Mungert commited on
Commit
a906ba3
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
.gitattributes ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ NextCoder-7B-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ NextCoder-7B-f16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
38
+ NextCoder-7B-bf16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ NextCoder-7B-f16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
40
+ NextCoder-7B-bf16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
41
+ NextCoder-7B-f16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
42
+ NextCoder-7B-bf16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
43
+ NextCoder-7B-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
44
+ NextCoder-7B-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
45
+ NextCoder-7B-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
46
+ NextCoder-7B-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
47
+ NextCoder-7B-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ NextCoder-7B-q2_k_m.gguf filter=lfs diff=lfs merge=lfs -text
49
+ NextCoder-7B-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
50
+ NextCoder-7B-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
51
+ NextCoder-7B-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
52
+ NextCoder-7B-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
53
+ NextCoder-7B-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
54
+ NextCoder-7B-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ NextCoder-7B-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
56
+ NextCoder-7B-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
57
+ NextCoder-7B-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ NextCoder-7B-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
59
+ NextCoder-7B-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
60
+ NextCoder-7B-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
61
+ NextCoder-7B-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
62
+ NextCoder-7B-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
63
+ NextCoder-7B-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
64
+ NextCoder-7B-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
65
+ NextCoder-7B-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
66
+ NextCoder-7B-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
67
+ NextCoder-7B-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
68
+ NextCoder-7B-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
69
+ NextCoder-7B-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
70
+ NextCoder-7B-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
71
+ NextCoder-7B-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
72
+ NextCoder-7B-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
73
+ NextCoder-7B-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
74
+ NextCoder-7B-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
75
+ NextCoder-7B-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
76
+ NextCoder-7B.imatrix filter=lfs diff=lfs merge=lfs -text
77
+ NextCoder-7B-bf16.gguf filter=lfs diff=lfs merge=lfs -text
NextCoder-7B-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c9ef003576b01d2f2cf0d143b55b91a25a9976c1478ca387f1a5abc89ad9485
3
+ size 15237854624
NextCoder-7B-bf16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d07023263c25233c8cd4ae276e1ba88bc95d37ef013cf39df956c16fbd33b4e0
3
+ size 11287999904
NextCoder-7B-f16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e69c75439050eec157e03f2a99fcea1bb18edd9d176c555cc4ba88406e6a199
3
+ size 11287999904
NextCoder-7B-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883d85a95e3bc0dfc751a15158d560a9c46296903490999fbc366ffdc609be42
3
+ size 3039123168
NextCoder-7B-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63749af3d211df08cf844b4fbfc2569cdd68b951561b0c9fed1207a473d7b8ea
3
+ size 2912966368
NextCoder-7B-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:702567b4ade1789d1923c2c9db7217a9b16988959d321b6bc20fe0ab15787a86
3
+ size 2839336672
NextCoder-7B-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ea06eb09c0fb46441e3ef4f0c2f42017b074176f06225481deaaf81b65c9309
3
+ size 2650904288
NextCoder-7B-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a707d97287cb622f1baa9c8a7b4f95e5deb43dcf290490579b4572bcd1ddf4de
3
+ size 3779692256
NextCoder-7B-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64c64d371c452ed3b7a57c3617790d5cf973b60a1c2189290ba56f9d40ea3e5f
3
+ size 3779692256
NextCoder-7B-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66311fff7a18d695ef643ae6889cbd9bf622e00cb3823f55484c0c1f488a64c0
3
+ size 3450050272
NextCoder-7B-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cf36d8316fc8809a6d8b3ea5b01f6f77994fbf35353953bf750f63db2839c15
