Thermal-Enhanced Morbid AI Model v0.1.1
Model Description
Initial THRML integration with basic probabilistic mortality modeling capabilities. Includes uncertainty quantification and demographic factor interactions.
This model integrates THRML (Thermodynamic HypergRaphical Model Library) with Morbid AI's mortality prediction capabilities, providing probabilistic predictions with uncertainty quantification.
Model Architecture
Type: thermal_energy_based_model Framework: THRML + JAX Version: 0.1.1
Thermal Features
- Probabilistic graphical models for mortality factors
- Block Gibbs sampling with demographic blocking
- Energy-based life expectancy prediction
- Confidence intervals for all predictions
- Risk factor analysis and contribution scoring
Performance Metrics
- baseline_accuracy: 0.8500
- uncertainty_coverage: 0.9500
- demographic_factors: 4.0000
- sampling_efficiency: 0.9200
Usage
from thermal.models.life_expectancy import LifeExpectancyEBM
from thermal.graph.mortality_graph import MortalityRecord
# Load mortality data
mortality_data = [...] # List of MortalityRecord objects
# Initialize thermal model
model = LifeExpectancyEBM(mortality_data)
# Make prediction with uncertainty quantification
prediction = model.predict_life_expectancy(
age=45,
country="USA",
sex=1, # 1=male, 2=female, 3=both
n_samples=1000,
confidence_level=0.95
)
print(f"Life Expectancy: {prediction.mean_life_expectancy:.1f} years")
print(f"95% CI: {prediction.confidence_interval}")
print(f"Uncertainty: {prediction.uncertainty:.2f}")
Model Configuration
THRML Parameters
sampling:
- default_samples: 1000
- burn_in: 200
- thinning: 2
- blocking_strategy: demographic model:
- energy_based: True
- uncertainty_quantification: True
- demographic_interactions: True performance:
- gpu_acceleration: True
- jax_backend: True
- memory_efficient: True
Sampling Configuration
- Block Gibbs Sampling: Two-color and demographic blocking strategies
- Default Samples: 1000 MCMC samples
- Burn-in: 200 steps
- Thinning: Every 2nd sample
Training Data
The model is trained on mortality data including:
- Countries: Global mortality statistics from major countries
- Age Range: 0-100+ years
- Time Period: 2010-2025
- Demographic Factors: Age, sex, country, year
Limitations
- Model performance depends on availability of demographic-specific training data
- Uncertainty estimates are calibrated on historical data and may not capture unprecedented events
- Requires THRML and JAX dependencies for optimal performance
Version History
v0.1.1 - 2025-10-29
- Initial THRML integration framework
- MortalityGraphBuilder for demographic interactions
- LifeExpectancyEBM with uncertainty quantification
- Block Gibbs sampling implementation
- Basic API integration structure
Citation
@software{thermal_morbid_ai_0_1_1,
title={Thermal-Enhanced Morbid AI Model},
version={0.1.1},
year={2025},
url={https://huggingface.co/MorbidCorp/thermal-mortality-model}
}
License
MIT License - see LICENSE file for details.
Contact
For questions about this model, please open an issue in the Morbid AI repository.
- Downloads last month
- 33