Mungert commited on
Commit
0b7a50d
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
.gitattributes ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ functionary-small-v3.2-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ functionary-small-v3.2-f16-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
38
+ functionary-small-v3.2-bf16-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ functionary-small-v3.2-f16-q6_k.gguf filter=lfs diff=lfs merge=lfs -text
40
+ functionary-small-v3.2-bf16-q6_k.gguf filter=lfs diff=lfs merge=lfs -text
41
+ functionary-small-v3.2-f16-q4_k.gguf filter=lfs diff=lfs merge=lfs -text
42
+ functionary-small-v3.2-bf16-q4_k.gguf filter=lfs diff=lfs merge=lfs -text
43
+ functionary-small-v3.2-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
44
+ functionary-small-v3.2-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
45
+ functionary-small-v3.2-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
46
+ functionary-small-v3.2-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
47
+ functionary-small-v3.2-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ functionary-small-v3.2-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
49
+ functionary-small-v3.2-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
50
+ functionary-small-v3.2-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
51
+ functionary-small-v3.2-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
52
+ functionary-small-v3.2-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
53
+ functionary-small-v3.2-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
54
+ functionary-small-v3.2-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ functionary-small-v3.2-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
56
+ functionary-small-v3.2-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
57
+ functionary-small-v3.2-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
58
+ functionary-small-v3.2-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
59
+ functionary-small-v3.2-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
60
+ functionary-small-v3.2-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
61
+ functionary-small-v3.2-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
62
+ functionary-small-v3.2-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
63
+ functionary-small-v3.2-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
64
+ functionary-small-v3.2-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
65
+ functionary-small-v3.2-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
66
+ functionary-small-v3.2-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
67
+ functionary-small-v3.2-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
68
+ functionary-small-v3.2-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
69
+ functionary-small-v3.2-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
70
+ functionary-small-v3.2-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
71
+ functionary-small-v3.2-iq1_s.gguf filter=lfs diff=lfs merge=lfs -text
72
+ functionary-small-v3.2-iq1_m.gguf filter=lfs diff=lfs merge=lfs -text
73
+ functionary-small-v3.2-tq1_0.gguf filter=lfs diff=lfs merge=lfs -text
74
+ functionary-small-v3.2-tq2_0.gguf filter=lfs diff=lfs merge=lfs -text
75
+ functionary-small-v3.2-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
76
+ functionary-small-v3.2-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
77
+ functionary-small-v3.2-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
78
+ functionary-small-v3.2-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
79
+ functionary-small-v3.2.imatrix filter=lfs diff=lfs merge=lfs -text
80
+ functionary-small-v3.2-bf16.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # <span style="color: #7FFF7F;">functionary-small-v3.2 GGUF Models</span>
6
+
7
+ ## **Choosing the Right Model Format**
8
+
9
+ Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
10
+
11
+ ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
12
+ - A 16-bit floating-point format designed for **faster computation** while retaining good precision.
13
+ - Provides **similar dynamic range** as FP32 but with **lower memory usage**.
14
+ - Recommended if your hardware supports **BF16 acceleration** (check your device’s specs).
15
+ - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
16
+
17
+ 📌 **Use BF16 if:**
18
+ ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
19
+ ✔ You want **higher precision** while saving memory.
20
+ ✔ You plan to **requantize** the model into another format.
21
+
22
+ 📌 **Avoid BF16 if:**
23
+ ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
24
+ ❌ You need compatibility with older devices that lack BF16 optimization.
25
+
26
+ ---
27
+
28
+ ### **F16 (Float 16) – More widely supported than BF16**
29
+ - A 16-bit floating-point **high precision** but with less of range of values than BF16.
30
+ - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
31
+ - Slightly lower numerical precision than BF16 but generally sufficient for inference.
32
+
33
+ 📌 **Use F16 if:**
34
+ ✔ Your hardware supports **FP16** but **not BF16**.
35
+ ✔ You need a **balance between speed, memory usage, and accuracy**.
36
+ ✔ You are running on a **GPU** or another device optimized for FP16 computations.
37
+
38
+ 📌 **Avoid F16 if:**
39
+ ❌ Your device lacks **native FP16 support** (it may run slower than expected).
