
38
+ "description": "A merchant who travels between kingdoms, buying low and selling high, always seeking the next profitable deal.",
39
+ "expected_class": "NONE",
40
+ "reasoning": "Routine activity without character growth or meaningful conflict"
41
+ },
42
+ {
43
+ "description": "Zara must decode the ancient prophecy before the lunar eclipse triggers the apocalypse, while wrestling with visions that make her question her own sanity.",
44
+ "expected_class": "BOTH",
45
+ "reasoning": "External time-pressure quest + internal psychological struggle"
46
+ },
47
+ {
48
+ "description": "The assassin who kills without emotion, following contracts with mechanical precision, never questioning orders or feeling remorse.",
49
+ "expected_class": "NONE",
50
+ "reasoning": "No internal conflict or character development despite dramatic profession"
51
+ },
52
+ {
53
+ "description": "Elena discovers her recurring nightmares are actually suppressed memories of witnessing her father's murder, forcing her to relive the trauma to identify the killer.",
54
+ "expected_class": "INTERNAL",
55
+ "reasoning": "Psychological journey of memory recovery and trauma processing, no external plot"
56
+ },
57
+ {
58
+ "description": "Prince Aldric must unite the warring clans before the demon army arrives, though he secretly fears he's too weak to lead and will fail like his father.",
59
+ "expected_class": "BOTH",
60
+ "reasoning": "External political/military crisis + internal self-doubt and leadership anxiety"
61
+ },
62
+ {
63
+ "description": "A shape-shifting entity that observes human civilization across millennia, adapting its form but never truly understanding emotion or purpose.",
64
+ "expected_class": "INTERNAL",
65
+ "reasoning": "Subtle: the struggle to understand emotion/purpose is internal character development"
66
+ },
67
+ {
68
+ "description": "Detective Morgan investigates a series of murders that mirror her own childhood trauma, each clue forcing her to confront buried memories while racing to catch the killer before he strikes again.",
69
+ "expected_class": "BOTH",
70
+ "reasoning": "External investigation/race against time + internal trauma processing"
71
+ },
72
+ {
73
+ "description": "An immortal being who grants wishes to mortals, following cosmic rules without deviation or personal desire.",
74
+ "expected_class": "NONE",
75
+ "reasoning": "No change or conflict despite supernatural nature - purely functional role"
76
+ },
77
+ {
78
+ "description": "The village healer who tends to every wound and illness with the same gentle care, asking nothing in return, content in her service to others.",
79
+ "expected_class": "NONE",
80
+ "reasoning": "Static, fulfilled character with no indicated conflict or growth arc"
81
+ },
82
+ {
83
+ "description": "Kai realizes that saving the world requires sacrificing the one person he loves most, but cannot bring himself to make the choice that logic demands.",
84
+ "expected_class": "INTERNAL",
85
+ "reasoning": "Pure internal moral/emotional conflict - the external 'saving world' is context, not plot"
86
+ },
87
+ {
88
+ "description": "The time-traveling historian who documents major events across eras, maintaining strict neutrality and never interfering with the timeline's natural course.",
89
+ "expected_class": "NONE",
90
+ "reasoning": "Observer role with no character development or conflict despite extraordinary circumstances"
91
+ }
92
+ ]
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "sp_model_kwargs": {},
55
+ "split_by_punct": false,
56
+ "tokenizer_class": "DebertaV2Tokenizer",
57
+ "unk_token": "[UNK]",
58
+ "vocab_type": "spm"
59
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f983cf6452d26be88ab8737aa8462f06399ec39bd8cd32e41bf985dbd6ba16e9
3
+ size 5777