File size: 7,863 Bytes
20e4eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
import whisper

from omni_speech.constants import SPEECH_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN
from omni_speech.conversation import conv_templates, SeparatorStyle
from omni_speech.model.builder import load_pretrained_model, load_pretrained_model_asr
from omni_speech.utils import disable_torch_init
from omni_speech.datasets.preprocess import tokenizer_speech_token
from torch.utils.data import Dataset, DataLoader

import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


# Custom dataset class
class CustomDataset(Dataset):
    def __init__(self, questions, tokenizer, model_config, input_type, mel_size, conv_mode, system_prompt):
        self.questions = questions
        self.tokenizer = tokenizer
        self.model_config = model_config
        self.input_type = input_type
        self.mel_size = mel_size
        self.conv_mode = conv_mode
        self.system_prompt = system_prompt

    def __getitem__(self, index):
        item = self.questions[index]
        speech_file = item["speech"]
        qs = item["conversations"][0]["value"]

        conv = conv_templates[self.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt(self.tokenizer, self.system_prompt)
        # print(prompt)
        # print("----------------")

        speech = whisper.load_audio(speech_file)
        if self.input_type == "raw":
            speech = torch.from_numpy(speech)
            if self.model_config.speech_normalize:
                speech = torch.nn.functional.layer_norm(speech, speech.shape)
        elif self.input_type == "mel":
            speech = whisper.pad_or_trim(speech)
            speech = whisper.log_mel_spectrogram(speech, n_mels=self.mel_size).permute(1, 0)

        input_ids = tokenizer_speech_token(prompt, self.tokenizer, return_tensors='pt')

        return input_ids, speech, torch.LongTensor([speech.shape[0]])

    def __len__(self):
        return len(self.questions)


def collate_fn(batch):
    input_ids, speech_tensors, speech_lengths = zip(*batch)
    input_ids = torch.stack(input_ids, dim=0)
    speech_tensors = torch.stack(speech_tensors, dim=0)
    speech_lengths = torch.stack(speech_lengths, dim=0)
    return input_ids, speech_tensors, speech_lengths


def ctc_postprocess(tokens, blank):
    _toks = tokens.squeeze(0).tolist()
    deduplicated_toks = [v for i, v in enumerate(_toks) if i == 0 or v != _toks[i - 1]]
    hyp = [v for v in deduplicated_toks if v != blank]
    hyp = " ".join(list(map(str, hyp)))
    return hyp

# DataLoader
def create_data_loader(questions, tokenizer, model_config, input_type, mel_size, conv_mode, system_prompt, batch_size=1, num_workers=4):
    assert batch_size == 1, "batch_size must be 1"
    dataset = CustomDataset(questions, tokenizer, model_config, input_type, mel_size, conv_mode, system_prompt)
    data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
    return data_loader


def eval_model(args):
    # Model
    disable_torch_init()
    # model_path = os.path.expanduser(args.model_path)
    tokenizer, model, context_len = load_pretrained_model(args.model_path, args.model_base, is_lora=args.is_lora, s2s=args.s2s)

    questions = json.load(open(os.path.expanduser(args.question_file), "r"))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answer_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_list = []

    data_loader = create_data_loader(questions, tokenizer, model.config, args.input_type, args.mel_size, args.conv_mode, args.system_prompt)

    for (input_ids, speech_tensor, speech_length), item in tqdm(zip(data_loader, questions), total=len(questions)):
        idx = item["id"]
        try:
            answer = item["conversations"][1]["value"]
        except:
            answer = None
        input_ids = input_ids.to(device='cuda', non_blocking=True)
        speech_tensor = speech_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True)
        speech_length = speech_length.to(device='cuda', non_blocking=True)

        with torch.inference_mode():
            if args.s2s:
                outputs = model.generate(
                    input_ids,
                    speech=speech_tensor,
                    speech_lengths=speech_length,
                    do_sample=True if args.temperature > 0 else False,
                    temperature=args.temperature,
                    top_p=args.top_p,
                    num_beams=args.num_beams,
                    max_new_tokens=args.max_new_tokens,
                    use_cache=True,
                    streaming_unit_gen=False,
                )
                output_ids, output_units = outputs
            else:
                outputs = model.generate(
                    input_ids,
                    speech=speech_tensor,
                    speech_lengths=speech_length,
                    do_sample=True if args.temperature > 0 else False,
                    temperature=args.temperature,
                    top_p=args.top_p,
                    num_beams=args.num_beams,
                    max_new_tokens=args.max_new_tokens,
                    use_cache=True,
                )
                output_ids = outputs

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
        if args.s2s:
            output_units = ctc_postprocess(output_units, blank=model.config.unit_vocab_size)

        print(f"Preds-{idx}\t{outputs}")
        print(f"Ans-{idx}\t{answer}")
        if args.s2s:
            print(f"U-{idx}\t{output_units}")

        if args.s2s:
            ans_list.append({"question_id": idx, "prediction": outputs, "prediction_units": output_units, "answer": answer})
            # ans_file.write(json.dumps({"question_id": idx, "prediction": outputs, "prediction_units": output_units, "answer": answer}, indent=2) + "\n")
        else:
            ans_list.append({"question_id": idx, "prediction": outputs, "answer": answer})
            # ans_file.write(json.dumps({"question_id": idx, "prediction": outputs, "answer": answer}, indent=2) + "\n")
        # ans_file.flush()
    with open(answers_file, 'w', encoding='utf-8') as f:
        json.dump(ans_list, f, ensure_ascii=False, indent=2)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--question-file", type=str)
    parser.add_argument("--answer-file", type=str)
    parser.add_argument("--conv-mode", type=str, default="v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--max_new_tokens", type=int, default=256)
    parser.add_argument("--input_type", type=str, default="raw")
    parser.add_argument("--mel_size", type=int, default=128)
    parser.add_argument("--s2s", action="store_true", default=False)
    parser.add_argument("--is_lora", action="store_true", default=False)
    parser.add_argument("--system-prompt", type=str, default=None)
    args = parser.parse_args()

    eval_model(args)