40
+ ❌ You have memory limitations.
41
+
42
+ ---
43
+
44
+ ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
45
+ Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
46
+ - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
47
+ - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
48
+
49
+ 📌 **Use Quantized Models if:**
50
+ ✔ You are running inference on a **CPU** and need an optimized model.
51
+ ✔ Your device has **low VRAM** and cannot load full-precision models.
52
+ ✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
53
+
54
+ 📌 **Avoid Quantized Models if:**
55
+ ❌ You need **maximum accuracy** (full-precision models are better for this).
56
+ ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
57
+
58
+ ---
59
+
60
+ ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
61
+ These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
62
+
63
+ - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
64
+ - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
65
+ - **Trade-off**: Lower accuracy compared to higher-bit quantizations.
66
+
67
+ - **IQ3_S**: Small block size for **maximum memory efficiency**.
68
+ - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
69
+
70
+ - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
71
+ - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
72
+
73
+ - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
74
+ - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
75
+
76
+ - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
77
+ - **Use case**: Best for **ARM-based devices** or **low-memory environments**.
78
+
79
+ ---
80
+
81
+ ### **Summary Table: Model Format Selection**
82
+
83
+ | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
84
+ |--------------|------------|---------------|----------------------|---------------|
85
+ | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
86
+ | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn’t available |
87
+ | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
88
+ | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
89
+ | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
90
+ | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
91
+ | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
92
+
93
+ ---
94
+
95
+ ## **Included Files & Details**
96
+
97
+ ### `functionary-small-v3.2-bf16.gguf`
98
+ - Model weights preserved in **BF16**.
99
+ - Use this if you want to **requantize** the model into a different format.
100
+ - Best if your device supports **BF16 acceleration**.
101
+
102
+ ### `functionary-small-v3.2-f16.gguf`
103
+ - Model weights stored in **F16**.
104
+ - Use if your device supports **FP16**, especially if BF16 is not available.
105
+
106
+ ### `functionary-small-v3.2-bf16-q8_0.gguf`
107
+ - **Output & embeddings** remain in **BF16**.
108
+ - All other layers quantized to **Q8_0**.
109
+ - Use if your device supports **BF16** and you want a quantized version.
110
+
111
+ ### `functionary-small-v3.2-f16-q8_0.gguf`
112
+ - **Output & embeddings** remain in **F16**.
113
+ - All other layers quantized to **Q8_0**.
114
+
115
+ ### `functionary-small-v3.2-q4_k.gguf`
116
+ - **Output & embeddings** quantized to **Q8_0**.
117
+ - All other layers quantized to **Q4_K**.
118
+ - Good for **CPU inference** with limited memory.
119
+
120
+ ### `functionary-small-v3.2-q4_k_s.gguf`
121
+ - Smallest **Q4_K** variant, using less memory at the cost of accuracy.
122
+ - Best for **very low-memory setups**.
123
+
124
+ ### `functionary-small-v3.2-q6_k.gguf`
125
+ - **Output & embeddings** quantized to **Q8_0**.
126
+ - All other layers quantized to **Q6_K** .
127
+
128
+ ### `functionary-small-v3.2-q8_0.gguf`
129
+ - Fully **Q8** quantized model for better accuracy.
130
+ - Requires **more memory** but offers higher precision.
131
+
132
+ ### `functionary-small-v3.2-iq3_xs.gguf`
133
+ - **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
134
+ - Best for **ultra-low-memory devices**.
135
+
136
+ ### `functionary-small-v3.2-iq3_m.gguf`
137
+ - **IQ3_M** quantization, offering a **medium block size** for better accuracy.
138
+ - Suitable for **low-memory devices**.
139
+
140
+ ### `functionary-small-v3.2-q4_0.gguf`
141
+ - Pure **Q4_0** quantization, optimized for **ARM devices**.
142
+ - Best for **low-memory environments**.
143
+ - Prefer IQ4_NL for better accuracy.
144
+
145
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
146
+
147
+ Please click like ❤ . Also I’d really appreciate it if you could test my Network Monitor Assistant at 👉 [Network Monitor Assitant](https://readyforquantum.com).
