|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import copy |
|
|
from dataclasses import dataclass, field |
|
|
import json |
|
|
import logging |
|
|
import pathlib |
|
|
from typing import Dict, Optional, Sequence, List |
|
|
|
|
|
import torch |
|
|
|
|
|
import transformers |
|
|
import tokenizers |
|
|
|
|
|
from omni_speech.constants import IGNORE_INDEX, SPEECH_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN |
|
|
from torch.utils.data import Dataset |
|
|
from omni_speech.train.omni_trainer import OmniTrainer |
|
|
from audiomentations import AddBackgroundNoise, PolarityInversion |
|
|
|
|
|
from omni_speech import conversation as conversation_lib |
|
|
from omni_speech.model import * |
|
|
from omni_speech.utils import * |
|
|
from omni_speech.datasets.preprocess import * |
|
|
import whisper |
|
|
import time |
|
|
|
|
|
@dataclass |
|
|
class ModelArguments: |
|
|
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") |
|
|
version: Optional[str] = field(default="llama_3") |
|
|
freeze_backbone: bool = field(default=False) |
|
|
tune_speech_projector: bool = field(default=False) |
|
|
tune_speech_encoder: bool = field(default=False) |
|
|
tune_speech_generator_only: bool = field(default=False) |
|
|
speech_encoder_type: Optional[str] = field(default=None) |
|
|
speech_encoder: Optional[str] = field(default=None) |
|
|
pretrain_speech_projector: Optional[str] = field(default=None) |
|
|
speech_projector_type: Optional[str] = field(default='linear') |
|
|
speech_generator_type: Optional[str] = field(default='ctc') |
|
|
|
|
|
ctc_decoder_config: str = "(2,4096,32,22016)" |
|
|
ctc_upsample_factor: int = 25 |
|
|
ctc_loss_weight: float = 1.0 |
|
|
unit_vocab_size: int = 1000 |
|
|
speech_encoder_ds_rate: int = 5 |
|
|
speech_encoder_hidden_size: int = 1280 |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class DataArguments: |
|
|
data_path: str = field(default=None, |
|
|
metadata={"help": "Path to the training data."}) |
|
|
dev_path: str = field(default=None, |
|
|
metadata={"help": "Path to the dev data."}) |
|
|
is_multimodal: bool = False |
|
|
input_type: str = field(default="mel") |
|
|
speech_normalize: bool = False |
|
|
mel_size: int = 128 |
|
|
has_tgt_units: bool = False |
|
|
augment_prob: float = field( |
|
|
default=0.0, |
|
|
metadata={"help": "The probability of applying augmentation transform."} |
|
|
) |
|
|
augment_path: str = field(default=None, |
|
|
metadata={"help": "Path to the augment data."}) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class TrainingArguments(transformers.TrainingArguments): |
|
|
cache_dir: Optional[str] = field(default=None) |
|
|
optim: str = field(default="adamw_torch") |
|
|
freeze_speech_projector: bool = field(default=False) |
|
|
model_max_length: int = field( |
|
|
default=512, |
|
|
metadata={ |
|
|
"help": |
|
|
"Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
|
|
}, |
|
|
) |
|
|
double_quant: bool = field( |
|
|
default=True, |
|
|
metadata={"help": "Compress the quantization statistics through double quantization."} |
|
|
) |
|
|
quant_type: str = field( |
|
|
default="nf4", |
|
|
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} |
|
|
) |
|
|
bits: int = field( |
|
|
default=16, |
|
|
metadata={"help": "How many bits to use."} |
|
|
) |
|
|
lora_enable: bool = False |
|
|
lora_r: int = 64 |
|
|
lora_alpha: int = 16 |
|
|
lora_dropout: float = 0.05 |
|
|
lora_weight_path: str = "" |
|
|
lora_bias: str = "none" |
|
|