3
+ size 3379803872
NextCoder-7B-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c55be864b0adc09b41c7477bac0a7f255d69890a2f43ca4897df6a48a20c2411
3
+ size 4437815008
NextCoder-7B-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e4dd18703488f8ee96571950bee2fba7a6843592e38bae10e6d3324da05e85b
3
+ size 4218474208
NextCoder-7B-q2_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d6f48a01cc5eb20660c8cc9dcdd516fd383791234e2ba89cc814806a28d757
3
+ size 3264112352
NextCoder-7B-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c7ce48da6bdc5fc1ecf645417268fcdd8144e67182983e3fcbd33d67a8705e9
3
+ size 3119347424
NextCoder-7B-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c33e448184f79c8419679e9886b30d0a4a58d87cfee55afee3d5dd0591f36a81
3
+ size 4003505888
NextCoder-7B-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46277cfac5bd0ffa789f85c013ae7ac83a31fccddb3b5718f68eac4c31df78a1
3
+ size 3858740960
NextCoder-7B-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5879376ac07ca42dd6b539ba9afdb294389b6ee868f1453083786279bcc2bef1
3
+ size 4290885344
NextCoder-7B-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e4a8c2b9870245883a725fc20719c7e15fef02643805219d0e3e0006f2a69b5
3
+ size 4766840544
NextCoder-7B-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a969985470e7d5477233516a9133fab826e54052c131ef03248c6fb8b224209c
3
+ size 4777649888
NextCoder-7B-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e2e04b315f151ebea254b1e28392d69b392a91e4ef64197760f2a4f143b425e
3
+ size 4634060512
NextCoder-7B-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00be44a481ec12595f0a8a9cd25e53347eb0e0ce1c9bd57c23dc2fc04fe6e3c5
3
+ size 5242795744
NextCoder-7B-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c106f3468b16f3bff2cb9e6efca0fdd73da43b1b906c022371a4524c681c07ec
3
+ size 5718750944
NextCoder-7B-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97551f76b645aeea23676825e4b94fb40b2cf9ce72c4f8bf375f08d3cb7fc3fe
3
+ size 5527451360
NextCoder-7B-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:984bcab0f9cfceee6cac69993adbc732c4707062a08b162c2b1d71a0f0492dde
3
+ size 5453362912
NextCoder-7B-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92c9e40fb7efa53569d2a19fa32582a0007d7a65ac2312540e04c47a7dca070c
3
+ size 6254200544
NextCoder-7B-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c70ebb789ca6a96514c5a48801f7678e64672adfc6d6ea41ae80cf2424e423bd
3
+ size 8098526624
NextCoder-7B.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b0f3308b27a35b3a6237f856398a6fd4c3caec47afa63320c01fe79b28072e6
3
+ size 4536712
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/Qwen2.5-Coder-7B-Instruct
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
+ tags:
10
+ - code
11
+ - chat
12
+ - microsoft
13
+ - nextcoder
14
+ - selekt
15
+ datasets:
16
+ - microsoft/NextCoderDataset
17
+ - microsoft/NextCoderDataset-Conversational
18
+ - bigcode/commitpackft
19
+ - bigcode/starcoderdata
20
+ ---
21
+
22
+ # <span style="color: #7FFF7F;">NextCoder-7B GGUF Models</span>
23
+
24
+
25
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
26
+
27
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`5dd942de`](https://github.com/ggerganov/llama.cpp/commit/5dd942de5922a22ec8446a4ad2203738dbcb9389).
28
+
29
+
30
+
31
+
32
+
33
+ ---
34
+
35
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
36
+
37
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
38
+
39
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
40
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
41
+
42
+ While this does increase model file size, it significantly improves precision for a given quantization level.
43
+
44
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
45
+
46
+
47
+
48
+
49
+ ---
50
+
51
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
52
+ Click here to get info on choosing the right GGUF model format
53
+ </a>
54
+
55
+ ---
56
+
57
+
58
+
59
+ <!--Begin Original Model Card-->
60
+
61
+
62
+
63
+ # NextCoder-7B
64
+ <p align="center">
65
+ <a href="https://github.com/microsoft/NextCoder">GitHub</a>&nbsp&nbsp | &nbsp&nbsp <a href="https://www.microsoft.com/en-us/research/publication/nextcoder-robust-adaptation-of-code-lms-to-diverse-code-edits/">Paper</a>
66
+ </p>
67
+
68
+ > NextCoder: Robust Adaptation of Code LMs to Diverse Code Edits (ICML'2025)
69
+
70
+ ## Introduction
71
+
72
+ NextCoder is the latest series of Code-Editing large language models developed using the Qwen2.5-Coder Instruct variants as base and trained with novel Selective Knowledge Transfer finetuning methodology as introduced in the paper. NextCoder family model comes in 3 different sizes 7, 14, 32 billion parameters, to meet the needs of different developers.