148
+
149
+ 💬 Click the **chat icon** (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.
150
+
151
+ ### What I'm Testing
152
+
153
+ I'm experimenting with **function calling** against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".
154
+
155
+ 🟡 **TestLLM** – Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a time—still working on scaling!). If you're curious, I'd be happy to share how it works! .
156
+
157
+ ### The other Available AI Assistants
158
+
159
+ 🟢 **TurboLLM** – Uses **gpt-4o-mini** Fast! . Note: tokens are limited since OpenAI models are pricey, but you can [Login](https://readyforquantum.com) or [Download](https://readyforquantum.com/download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) the Quantum Network Monitor agent to get more tokens, Alternatively use the TestLLM .
160
+
161
+ 🔵 **HugLLM** – Runs **open-source Hugging Face models** Fast, Runs small models (≈8B) hence lower quality, Get 2x more tokens (subject to Hugging Face API availability)
162
+
163
+ ### Final Word
164
+
165
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
166
+
167
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
168
+
169
+ I'm also open to job opportunities or sponsorship.
170
+
171
+ Thank you! 😊
172
+
173
+
174
+ # Model Card for functionary-small-v3.2
175
+
176
+ **This model was based on [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**
177
+
178
+ [https://github.com/MeetKai/functionary](https://github.com/MeetKai/functionary)
179
+
180
+ <img src="https://huggingface.co/meetkai/functionary-medium-v2.2/resolve/main/functionary_logo.jpg" alt="Functionary Logo" width="300"/>
181
+
182
+ Functionary is a language model that can interpret and execute functions/plugins.
183
+
184
+ The model determines when to execute functions, whether in parallel or serially, and can understand their outputs. It only triggers functions as needed. Function definitions are given as JSON Schema Objects, similar to OpenAI GPT function calls.
185
+
186
+ ## Key Features
187
+
188
+ - Intelligent **parallel tool use**
189
+ - Able to analyze functions/tools outputs and provide relevant responses **grounded in the outputs**
190
+ - Able to decide **when to not use tools/call functions** and provide normal chat response
191
+ - Truly one of the best open-source alternative to GPT-4
192
+ - Support code interpreter
193
+
194
+ ## How to Get Started
195
+
196
+ We provide custom code for parsing raw model responses into a JSON object containing `role`, `content` and `tool_calls` fields. This enables the users to read the function-calling output of the model easily.
197
+
198
+ ```python
199
+ from transformers import AutoModelForCausalLM, AutoTokenizer
200
+
201
+ tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-small-v3.2")
202
+ model = AutoModelForCausalLM.from_pretrained("meetkai/functionary-small-v3.2", device_map="auto", trust_remote_code=True)
203
+
204
+ tools = [
205
+ {
206
+ "type": "function",
207
+ "function": {
208
+ "name": "get_current_weather",
209
+ "description": "Get the current weather",
210
+ "parameters": {
211
+ "type": "object",
212
+ "properties": {
213
+ "location": {
214
+ "type": "string",
215
+ "description": "The city and state, e.g. San Francisco, CA"
216
+ }
217
+ },
218
+ "required": ["location"]
219
+ }
220
+ }
221
+ }
222
+ ]
223
+ messages = [{"role": "user", "content": "What is the weather in Istanbul and Singapore respectively?"}]
224
+
225
+ final_prompt = tokenizer.apply_chat_template(messages, tools, add_generation_prompt=True, tokenize=False)
226
+ inputs = tokenizer(final_prompt, return_tensors="pt").to("cuda")
227
+ pred = model.generate_tool_use(**inputs, max_new_tokens=128, tokenizer=tokenizer)
228
+ print(tokenizer.decode(pred.cpu()[0]))
229
+ ```
230
+
231
+ ## Prompt Template
232
+
233
+ We convert function definitions to a similar text to TypeScript definitions. Then we inject these definitions as system prompts. After that, we inject the default system prompt. Then we start the conversation messages.