speech_projector_lr: Optional[float] = None |
|
|
group_by_modality_length: bool = field(default=False) |
|
|
|
|
|
|
|
|
class LazySupervisedDataset(Dataset): |
|
|
"""Dataset for supervised fine-tuning.""" |
|
|
|
|
|
def __init__(self, data_path: str, |
|
|
tokenizer: transformers.PreTrainedTokenizer, |
|
|
data_args: DataArguments): |
|
|
super(LazySupervisedDataset, self).__init__() |
|
|
list_data_dict = json.load(open(data_path, "r")) |
|
|
|
|
|
self.tokenizer = tokenizer |
|
|
self.list_data_dict = list_data_dict |
|
|
self.data_args = data_args |
|
|
if self.data_args.augment_prob != 0.0: |
|
|
with open(self.data_args.augment_path, "r") as f: |
|
|
augment_path_list = f.read().splitlines() |
|
|
self.transform = AddBackgroundNoise( |
|
|
sounds_path=augment_path_list, |
|
|
min_snr_db=5.0, |
|
|
max_snr_db=30.0, |
|
|
noise_transform=PolarityInversion(), |
|
|
p=self.data_args.augment_prob |
|
|
) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.list_data_dict) |
|
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]: |
|
|
|
|
|
num_base_retries = 3 |
|
|
num_final_retries = 300 |
|
|
|
|
|
|
|
|
for attempt_idx in range(num_base_retries): |
|
|
try: |
|
|
sample = self._get_item(i) |
|
|
return sample |
|
|
except Exception as e: |
|
|
|
|
|
print(f"[Try #{attempt_idx}] Failed to fetch sample {i}. Exception:", e) |
|
|
time.sleep(1) |
|
|
|
|
|
|
|
|
for attempt_idx in range(num_base_retries): |
|
|
try: |
|
|
next_index = min(i + 1, len(self.list_data_dict) - 1) |
|
|
|
|
|
sample = self._get_item(next_index) |
|
|
return sample |
|
|
except Exception as e: |
|
|
|
|
|
print(f"[Try other #{attempt_idx}] Failed to fetch sample {next_index}. Exception:", e) |
|
|
pass |
|
|
|
|
|
try: |
|
|
sample = self._get_item(i) |
|
|
return sample |
|
|
except Exception as e: |
|
|
raise e |
|
|
|
|
|
def process_speech(self, speech_file): |
|
|
speech = whisper.load_audio(speech_file) |
|
|
if self.data_args.augment_prob != 0.0: |
|
|
speech = self.transform(speech, sample_rate=16000) |
|
|
if self.data_args.input_type == "raw": |
|
|
speech = torch.from_numpy(speech) |
|
|
if self.model_config.data_args.speech_normalize: |
|
|
speech = torch.nn.functional.layer_norm(speech, speech.shape) |
|
|
elif self.data_args.input_type == "mel": |
|
|
speech = whisper.pad_or_trim(speech) |
|
|
speech = whisper.log_mel_spectrogram(speech, n_mels=self.data_args.mel_size).permute(1, 0) |
|
|
speech_lengths = torch.LongTensor([speech.shape[0]]) |
|
|
return speech, speech_lengths |
|
|
|
|
|
def _get_item(self, i) -> Dict[str, torch.Tensor]: |
|
|
sources = self.list_data_dict[i] |
|
|
if isinstance(i, int): |
|
|
sources = [sources] |
|
|
assert len(sources) == 1, "Don't know why it is wrapped to a list" |
|
|
for item in sources: |
|
|
if 'tools' in item: |
|
|
tools_dict = { |
|
|
"from": "tools", |
|
|
"value": item["tools"] |
|
|
} |
|
|
item["conversations"].insert(0,tools_dict) |
|
|
|
|
|
if self.data_args.has_tgt_units: |
|
|
|
|
|
|
|
|
tgt_units = [e["tgt_units"] for e in sources] |
|
|
tgt_units = torch.tensor(tgt_units, dtype=torch.long) |
|
|
else: |
|
|
tgt_units = None |
|
|
|
|
|
if 'speech' in sources[0]: |
|
|
import numpy as np |
|
|
speech_file = self.list_data_dict[i]['speech'] |
|
|
if type(speech_file) is list: |
|
|
speech = [self.process_speech(f) for f in speech_file] |
|
|
else: |
|
|
speech = [self.process_speech(speech_file)] |
|
|
|
|
|
sources = preprocess_multimodal( |
|
|
copy.deepcopy([e["conversations"] for e in sources]), |
