File size: 1,525 Bytes
20e4eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
import librosa

# load omni model default, the default init_vision/init_audio/init_tts is True
# if load vision-only model, please set init_audio=False and init_tts=False
# if load audio-only model, please set init_vision=False
model = AutoModel.from_pretrained(
    '/data1/speech/anhnmt2/Speech2Speech/half-streaming-speech-nlp/omni_speech/model/minicpmo/MiniCPM-o-2_6',
    trust_remote_code=True,
    attn_implementation='sdpa', # sdpa or flash_attention_2
    torch_dtype=torch.bfloat16,
    init_vision=True,
    init_audio=True,
    init_tts=True
)


model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('/data1/speech/anhnmt2/Speech2Speech/half-streaming-speech-nlp/omni_speech/model/minicpmo/MiniCPM-o-2_6', trust_remote_code=True)

# In addition to vision-only mode, tts processor and vocos also needs to be initialized
model.init_tts()

mimick_prompt = "Please repeat each user's speech, including voice style and speech content."
audio_input, _ = librosa.load('/data1/speech/namnv59/datahub/Librispeech/test-clean/1089/134686/1089-134686-0001.wav', sr=16000, mono=True)
msgs = [{'role': 'user', 'content': [mimick_prompt,audio_input]}]

res = model.chat(
    msgs=msgs,
    tokenizer=tokenizer,
    sampling=True,
    max_new_tokens=128,
    use_tts_template=True,
    temperature=0.3,
    generate_audio=True,
    output_audio_path='output.wav', # save the tts result to output_audio_path
)

print(res["text"])