Update README.md
Browse files
README.md
CHANGED
@@ -1,305 +1,306 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: microsoft/MiniLM-L6-v2
|
4 |
-
tags:
|
5 |
-
- transformers
|
6 |
-
- sentence-transformers
|
7 |
-
- sentence-similarity
|
8 |
-
- feature-extraction
|
9 |
-
- text-embeddings-inference
|
10 |
-
- information-retrieval
|
11 |
-
- knowledge-distillation
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
<
|
19 |
-
|
20 |
-
</div>
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
>
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
* **
|
50 |
-
* **
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
| OpenAI text-embedding-3-
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
queries
|
82 |
-
|
83 |
-
"
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
"
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
Similarity: 0.
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
Similarity: 0.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
const
|
135 |
-
const
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
"
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
"
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
...
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
const
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
normalized_sentence_embedding.slice([queries.length
|
161 |
-
)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
Similarity: 0.
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
Similarity: 0.
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
>
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
print(
|
225 |
-
print(f"*
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
*
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
Vector
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
import
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
similarities
|
260 |
-
|
261 |
-
|
262 |
-
print(
|
263 |
-
print(f"*
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
*
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
}
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
305 |
For questions or issues, please open an issue or pull request. You can also contact the MongoDB ML Research team at [email protected].
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/MiniLM-L6-v2
|
4 |
+
tags:
|
5 |
+
- transformers
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- text-embeddings-inference
|
10 |
+
- information-retrieval
|
11 |
+
- knowledge-distillation
|
12 |
+
- transformers.js
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
---
|
16 |
+
<div style="display: flex; justify-content: center;">
|
17 |
+
<div style="display: flex; align-items: center; gap: 10px;">
|
18 |
+
<img src="logo.webp" alt="MongoDB Logo" style="height: 36px; width: auto; border-radius: 4px;">
|
19 |
+
<span style="font-size: 32px; font-weight: bold">MongoDB/mdbr-leaf-mt</span>
|
20 |
+
</div>
|
21 |
+
</div>
|
22 |
+
|
23 |
+
# Content
|
24 |
+
|
25 |
+
1. [Introduction](#introduction)
|
26 |
+
2. [Technical Report](#technical-report)
|
27 |
+
3. [Highlights](#highlights)
|
28 |
+
4. [Benchmarks](#benchmark-comparison)
|
29 |
+
5. [Quickstart](#quickstart)
|
30 |
+
6. [Citation](#citation)
|
31 |
+
|
32 |
+
# Introduction
|
33 |
+
|
34 |
+
`mdbr-leaf-mt` is a compact high-performance text embedding model designed for classification, clustering, semantic sentence similarity and summarization tasks.
|
35 |
+
|
36 |
+
To enable even greater efficiency, `mdbr-leaf-mt` supports [flexible asymmetric architectures](#asymmetric-retrieval-setup) and is robust to [vector quantization](#vector-quantization) and [MRL truncation](#mrl-truncation).
|
37 |
+
|
38 |
+
If you are looking to perform semantic search / information retrieval (e.g. for RAGs), please check out our [`mdbr-leaf-ir`](https://huggingface.co/MongoDB/mdbr-leaf-ir) model, which is specifically trained for these tasks.
|
39 |
+
|
40 |
+
> [!Note]
|
41 |
+
> **Note**: this model has been developed by the ML team of MongoDB Research. At the time of writing it is not used in any of MongoDB's commercial product or service offerings.
|
42 |
+
|
43 |
+
# Technical Report
|
44 |
+
|
45 |
+
A technical report detailing our proposed `LEAF` training procedure is [available here](https://arxiv.org/abs/2509.12539).
|
46 |
+
|
47 |
+
# Highlights
|
48 |
+
|
49 |
+
* **State-of-the-Art Performance**: `mdbr-leaf-mt` achieves new state-of-the-art results for compact embedding models, **ranking #1** on the [public MTEB v2 (Eng) benchmark leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for models with ≤30M parameters.
|
50 |
+
* **Flexible Architecture Support**: `mdbr-leaf-mt` supports asymmetric retrieval architectures enabling even greater retrieval results. [See below](#asymmetric-retrieval-setup) for more information.