|
|
self.data_args) |
|
|
else: |
|
|
sources = copy.deepcopy([e["conversations"] for e in sources]) |
|
|
data_dict = preprocess( |
|
|
sources, |
|
|
self.tokenizer, |
|
|
has_speech=('speech' in self.list_data_dict[i])) |
|
|
if isinstance(i, int): |
|
|
data_dict = dict(input_ids=data_dict["input_ids"][0], |
|
|
labels=data_dict["labels"][0]) |
|
|
|
|
|
|
|
|
if 'speech' in self.list_data_dict[i]: |
|
|
data_dict['speech'] = speech |
|
|
|
|
|
if tgt_units is not None: |
|
|
data_dict['tgt_units'] = tgt_units[0] |
|
|
|
|
|
data_dict["id"] = self.list_data_dict[i].get("id", i) |
|
|
|
|
|
return data_dict |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class DataCollatorForSupervisedDataset(object): |
|
|
"""Collate examples for supervised fine-tuning.""" |
|
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer |
|
|
|
|
|
def pad_sequence(self, input_ids, batch_first, padding_value): |
|
|
if self.tokenizer.padding_side == "left": |
|
|
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] |
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value) |
|
|
if self.tokenizer.padding_side == "left": |
|
|
input_ids = torch.flip(input_ids, [1]) |
|
|
return input_ids |
|
|
|
|
|
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: |
|
|
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) |
|
|
|
|
|
input_ids = [_input_ids[: self.tokenizer.model_max_length] for _input_ids in input_ids] |
|
|
labels = [_labels[: self.tokenizer.model_max_length] for _labels in labels] |
|
|
if self.tokenizer.pad_token_id is None: |
|
|
|
|
|
self.tokenizer.pad_token_id = 0 |
|
|
input_ids = self.pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) |
|
|
labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) |
|
|
batch = dict(input_ids=input_ids, labels=labels.long() if labels.dtype == torch.int32 else labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id)) |
|
|
|
|
|
|
|
|
if 'speech' in instances[0]: |
|
|
speechs = [instance['speech'] for instance in instances] |
|
|
|
|
|
speech = [sp[0] for sp_list in speechs for sp in sp_list] |
|
|
speech_lengths = [sp[1] for sp_list in speechs for sp in sp_list] |
|
|
|
|
|
batch["speech"] = speech |
|
|
|
|
|
|
|
|
batch['speech_lengths'] = speech_lengths |
|
|
|
|
|
|
|
|
if 'tgt_units' in instances[0]: |
|
|
tgt_units = [instance['tgt_units'] for instance in instances] |
|
|
tgt_units = self.pad_sequence(tgt_units, batch_first=True, padding_value=self.tokenizer.pad_token_id) |
|
|
batch['tgt_units'] = tgt_units |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return batch |
|
|
|
|
|
|
|
|
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, |
|
|
data_args) -> Dict: |
|
|
"""Make dataset and collator for supervised fine-tuning.""" |
|
|
train_dataset = LazySupervisedDataset(tokenizer=tokenizer, |
|
|
data_path=data_args.data_path, |
|
|
data_args=data_args) |
|
|
if data_args.dev_path is not None: |
|
|
dev_dataset = LazySupervisedDataset(tokenizer=tokenizer, |
|
|
data_path=data_args.dev_path, |
|
|
data_args=data_args) |
|
|
else: |
|
|
dev_dataset = None |
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) |
|
|
return dict(train_dataset=train_dataset, |
|
|
eval_dataset=dev_dataset, |
|
|
data_collator=data_collator) |
|
|
|
|
|
|
|
|
def train(attn_implementation="flash_attention_2"): |
|
|
|
|
|
parser = transformers.HfArgumentParser( |
|
|
(ModelArguments, DataArguments, TrainingArguments)) |
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) |