234
+
235
+ This formatting is also available via our vLLM server which we process the functions into Typescript definitions encapsulated in a system message using a pre-defined Transformers Jinja chat template. This means that the lists of messages can be formatted for you with the apply_chat_template() method within our server:
236
+
237
+ ```python
238
+ from openai import OpenAI
239
+
240
+ client = OpenAI(base_url="http://localhost:8000/v1", api_key="functionary")
241
+
242
+ client.chat.completions.create(
243
+ model="path/to/functionary/model/",
244
+ messages=[{"role": "user",
245
+ "content": "What is the weather for Istanbul?"}
246
+ ],
247
+ tools=[{
248
+ "type": "function",
249
+ "function": {
250
+ "name": "get_current_weather",
251
+ "description": "Get the current weather",
252
+ "parameters": {
253
+ "type": "object",
254
+ "properties": {
255
+ "location": {
256
+ "type": "string",
257
+ "description": "The city and state, e.g. San Francisco, CA"
258
+ }
259
+ },
260
+ "required": ["location"]
261
+ }
262
+ }
263
+ }],
264
+ tool_choice="auto"
265
+ )
266
+ ```
267
+
268
+ will yield:
269
+
270
+ ```
271
+ <|start_header_id|>system<|end_header_id|>
272
+
273
+ You are capable of executing available function(s) if required.
274
+ Only execute function(s) when absolutely necessary.
275
+ Ask for the required input to:recipient==all
276
+ Use JSON for function arguments.
277
+ Respond in this format:
278
+ >>>${recipient}
279
+ ${content}
280
+ Available functions:
281
+ // Supported function definitions that should be called when necessary.
282
+ namespace functions {
283
+
284
+ // Get the current weather
285
+ type get_current_weather = (_: {
286
+ // The city and state, e.g. San Francisco, CA
287
+ location: string,
288
+ }) => any;
289
+
290
+ } // namespace functions<|eot_id|><|start_header_id|>user<|end_header_id|>
291
+
292
+ What is the weather for Istanbul?
293
+ ```
294
+
295
+ A more detailed example is provided [here](https://github.com/MeetKai/functionary/blob/main/tests/prompt_test_v3.llama3.txt).
296
+
297
+ ## Run the model
298
+
299
+ We encourage users to run our models using our OpenAI-compatible vLLM server [here](https://github.com/MeetKai/functionary).
300
+
301
+ # The MeetKai Team
302
+ ![MeetKai Logo](https://huggingface.co/meetkai/functionary-medium-v2.2/resolve/main/meetkai_logo.png "MeetKai Logo")
functionary-small-v3.2-bf16-q4_k.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b2754f09c2510db6df817745c512a88d525f8a49ed3d461530689d6214c4cc8
3
+ size 6295651552
functionary-small-v3.2-bf16-q6_k.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e2fcc977acfa7e882cbe4e64a22a373b726f649e988a27fbb942cb865acf86
3
+ size 7835485408
functionary-small-v3.2-bf16-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c265455479dcb9742805232f7760b287671499250cd1e16f11f447a5181ae9b
3
+ size 9525789632
functionary-small-v3.2-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d38936c82fcc1f4b94dd645caa9c0b00e7243cf083bcab8f5a4d062cb9a44da9
3
+ size 16068903872
functionary-small-v3.2-f16-q4_k.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aec397bfc9c793633ea0faad56fe647cbd1c61092939f40a4563eec9922f9b17
3
+ size 6295651552
functionary-small-v3.2-f16-q6_k.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc4692955a534086241f03738d36daedab214a9ea051bbd69ad27f071644c9b
3
+ size 7835485408
functionary-small-v3.2-f16-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0292c28a8ef92fd471d234d09fe1eb8b67c4d21b2e2e30253f57111191cd6b16
3
+ size 9525789632
functionary-small-v3.2-iq1_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18b795a3e68ac6f4c5fbfdab9148757864278e2fc1ace76a2fcdb54fe72b424b
3
+ size 2161984736
functionary-small-v3.2-iq1_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f691beec0d2fb2d264c6841ecf812870cbaded2b6707c6bf01e9f7ecce75882
3
+ size 2019640544
functionary-small-v3.2-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edc5cdf23468ebc20419cfedbf3da00c63b72d39896009b3fbcc785c6078e12e
3