|
51 |
+
* **MRL and Quantization Support**: embedding vectors generated by `mdbr-leaf-mt` compress well when truncated (MRL) and can be stored using more efficient types like `int8` and `binary`. [See below](#mrl-truncation) for more information.
|
52 |
+
|
53 |
+
## Benchmark Comparison
|
54 |
+
|
55 |
+
The table below shows the scores for `mdbr-leaf-mt` on the MTEB v2 (English) benchmark, compared to other retrieval models.
|
56 |
+
|
57 |
+
`mdbr-leaf-mt` ranks #1 on this benchmark for models with <30M parameters.
|
58 |
+
|
59 |
+
| Model | Size | MTEB v2 (Eng) |
|
60 |
+
|------------------------------------|---------|---------------|
|
61 |
+
| OpenAI text-embedding-3-large | Unknown | 66.43 |
|
62 |
+
| OpenAI text-embedding-3-small | Unknown | 64.56 |
|
63 |
+
| **mdbr-leaf-mt** | 23M | **63.97** |
|
64 |
+
| gte-small | 33M | 63.22 |
|
65 |
+
| snowflake-arctic-embed-s | 32M | 61.59 |
|
66 |
+
| e5-small-v2 | 33M | 61.32 |
|
67 |
+
| granite-embedding-small-english-r2 | 47M | 61.07 |
|
68 |
+
| all-MiniLM-L6-v2 | 22M | 59.03 |
|
69 |
+
|
70 |
+
|
71 |
+
# Quickstart
|
72 |
+
|
73 |
+
## Sentence Transformers
|
74 |
+
|
75 |
+
```python
|
76 |
+
from sentence_transformers import SentenceTransformer
|
77 |
+
|
78 |
+
# Load the model
|
79 |
+
model = SentenceTransformer("MongoDB/mdbr-leaf-mt")
|
80 |
+
|
81 |
+
# Example queries and documents
|
82 |
+
queries = [
|
83 |
+
"What is machine learning?",
|
84 |
+
"How does neural network training work?"
|
85 |
+
]
|
86 |
+
|
87 |
+
documents = [
|
88 |
+
"Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.",
|
89 |
+
"Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors."
|
90 |
+
]
|
91 |
+
|
92 |
+
# Encode queries and documents
|
93 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
94 |
+
document_embeddings = model.encode(documents)
|
95 |
+
|
96 |
+
# Compute similarity scores
|
97 |
+
scores = model.similarity(query_embeddings, document_embeddings)
|
98 |
+
|
99 |
+
# Print results
|
100 |
+
for i, query in enumerate(queries):
|
101 |
+
print(f"Query: {query}")
|
102 |
+
for j, doc in enumerate(documents):
|
103 |
+
print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")
|
104 |
+
```
|
105 |
+
|
106 |
+
<details>
|
107 |
+
|
108 |
+
<summary>See example output</summary>
|
109 |
+
|
110 |
+
```
|
111 |
+
Query: What is machine learning?
|
112 |
+
Similarity: 0.9063 | Document 0: Machine learning is a subset of ...
|
113 |
+
Similarity: 0.7287 | Document 1: Neural networks are trained ...
|
114 |
+
|
115 |
+
Query: How does neural network training work?
|
116 |
+
Similarity: 0.6725 | Document 0: Machine learning is a subset of ...
|
117 |
+
Similarity: 0.8287 | Document 1: Neural networks are trained ...