|
|
|
|
|
bnb_model_from_pretrained_args = {} |
|
|
if training_args.bits in [4, 8]: |
|
|
from transformers import BitsAndBytesConfig |
|
|
bnb_model_from_pretrained_args.update(dict( |
|
|
device_map={"": training_args.device}, |
|
|
load_in_4bit=training_args.bits == 4, |
|
|
load_in_8bit=training_args.bits == 8, |
|
|
quantization_config=BitsAndBytesConfig( |
|
|
load_in_4bit=training_args.bits == 4, |
|
|
load_in_8bit=training_args.bits == 8, |
|
|
llm_int8_skip_modules=["speech_projector"], |
|
|
llm_int8_threshold=6.0, |
|
|
llm_int8_has_fp16_weight=False, |
|
|
bnb_4bit_compute_dtype=compute_dtype, |
|
|
bnb_4bit_use_double_quant=training_args.double_quant, |
|
|
bnb_4bit_quant_type=training_args.quant_type |
|
|
) |
|
|
)) |
|
|
|
|
|
if data_args.has_tgt_units: |
|
|
if model_args.version == "llama_3": |
|
|
model = OmniSpeech2SLlamaForCausalLM.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
cache_dir=training_args.cache_dir, |
|
|
attn_implementation=attn_implementation, |
|
|
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
elif model_args.version == "qwen": |
|
|
model = OmniSpeech2SQwen2ForCausalLM.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
cache_dir=training_args.cache_dir, |
|
|
attn_implementation=attn_implementation, |
|
|
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
else: |
|
|
raise ValueError("--currently only support llama or qwen model!") |
|
|
else: |
|
|
if model_args.version == "llama_3": |
|
|
model = OmniSpeechLlamaForCausalLM.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
cache_dir=training_args.cache_dir, |
|
|
attn_implementation=attn_implementation, |
|
|
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
elif model_args.version == "qwen": |
|
|
model = OmniSpeechQwen2ForCausalLM.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
cache_dir=training_args.cache_dir, |
|
|
attn_implementation=attn_implementation, |
|
|
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
else: |
|
|
raise ValueError("--currently only support llama or qwen model!") |
|
|
model.config.use_cache = False |
|
|
|
|
|
if model_args.freeze_backbone: |
|
|
model.model.requires_grad_(False) |
|
|
|
|
|
if training_args.bits in [4, 8]: |
|
|
from peft import prepare_model_for_kbit_training |
|
|
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) |
|
|
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) |
|
|
|
|
|
if training_args.gradient_checkpointing: |
|
|
if hasattr(model, "enable_input_require_grads"): |
|
|
model.enable_input_require_grads() |
|
|
else: |
|
|
def make_inputs_require_grad(module, input, output): |
|
|
output.requires_grad_(True) |
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
|
|
if training_args.lora_enable: |
|
|
from peft import LoraConfig, get_peft_model |
|
|
lora_config = LoraConfig( |
|
|
r=training_args.lora_r, |
|
|
lora_alpha=training_args.lora_alpha, |
|
|
target_modules=find_all_linear_names(model), |
|
|
lora_dropout=training_args.lora_dropout, |
|
|
bias=training_args.lora_bias, |
|
|
task_type="CAUSAL_LM", |
|
|
) |
|
|
if training_args.bits == 16: |
|
|
if training_args.bf16: |
|
|
model.to(torch.bfloat16) |
|
|
if training_args.fp16: |
|
|
model.to(torch.float16) |
|
|
model = get_peft_model(model, lora_config) |
|
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
cache_dir=training_args.cache_dir, |
|
|
model_max_length=training_args.model_max_length, |
|
|
padding_side="right", |
|
|
use_fast=False, |
|
|
) |
|
|
|
