File size: 17,408 Bytes
0e3c794 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
---
license: mit
---
# <span style="color: #7FFF7F;">functionary-v4r-small-preview GGUF Models</span>
## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
### **Benchmark Context**
All tests conducted on **Llama-3-8B-Instruct** using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations
### **Method**
- **Dynamic Precision Allocation**:
- First/Last 25% of layers β IQ4_XS (selected layers)
- Middle 50% β IQ2_XXS/IQ3_S (increase efficiency)
- **Critical Component Protection**:
- Embeddings/output layers use Q5_K
- Reduces error propagation by 38% vs standard 1-2bit
### **Quantization Performance Comparison (Llama-3-8B)**
| Quantization | Standard PPL | DynamicGate PPL | Ξ PPL | Std Size | DG Size | Ξ Size | Std Speed | DG Speed |
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
| IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
| IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
| IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
| IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
| IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
**Key**:
- PPL = Perplexity (lower is better)
- Ξ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead
**Key Improvements:**
- π₯ **IQ1_M** shows massive 43.9% perplexity reduction (27.46 β 15.41)
- π **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
- β‘ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
**Tradeoffs:**
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)
### **When to Use These Models**
π **Fitting models into GPU VRAM**
β **Memory-constrained deployments**
β **Cpu and Edge Devices** where 1-2bit errors can be tolerated
β **Research** into ultra-low-bit quantization
## **Choosing the Right Model Format**
Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
### **BF16 (Brain Float 16) β Use if BF16 acceleration is available**
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
π **Use BF16 if:**
β Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
β You want **higher precision** while saving memory.
β You plan to **requantize** the model into another format.
π **Avoid BF16 if:**
β Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
β You need compatibility with older devices that lack BF16 optimization.
---
### **F16 (Float 16) β More widely supported than BF16**
- A 16-bit floating-point **high precision** but with less of range of values than BF16.
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
π **Use F16 if:**
β Your hardware supports **FP16** but **not BF16**.
β You need a **balance between speed, memory usage, and accuracy**.
β You are running on a **GPU** or another device optimized for FP16 computations.
π **Avoid F16 if:**
β Your device lacks **native FP16 support** (it may run slower than expected).
β You have memory limitations.
---
### **Quantized Models (Q4_K, Q6_K, Q8, etc.) β For CPU & Low-VRAM Inference**
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- **Lower-bit models (Q4_K)** β **Best for minimal memory usage**, may have lower precision.
- **Higher-bit models (Q6_K, Q8_0)** β **Better accuracy**, requires more memory.
π **Use Quantized Models if:**
β You are running inference on a **CPU** and need an optimized model.
β Your device has **low VRAM** and cannot load full-precision models.
β You want to reduce **memory footprint** while keeping reasonable accuracy.
π **Avoid Quantized Models if:**
β You need **maximum accuracy** (full-precision models are better for this).
β Your hardware has enough VRAM for higher-precision formats (BF16/F16).
---
### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
- **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
- **Trade-off**: Lower accuracy compared to higher-bit quantizations.
- **IQ3_S**: Small block size for **maximum memory efficiency**.
- **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
- **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
- **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
- **Use case**: Best for **ARM-based devices** or **low-memory environments**.
---
### **Summary Table: Model Format Selection**
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|--------------|------------|---------------|----------------------|---------------|
| **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
| **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
| **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
| **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
| **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
| **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
| **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
---
## **Included Files & Details**
### `functionary-v4r-small-preview-bf16.gguf`
- Model weights preserved in **BF16**.
- Use this if you want to **requantize** the model into a different format.
- Best if your device supports **BF16 acceleration**.
### `functionary-v4r-small-preview-f16.gguf`
- Model weights stored in **F16**.
- Use if your device supports **FP16**, especially if BF16 is not available.
### `functionary-v4r-small-preview-bf16-q8_0.gguf`
- **Output & embeddings** remain in **BF16**.
- All other layers quantized to **Q8_0**.
- Use if your device supports **BF16** and you want a quantized version.
### `functionary-v4r-small-preview-f16-q8_0.gguf`
- **Output & embeddings** remain in **F16**.
- All other layers quantized to **Q8_0**.
### `functionary-v4r-small-preview-q4_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q4_K**.
- Good for **CPU inference** with limited memory.
### `functionary-v4r-small-preview-q4_k_s.gguf`
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.
- Best for **very low-memory setups**.
### `functionary-v4r-small-preview-q6_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q6_K** .
### `functionary-v4r-small-preview-q8_0.gguf`
- Fully **Q8** quantized model for better accuracy.
- Requires **more memory** but offers higher precision.
### `functionary-v4r-small-preview-iq3_xs.gguf`
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
- Best for **ultra-low-memory devices**.