|
118 |
+
```
|
119 |
+
</details>
|
120 |
+
|
121 |
+
## Transformers.js
|
122 |
+
|
123 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
124 |
+
```bash
|
125 |
+
npm i @huggingface/transformers
|
126 |
+
```
|
127 |
+
|
128 |
+
You can then use the model to compute embeddings like this:
|
129 |
+
|
130 |
+
```js
|
131 |
+
import { AutoModel, AutoTokenizer, matmul } from "@huggingface/transformers";
|
132 |
+
|
133 |
+
// Download from the 🤗 Hub
|
134 |
+
const model_id = "MongoDB/mdbr-leaf-mt";
|
135 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
136 |
+
const model = await AutoModel.from_pretrained(model_id, {
|
137 |
+
dtype: "fp32", // Options: "fp32" | "fp16" | "q8" | "q4" | "q4f16"
|
138 |
+
});
|
139 |
+
|
140 |
+
// Prepare queries and documents
|
141 |
+
const queries = [
|
142 |
+
"What is machine learning?",
|
143 |
+
"How does neural network training work?",
|
144 |
+
];
|
145 |
+
const documents = [
|
146 |
+
"Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.",
|
147 |
+
"Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors.",
|
148 |
+
];
|
149 |
+
const inputs = await tokenizer([
|
150 |
+
...queries.map((x) => "Represent this sentence for searching relevant passages: " + x),
|
151 |
+
...documents,
|
152 |
+
], { padding: true });
|
153 |
+
|
154 |
+
// Generate embeddings
|
155 |
+
const { sentence_embedding } = await model(inputs);
|
156 |
+
const normalized_sentence_embedding = sentence_embedding.normalize();
|
157 |
+
|
158 |
+
// Compute similarities
|
159 |
+
const scores = await matmul(
|
160 |
+
normalized_sentence_embedding.slice([0, queries.length]),
|
161 |
+
normalized_sentence_embedding.slice([queries.length, null]).transpose(1, 0),
|
162 |
+
);
|
163 |
+
const scores_list = scores.tolist();
|
164 |
+
|
165 |
+
for (let i = 0; i < queries.length; ++i) {
|
166 |
+
console.log(`Query: ${queries[i]}`);
|
167 |
+
for (let j = 0; j < documents.length; ++j) {
|
168 |
+
console.log(` Similarity: ${scores_list[i][j].toFixed(4)} | Document ${j}: ${documents[j]}`);
|
169 |
+
}
|
170 |
+
console.log();
|
171 |
+
}
|
172 |
+
```
|
173 |
+
|
174 |
+
<details>
|
175 |
+
|
176 |
+
<summary>See example output</summary>
|
177 |
+
|
178 |
+
```
|
179 |
+
Query: What is machine learning?
|
180 |
+
Similarity: 0.9063 | Document 0: Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.
|
181 |
+
Similarity: 0.7287 | Document 1: Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors.
|
182 |
+
|
183 |
+
Query: How does neural network training work?
|
184 |
+
Similarity: 0.6725 | Document 0: Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.
|
185 |
+
Similarity: 0.8287 | Document 1: Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors.
|
186 |
+
```
|
187 |
+
</details>
|
188 |
+
|
189 |
+
|
190 |
+
## Transformers Usage
|
191 |
+
|
192 |
+
See [here](https://huggingface.co/MongoDB/mdbr-leaf-mt/blob/main/transformers_example_mt.ipynb).
|
193 |
+
|
194 |
+
## Asymmetric Retrieval Setup
|
195 |
+
|
196 |
+
> [!Note]
|
197 |
+
> **Note**: a version of this asymmetric setup, conveniently packaged into a single model, is [available here](https://huggingface.co/MongoDB/mdbr-leaf-mt-asym).
|
198 |
+
|
199 |
+
`mdbr-leaf-mt` is *aligned* to [`mxbai-embed-large-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1), the model it has been distilled from, making the asymmetric system below possible:
|
200 |
+
|
201 |
+
```python
|
202 |
+
# Use mdbr-leaf-mt for query encoding (real-time, low latency)
|
203 |
+
query_model = SentenceTransformer("MongoDB/mdbr-leaf-mt")
|
204 |
+
query_embeddings = query_model.encode(queries, prompt_name="query")
|
205 |
+
|
206 |
+
# Use a larger model for document encoding (one-time, at index time)
|
207 |
+
doc_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
208 |
+
document_embeddings = doc_model.encode(documents)
|
209 |
+
|
210 |
+
# Compute similarities
|
211 |
+
scores = query_model.similarity(query_embeddings, document_embeddings)
|
212 |
+
```
|
213 |
+
Retrieval results from asymmetric mode are usually superior to the [standard mode above](#sentence-transformers).