+ size 2948293856
functionary-small-v3.2-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5972fa4a5fc5fadc310d5dad7832881e5bb752ab9f1e2b81a38ae50283126bb
3
+ size 2758501600
functionary-small-v3.2-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3e155c1c59aab26294fcd73fc9bae90ce76f4689bf7c1f3a91b9cdd6aa8f04
3
+ size 2605794528
functionary-small-v3.2-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:accb5222314c2a7bef49a9163ab0a3b9a9a44c1d625ff15ed0e579ab68abcfbf
3
+ size 2399225056
functionary-small-v3.2-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed1f546323758efc2d245c5157f752439af14b096d72a1296b04c02eb595dc15
3
+ size 3784836320
functionary-small-v3.2-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:696a28f06b27b4dc91c50e392314bfd50fc40d3e2e97561d863928adad470003
3
+ size 3682338016
functionary-small-v3.2-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e6a194708002acab88bd3c0f373e40d0c2621b1c83e6df13ba9bb611775b199
3
+ size 3518760160
functionary-small-v3.2-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70ce5756417d1bc616d4a1c52143479e57ea78ed7aa56cdcfa8e0955a8d695e
3
+ size 3274925280
functionary-small-v3.2-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e088c3ea878a995a1976693bcc45eb2fe59370ff9a4fa82ea166e732183eaee9
3
+ size 4678001888
functionary-small-v3.2-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0845d9c26fb53142f5d75a4a4a2e744aad8dad2bcd4f6706ccc525895a39d232
3
+ size 4447675616
functionary-small-v3.2-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eb19ff2479e8bdf6e252a5fd8cfd3d2aa3d1b1e5be531528b2ad3b1b250976e
3
+ size 2988827872
functionary-small-v3.2-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3dd17e86d1932642b6487546f47448e35c311960c6e0cb0388f72948a436ef1
3
+ size 4018930912
functionary-small-v3.2-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db2865606e355285d1c0eeff7d4234b4315543e5b21e3307a58cc52b7dba4b81
3
+ size 3664512224
functionary-small-v3.2-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9e5f542327389c7067edf2e5c45556491d7ebf90d093882b21668f0252e937f
3
+ size 4525786336
functionary-small-v3.2-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc64ae7b122d807bd85f27f03d004d19c03334a815b40e64f1cd6b0c174f8a36
3
+ size 5027661024
functionary-small-v3.2-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7499c1a82a1c13870636f96092da754b3457acb270df53311ec579e2246ea73
3
+ size 4920747232
functionary-small-v3.2-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f547b7b869b5929b1d5544fb536b0f95c5136f7b0da0e6ab0061c5e073c49ca
3
+ size 4692681952
functionary-small-v3.2-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fcee8948e4d438075d1b6ffb732e23f0db1d2dec658332e19e1a147705790b9
3
+ size 5529535712
functionary-small-v3.2-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43119da7c0c30dc4892e7e834ce77eacef346ec179fbbd417a0b3929e445a924
3
+ size 6031410400
functionary-small-v3.2-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab3aca610905fe8cc3ca93819d3cc657b987496f524fc02fd273f8f8cd089a2d
3
+ size 5733000416
functionary-small-v3.2-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e67f1e1db27b1989284945f70e1edf8c91a2b9bd4553f36ef8ced446eaa0720
3
+ size 5599306976
functionary-small-v3.2-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65b6e340891b55ce8eccd0cc78f03d3caa38e1c1e6e7369f1a8752452c201254
3
+ size 6596019424
functionary-small-v3.2-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8e568deac218efe8b49fd663a6113957d1f673e4cfd89cc6162256821df495b
3
+ size 8540783552
functionary-small-v3.2-tq1_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:150796f5717b245d1cf45e67e1a26305d1117493be429d74897ad56c8da89ec6
3
+ size 2207556832
functionary-small-v3.2-tq2_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2c1098ebbeabc89353d88ed97c6a8cf78d35dff3e5d65224a9223fd50631760
3
+ size 2534712544
functionary-small-v3.2.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4571b47027d3b1668d525289110dd602ef72d9b6130f98b8e35447821a10853a
3
+ size 4988170