73
+ Following are the key improvements:
74
+ - Significantly improvements in **code editing**, NextCoder-32B has performing on par with GPT-4o on complex benchmarks like Aider-Polyglot with performance increment of 44% from their base model.
75
+ - No loss of generalizibility, due to our new finetuning method **SeleKT**
76
+ - **Long-context Support** up to 32K tokens.
77
+
78
+ **This repo contains the NextCoder-7B model**, which has the following features:
79
+ - Type: Causal Language Models
80
+ - Training Stage: Post-training with SeleKT
81
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
82
+ - Number of Parameters: 7.61B
83
+ - Number of Paramaters (Non-Embedding): 6.53B
84
+ - Number of Layers: 28
85
+ - Number of Attention Heads (GQA): 28 for Q and 4 for KV
86
+
87
+ For more details, please refer to our [blog](), [GitHub](https://github.com/microsoft/NextCoder), [Paper](https://www.microsoft.com/en-us/research/publication/nextcoder-robust-adaptation-of-code-lms-to-diverse-code-edits/).
88
+
89
+ ## Requirements
90
+
91
+ The code of NextCoder is based on Qwen2.5 base models which has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
92
+
93
+ With `transformers<4.37.0`, you will encounter the following error:
94
+ ```
95
+ KeyError: 'qwen2'
96
+ ```
97
+
98
+ ## Quickstart
99
+
100
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
101
+
102
+ ```python
103
+ from transformers import AutoModelForCausalLM, AutoTokenizer
104
+
105
+ model_name = "microsoft/NextCoder-7B"
106
+
107
+ model = AutoModelForCausalLM.from_pretrained(
108
+ model_name,
109
+ torch_dtype="auto",
110
+ device_map="auto",
111
+ )
112
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
113
+
114
+ prompt = """
115
+ Fix the following function that divides two numbers to handle all the edge cases:
116
+
117
+ def divide(a, b)
118
+ returm a/b
119
+ """
120
+ messages = [
121
+ {"role": "user", "content": prompt}
122
+ ]
123
+ text = tokenizer.apply_chat_template(
124
+ messages,
125
+ tokenize=False,
126
+ add_generation_prompt=True
127
+ )
128
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
129
+
130
+ generated_ids = model.generate(
131
+ **model_inputs,
132
+ max_new_tokens=1024
133
+ )
134
+ generated_ids = [
135
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
136
+ ]
137
+
138
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
139
+ ```
140
+ ## Evaluation and Performance
141
+
142
+ | Models | HUMANEVALFIX | CANITEDIT | AIDER | POLYGLOT |
143
+ |--------|---------------|-----------|-------|----------|
144
+ | QwenCoder-2.5-3B | 73.2 | 37.1 | 36.8 | - |
145
+ | QwenCoder-2.5-3B-LoRA | 64.6 | 36.2 | 35.8 | - |
146
+ | QwenCoder-2.5-3B-SFT | 76.2 | 32.4 | 30.1 | - |
147
+ | **NextCoder-3B** | 75.6 | 42.4 | 37.6 | - |
148
+ | QwenCoder-2.5-7B | 73.8 | 48.1 | 59.4 | - |
149
+ | QwenCoder-2.5-7B-LoRA | 70.7 | 44.3 | 40.6 | - |
150
+ | QwenCoder-2.5-7B-SFT | 70.1 | 36.7 | 48.9 | - |
151
+ | **NextCoder-7B** | 81.1 | 50.5 | 65.7 | - |
152
+ | QwenCoder-2.5-14B | 87.8 | 58.1 | 66.9 | 9.3 |
153
+ | QwenCoder-2.5-14B-LoRA | 78.0 | 50.9 | 66.2 | 5.3 |
154
+ | QwenCoder-2.5-14B-SFT | 79.9 | 42.4 | 36.8 | 3.1 |
155
+ | **NextCoder-14B** | 89.8 | 60.2 | 72.2 | 12.2 |
156
+ | QwenCoder-2.5-32B | **90.2** | 61.0 | 72.9 | 16.4 |
157
+ | QwenCoder-2.5-32B-LoRA | 82.3 | 52.4 | 60.2 | 6.7 |
158
+ | QwenCoder-2.5-32B-SFT | 81.7 | 49.5 | 66.9 | 8.4 |
159