### `functionary-v4r-small-preview-iq3_m.gguf`
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.
- Suitable for **low-memory devices**.
### `functionary-v4r-small-preview-q4_0.gguf`
- Pure **Q4_0** quantization, optimized for **ARM devices**.
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.
# <span id="testllm" style="color: #7F7FFF;">π If you find these models useful</span>
Please click like β€ . Also I'd really appreciate it if you could test my Network Monitor Assistant at π [Network Monitor Assitant](https://readyforquantum.com).
π¬ Click the **chat icon** (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.
### What I'm Testing
I'm experimenting with **function calling** against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".
π‘ **TestLLM** β Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a timeβstill working on scaling!). If you're curious, I'd be happy to share how it works! .
### The other Available AI Assistants
π’ **TurboLLM** β Uses **gpt-4o-mini** Fast! . Note: tokens are limited since OpenAI models are pricey, but you can [Login](https://readyforquantum.com) or [Download](https://readyforquantum.com/download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) the Quantum Network Monitor agent to get more tokens, Alternatively use the TestLLM .
π΅ **HugLLM** β Runs **open-source Hugging Face models** Fast, Runs small models (β8B) hence lower quality, Get 2x more tokens (subject to Hugging Face API availability)
### Final Word
I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIβall out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) β. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! π
# Model Card for meetkai/functionary-v4r-small-preview
**This model was based on [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**
[https://github.com/MeetKai/functionary](https://github.com/MeetKai/functionary)
<img src="https://huggingface.co/meetkai/functionary-medium-v2.2/resolve/main/functionary_logo.jpg" alt="Functionary Logo" width="300"/>
Functionary is a language model that can interpret and execute functions/plugins.
The model determines when to execute functions, whether in parallel or serially, and can understand their outputs. It only triggers functions as needed. Function definitions are given as JSON Schema Objects, similar to OpenAI GPT function calls.
## Key Features
- Generate the reasoning before deciding tool uses
- Intelligent **parallel tool use**
- Able to analyze functions/tools outputs and provide relevant responses **grounded in the outputs**
- Able to decide **when to not use tools/call functions** and provide normal chat response
- Truly one of the best open-source alternative to GPT-4
- Support code interpreter
## How to Get Started
We provide custom code for parsing raw model responses into a JSON object containing role, content and tool_calls fields. This enables the users to read the function-calling output of the model easily.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-v4r-small-preview")
model = AutoModelForCausalLM.from_pretrained("meetkai/functionary-v4r-small-preview", device_map="auto", trust_remote_code=True)
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
}
},
"required": ["location"]
}
}
}
]
# add this to make the model generate the reasoning first
tools.append({"type": "reasoning"})
messages = [{"role": "user", "content": "What is the weather in Istanbul and Singapore respectively?"}]
final_prompt = tokenizer.apply_chat_template(messages, tools, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(final_prompt, return_tensors="pt").to("cuda")
pred = model.generate_tool_use(**inputs, max_new_tokens=128, tokenizer=tokenizer)
print(tokenizer.decode(pred.cpu()[0]))
```
## Prompt Template
We convert function definitions to a similar text to TypeScript definitions. Then we inject these definitions as system prompts. After that, we inject the default system prompt. Then we start the conversation messages.
This formatting is also available via our vLLM server which we process the functions into Typescript definitions encapsulated in a system message using a pre-defined Transformers Jinja chat template. This means that the lists of messages can be formatted for you with the apply_chat_template() method within our server:
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="functionary")
messages = [{"role": "user",
"content": "What is the weather for Istanbul?"}
]
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
}
},
"required": ["location"]
}
}
}]
# Add reasoning type to make the model generate the reasoning first
tools.append({"type": "reasoning"})
client.chat.completions.create(
model="path/to/functionary/model/",
messages=messages,
tools=tools,
tool_choice="auto"
)
```
will yield:
```
<|start_header_id|>system<|end_header_id|>
Reasoning Mode: On
Cutting Knowledge Date: December 2023
You have access to the following functions:
Use the function 'get_current_weather' to 'Get the current weather'
{"name": "get_current_weather", "description": "Get the current weather", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}}, "required": ["location"]}}
Think very carefully before calling functions.
If a you choose to call a function ONLY reply in the following format:
<{start_tag}={function_name}>{parameters}{end_tag}
where
start_tag => `<function`
parameters => a JSON dict with the function argument name as key and function argument value as value.
end_tag => `</function>`
Here is an example,
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
<|eot_id|><|start_header_id|>user<|end_header_id|>
What is the weather for Istanbul?
```
## Run the model
We encourage users to run our models using our OpenAI-compatible vLLM server [here](https://github.com/MeetKai/functionary).
# The MeetKai Team
 |