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
model.config.max_length = training_args.model_max_length |
|
|
|
|
|
if model_args.version in conversation_lib.conv_templates: |
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] |
|
|
else: |
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates["llama_3"] |
|
|
|
|
|
if model_args.speech_encoder is not None: |
|
|
model.get_model().initialize_speech_modules( |
|
|
model_args=model_args, |
|
|
fsdp=training_args.fsdp |
|
|
) |
|
|
|
|
|
data_args.is_multimodal = True |
|
|
|
|
|
model.config.tokenizer_padding_side = tokenizer.padding_side |
|
|
model.config.tokenizer_model_max_length = tokenizer.model_max_length |
|
|
|
|
|
model.config.tune_speech_projector = training_args.tune_speech_projector = model_args.tune_speech_projector |
|
|
|
|
|
model.config.speech_normalize = data_args.speech_normalize |
|
|
|
|
|
for p in model.get_speech_encoder().parameters(): |
|
|
p.requires_grad = False |
|
|
|
|
|
if model_args.tune_speech_projector: |
|
|
model.requires_grad_(False) |
|
|
for p in model.get_speech_projector().parameters(): |
|
|
p.requires_grad = True |
|
|
|
|
|
model.config.freeze_speech_projector = training_args.freeze_speech_projector |
|
|
if training_args.freeze_speech_projector: |
|
|
for p in model.get_speech_projector().parameters(): |
|
|
p.requires_grad = False |
|
|
|
|
|
if training_args.bits in [4, 8]: |
|
|
model.get_model().speech_projector.to(dtype=compute_dtype, device=training_args.device) |
|
|
|
|
|
model.config.speech_projector_lr = training_args.speech_projector_lr |
|
|
|
|
|
if data_args.has_tgt_units: |
|
|
model.initialize_speech_generator(model_args=model_args) |
|
|
|
|
|
if training_args.bits in [4, 8]: |
|
|
from peft.tuners.lora import LoraLayer |
|
|
for name, module in model.named_modules(): |
|
|
if isinstance(module, LoraLayer): |
|
|
if training_args.bf16: |
|
|
module = module.to(torch.bfloat16) |
|
|
if 'norm' in name: |
|
|
module = module.to(torch.float32) |
|
|
if 'lm_head' in name or 'embed_tokens' in name: |
|
|
if hasattr(module, 'weight'): |
|
|
if training_args.bf16 and module.weight.dtype == torch.float32: |
|
|
module = module.to(torch.bfloat16) |
|
|
|
|
|
data_module = make_supervised_data_module(tokenizer=tokenizer, |
|
|
data_args=data_args) |
|
|
|
|
|
print("Training Layers:") |
|
|
for name, param in model.named_parameters(): |
|
|
if param.requires_grad: |
|
|
print(name, param.grad) |
|
|
|
|
|
trainer = OmniTrainer(model=model, |
|
|
tokenizer=tokenizer, |
|
|
args=training_args, |
|
|
**data_module) |
|
|
|
|
|
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): |
|
|
trainer.train(resume_from_checkpoint=True) |
|
|
else: |
|
|
trainer.train() |
|
|
trainer.save_state() |
|
|
|
|
|
model.config.use_cache = True |
|
|
|
|
|
if training_args.lora_enable: |
|
|
state_dict = get_peft_state_maybe_zero_3( |
|
|
model.named_parameters(), training_args.lora_bias |
|
|
) |
|
|
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( |
|
|
model.named_parameters() |
|
|
) |
|
|
if training_args.local_rank == 0 or training_args.local_rank == -1: |
|
|
model.config.save_pretrained(training_args.output_dir) |
|
|
model.save_pretrained(training_args.output_dir, state_dict=state_dict) |
|
|
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) |
|
|
else: |
|
|
safe_save_model_for_hf_trainer(trainer=trainer, |
|
|
output_dir=training_args.output_dir) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
train() |
|
|
|
|
|
|