+ | **NextCoder-32B** | 88.9 | **62.4** | **74.7** | **23.6** |
160
+
161
+ *Comparison of base QwenCoder-2.5 models of different sizes and their SELEKT-enhanced versions across three code editing benchmarks.*
162
+
163
+ **Detailed evaluation results are reported in this [📑 paper](https://www.microsoft.com/en-us/research/publication/nextcoder-robust-adaptation-of-code-lms-to-diverse-code-edits/).**
164
+
165
+ ## Responsible AI Use
166
+ The base models (from the QwenCoder-2.5 family) are suspectible to malicious prompts and may generate or execute harmful code. Our finetuning does not enhance or impede such behaviors. The users should use the models and their outputs responsibly and with caution. Model outputs should be subjected to additional analysis, including manual inspection, and sandboxing before execution.
167
+
168
+ ## Citation
169
+
170
+ ```bibtex
171
+ @inproceedings{aggarwal2025nextcoder,
172
+ author = {Aggarwal, Tushar and Singh, Swayam and Awasthi, Abhijeet and Kanade, Aditya and Natarajan, Nagarajan},
173
+ title = {NextCoder: Robust Adaptation of Code LMs to Diverse Code Edits},
174
+ booktitle = {International Conference on Machine Learning},
175
+ year = {2025},
176
+ url = {https://www.microsoft.com/en-us/research/publication/nextcoder-robust-adaptation-of-code-lms-to-diverse-code-edits/},
177
+ }
178
+ ```
179
+
180
+ <!--End Original Model Card-->
181
+
182
+ ---
183
+
184
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
185
+
186
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
187
+
188
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
189
+
190
+
191
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
192
+
193
+ 💬 **How to test**:
194
+ Choose an **AI assistant type**:
195
+ - `TurboLLM` (GPT-4.1-mini)
196
+ - `HugLLM` (Hugginface Open-source models)
197
+ - `TestLLM` (Experimental CPU-only)
198
+
199
+ ### **What I’m Testing**
200
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
201
+ - **Function calling** against live network services
202
+ - **How small can a model go** while still handling:
203
+ - Automated **Nmap security scans**
204
+ - **Quantum-readiness checks**
205
+ - **Network Monitoring tasks**
206
+
207
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
208
+ - ✅ **Zero-configuration setup**
209
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
210
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
211
+
212
+ ### **Other Assistants**
213
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
214
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
215
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
216
+ - **Real-time network diagnostics and monitoring**
217
+ - **Security Audits**
218
+ - **Penetration testing** (Nmap/Metasploit)
219
+
220
+ 🔵 **HugLLM** – Latest Open-source models:
221
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
222
+
223
+ ### 💡 **Example commands you could test**:
224
+ 1. `"Give me info on my websites SSL certificate"`
225
+ 2. `"Check if my server is using quantum safe encyption for communication"`
226
+ 3. `"Run a comprehensive security audit on my server"`
227
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
228
+
229
+ ### Final Word
230
+
231
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
232
+
233
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
234
+
235
+ I'm also open to job opportunities or sponsorship.
236
+
237
+ Thank you! 😊