|
214 |
+
|
215 |
+
## MRL Truncation
|
216 |
+
|
217 |
+
Embeddings have been trained via [MRL](https://arxiv.org/abs/2205.13147) and can be truncated for more efficient storage:
|
218 |
+
```python
|
219 |
+
query_embeds = model.encode(queries, prompt_name="query", truncate_dim=256)
|
220 |
+
doc_embeds = model.encode(documents, truncate_dim=256)
|
221 |
+
|
222 |
+
similarities = model.similarity(query_embeds, doc_embeds)
|
223 |
+
|
224 |
+
print('After MRL:')
|
225 |
+
print(f"* Embeddings dimension: {query_embeds.shape[1]}")
|
226 |
+
print(f"* Similarities: \n\t{similarities}")
|
227 |
+
```
|
228 |
+
|
229 |
+
<details>
|
230 |
+
|
231 |
+
<summary>See example output</summary>
|
232 |
+
|
233 |
+
```
|
234 |
+
After MRL:
|
235 |
+
* Embeddings dimension: 256
|
236 |
+
* Similarities:
|
237 |
+
tensor([[0.9164, 0.7219],
|
238 |
+
[0.6682, 0.8393]], device='cuda:0')
|
239 |
+
```
|
240 |
+
</details>
|
241 |
+
|
242 |
+
## Vector Quantization
|
243 |
+
Vector quantization, for example to `int8` or `binary`, can be performed as follows:
|
244 |
+
|
245 |
+
**Note**: For vector quantization to types other than binary, we suggest performing a calibration to determine the optimal ranges, [see here](https://sbert.net/examples/sentence_transformer/applications/embedding-quantization/README.html#scalar-int8-quantization).
|
246 |
+
Good initial values are -1.0 and +1.0.
|
247 |
+
```python
|
248 |
+
from sentence_transformers.quantization import quantize_embeddings
|
249 |
+
import torch
|
250 |
+
|
251 |
+
query_embeds = model.encode(queries, prompt_name="query")
|
252 |
+
doc_embeds = model.encode(documents)
|
253 |
+
|
254 |
+
# Quantize embeddings to int8 using -1.0 and +1.0
|
255 |
+
ranges = torch.tensor([[-1.0], [+1.0]]).expand(2, query_embeds.shape[1]).cpu().numpy()
|
256 |
+
query_embeds = quantize_embeddings(query_embeds, "int8", ranges=ranges)
|
257 |
+
doc_embeds = quantize_embeddings(doc_embeds, "int8", ranges=ranges)
|
258 |
+
|
259 |
+
# Calculate similarities; cast to int64 to avoid under/overflow
|
260 |
+
similarities = query_embeds.astype(int) @ doc_embeds.astype(int).T
|
261 |
+
|
262 |
+
print('After quantization:')
|
263 |
+
print(f"* Embeddings type: {query_embeds.dtype}")
|
264 |
+
print(f"* Similarities: \n{similarities}")
|
265 |
+
```
|
266 |
+
|
267 |
+
<details>
|
268 |
+
|
269 |
+
<summary>See example output</summary>
|
270 |
+
|
271 |
+
```
|
272 |
+
After quantization:
|
273 |
+
* Embeddings type: int8
|
274 |
+
* Similarities:
|
275 |
+
[[2202032 1422868]
|
276 |
+
[1421197 1845580]]
|
277 |
+
```
|
278 |
+
</details>
|
279 |
+
|
280 |
+
## Evaluation
|
281 |
+
|
282 |
+
Please [see here](https://huggingface.co/MongoDB/mdbr-leaf-mt/blob/main/evaluate_models.ipynb).
|
283 |
+
|
284 |
+
# Citation
|
285 |
+
|
286 |
+
If you use this model in your work, please cite:
|
287 |
+
|
288 |
+
```bibtex
|
289 |
+
@misc{mdbr_leaf,
|
290 |
+
title={LEAF: Knowledge Distillation of Text Embedding Models with Teacher-Aligned Representations},
|
291 |
+
author={Robin Vujanic and Thomas Rueckstiess},
|
292 |
+
year={2025},
|
293 |
+
eprint={2509.12539},
|
294 |
+
archivePrefix={arXiv},
|
295 |
+
primaryClass={cs.IR},
|
296 |
+
url={https://arxiv.org/abs/2509.12539},
|
297 |
+
}
|
298 |
+
```
|
299 |
+
|
300 |
+
# License
|
301 |
+
|
302 |
+
This model is released under Apache 2.0 License.
|
303 |
+
|
304 |
+
# Contact
|
305 |
+
|
306 |
For questions or issues, please open an issue or pull request. You can also contact the MongoDB ML Research team at [email protected].
|