Nahieli777777 commited on
Commit
8328013
·
verified ·
1 Parent(s): ca62f08

first test

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -440.94 +/- 136.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d46486dec00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d46486deca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d46486ded40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d46486dede0>", "_build": "<function ActorCriticPolicy._build at 0x7d46486dee80>", "forward": "<function ActorCriticPolicy.forward at 0x7d46486def20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d46486defc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d46486df060>", "_predict": "<function ActorCriticPolicy._predict at 0x7d46486df100>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d46486df1a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d46486df240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d46486df2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4648669d40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738408904984616132, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoDK7xGArU/LuLvvcWpXbwmsZs82N6huwAAAAAAAAAAkyDCPsENrT8imbo+ZJRivrOizT4UViw+AAAAAAAAAABNrU0+SG9DPwOYVT6NdjW/jbldPmL0dz4AAAAAAAAAAN21tD6a2lw/BdvSPh30L7+JUOE+hleAPgAAAAAAAAAAjdHVvctQcz+h5A++inYXv2qeYb1V20u+AAAAAAAAAAC6+CC+fL5rPcHtgb1GVoy/4WKVPi5FQD4AAAAAAAAAAED6Tb5p3b0/KhAJvrs5ML7Edae+k000vQAAAAAAAAAAwOtkPgxXgT/zc/Y+PfYYv46QDz6iCv89AAAAAAAAAAB+M8S+2+g2P+oIjrxAOR6/0luEvoqViz0AAAAAAAAAAAfRBb93Ez0+4kYJv2IEhb/kexi+kgOgvgAAAAAAAAAA6qNpvqBXiT9i98e+ptYQvzpj8DzuKZ69AAAAAAAAAAAzCwO+F9pSPx3IMr4i/S6/nmvivVZDNjwAAAAAAAAAAK0kbj5PsKM/1WzTPq2K5L6Nc/49aAF4PgAAAAAAAAAAqv6VvhhdQD/eBeW+DFlJv1M+2r2pDQ6+AAAAAAAAAABm5lq8zk6zPwKt574ck/69fTVhPAggtj0AAAAAAAAAALOgUr6mEYw/BjrHvhsgGb+v5EU+2NxwvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGgVafJ3gUGMAWyUS4GMAXSUR0CGb1961LJ0dX2UKGgGR8BUMVBQemvXaAdLfWgIR0CGb/TnaFmGdX2UKGgGR8BMB7fHggoxaAdLbGgIR0CGcJEaVD8cdX2UKGgGR8BZanOnl4keaAdLdGgIR0CGcKT3Zf2LdX2UKGgGR8BZHuKoAGSqaAdLrWgIR0CGcMmXPZ7HdX2UKGgGR8BI0LVe8f3faAdLc2gIR0CGcQP5HmRvdX2UKGgGR8BRWvyoXKr8aAdLV2gIR0CGcR+rlvIfdX2UKGgGR8A/YNQj2SMcaAdLa2gIR0CGcYiml67edX2UKGgGR8BTbB8UmD15aAdLX2gIR0CGcfWattALdX2UKGgGR8BD9qZML4N7aAdLZ2gIR0CGcgjqv/zbdX2UKGgGR8A/GIU8FINFaAdLbGgIR0CGclww0wajdX2UKGgGR8BFROi35N48aAdLdWgIR0CGck0aZQYUdX2UKGgGR8BSQiM98qnWaAdLeWgIR0CGcoMw1zhhdX2UKGgGR8BQxPwZwXImaAdLn2gIR0CGcvFZPl+3dX2UKGgGR8BFfsyi22G7aAdLh2gIR0CGc2fpUxVRdX2UKGgGR8BKhtLDhtLtaAdLXmgIR0CGc6e+VTrFdX2UKGgGR0Ay9ZIQOFxoaAdLx2gIR0CGc/D63y7PdX2UKGgGR8BSDAwsXizcaAdLaGgIR0CGdA+s5n14dX2UKGgGR8BUUkpy6tknaAdLjGgIR0CGdAACGN70dX2UKGgGR8BWnYKpkwvhaAdLk2gIR0CGdNOP/7zkdX2UKGgGR8ArwwFkhA4XaAdLaWgIR0CGdPKzRhMKdX2UKGgGR8BGrJn6Eal2aAdLTWgIR0CGdQUM5OrRdX2UKGgGR8BXPv5ckdFOaAdLUmgIR0CGdPhAnlXBdX2UKGgGR8BW8RRVIZqEaAdLgWgIR0CGdTg1m8NAdX2UKGgGR8Bjb6j3225QaAdLgmgIR0CGdVp8F6iTdX2UKGgGR8BWjFR51Ng0aAdLaWgIR0CGdXEXLvCudX2UKGgGR8Bgl0l7dBSlaAdLY2gIR0CGdZIH1OCYdX2UKGgGR8BAZpxeb/fgaAdLnGgIR0CGdd4N7SiNdX2UKGgGR8BTu+NxVAAyaAdLcGgIR0CGdv9F4LThdX2UKGgGR8BSenl8w5/9aAdLoGgIR0CGdx5wfhdddX2UKGgGR8Bn8iJAMUh3aAdLbmgIR0CGd3oGIKtxdX2UKGgGR8BFrQEZBLPEaAdLmmgIR0CGd/PFefI0dX2UKGgGR8A5nAfdRBNVaAdLh2gIR0CGeArp7kXDdX2UKGgGR8Bb/9qUNayKaAdLV2gIR0CGeAtbs4T9dX2UKGgGR8BU3pWNm16WaAdLY2gIR0CGeC0Z3s5XdX2UKGgGR8Bfs57CzkZKaAdLkWgIR0CGeNhqCYkWdX2UKGgGR8BNsqZtvXK9aAdLkmgIR0CGeNHDrJKbdX2UKGgGR8BEa1ct5D7ZaAdLdWgIR0CGeOgow22odX2UKGgGR8BEIwF9roGIaAdLiWgIR0CGeWfqX4TLdX2UKGgGR8BZ9N0ihWYGaAdLdWgIR0CGeX3u/k/9dX2UKGgGR8BJF/4ZdfLLaAdLkmgIR0CGec7PppvhdX2UKGgGR8BTCrNKRMewaAdLjWgIR0CGeh/SYw7DdX2UKGgGR8BWyR1xKg7HaAdLgGgIR0CGeiWi1y/9dX2UKGgGR8BVQiPU8V59aAdLmGgIR0CGemBq9GqhdX2UKGgGR8AzaBK+SKWLaAdLY2gIR0CGenO4XoC/dX2UKGgGR8Ajn3cHnlnzaAdLTWgIR0CGep3yI55rdX2UKGgGR8BYLP7FbVz7aAdLXmgIR0CGeyW43FUAdX2UKGgGR8BYDIsEq2BraAdLUGgIR0CGe2i9qUNbdX2UKGgGR8BOhrIYFaB7aAdLemgIR0CGe4cAiml7dX2UKGgGR8BTxjfrKNhmaAdLVGgIR0CGe5iy6cy4dX2UKGgGR8A43akyk9EDaAdLi2gIR0CGe51FH8TBdX2UKGgGR8BPzStV7x/eaAdLcGgIR0CGe6VJL/S6dX2UKGgGR8BQFbDEWIoFaAdLbmgIR0CGe8eXiR4hdX2UKGgGR8BLYUt7KJVKaAdLTWgIR0CGe+hPj4pMdX2UKGgGR8Bew9srNGExaAdLiWgIR0CGfSBz3h4udX2UKGgGR8BMJU8V58jSaAdLdmgIR0CGfXvwVj7RdX2UKGgGR8BSkv6TGHYZaAdLa2gIR0CGfbjIaLn+dX2UKGgGR8Bcee5OJtSAaAdLVGgIR0CGfck9lmOEdX2UKGgGR8BKHC8FpwjuaAdLZGgIR0CGfcKaXrt3dX2UKGgGR8BPHq2a2F37aAdLjmgIR0CGfeNYr8R+dX2UKGgGR8BTXRvvSc9XaAdLeWgIR0CGffCvX9R8dX2UKGgGR8BYp/w/gR9PaAdLUGgIR0CGfiClJpWWdX2UKGgGR8BgsO2oegctaAdLTmgIR0CGfjzmwJPZdX2UKGgGR8BVRDcVQAMlaAdLeWgIR0CGfkN0/4ZddX2UKGgGR8BMaD+irT6SaAdLWGgIR0CGfmZ6Uqx1dX2UKGgGR8Bh5qR+z+m4aAdLZWgIR0CGfr7KJVKgdX2UKGgGR8BUEzPOY6XCaAdLdmgIR0CGfxSzgMtsdX2UKGgGR8BaHRGQSzw+aAdLdGgIR0CGf4htcfNidX2UKGgGR0Ak9hisny/caAdLsGgIR0CGf6XWvr4WdX2UKGgGR8BTB6l+EytWaAdLSmgIR0CGgA01qFh5dX2UKGgGR8BV23RXwLE2aAdLlGgIR0CGgCscQyyldX2UKGgGR8BHz5ckdFOPaAdLUWgIR0CGgHUZNwirdX2UKGgGR8BAfuGsV+I/aAdLVWgIR0CGgG0AtFrmdX2UKGgGR8BJmHFxXGOuaAdLbmgIR0CGgQ0TDfm+dX2UKGgGR8BSg0UTL4etaAdLbmgIR0CGgW3trsSkdX2UKGgGR8BYvPeLvTgEaAdLhWgIR0CGgXWEsasIdX2UKGgGR8BCq9QwblzVaAdLbGgIR0CGgZ8zhxYJdX2UKGgGR8BRvzwhGH58aAdLXGgIR0CGgcRcNYr8dX2UKGgGR8BLVNQj2SMcaAdLdmgIR0CGgg0FbFCLdX2UKGgGR8BdA62fChvjaAdLkWgIR0CGgnZ13dKvdX2UKGgGR8BRqJv1lGwzaAdLf2gIR0CGgoDPnjhldX2UKGgGR8Bgem8mKIi1aAdLV2gIR0CGguoKD017dX2UKGgGR8BQU4IfKZDzaAdLhGgIR0CGg2qAjIJadX2UKGgGR8BQemEsasIWaAdLemgIR0CGg44ku6ErdX2UKGgGR8BI9hnJ1aGIaAdLgmgIR0CGg+97ngYQdX2UKGgGR8Ax2rCWNWELaAdLeWgIR0CGhC3BpHqedX2UKGgGR8BYCB5HEuQIaAdLvWgIR0CGhGx+KCQLdX2UKGgGR8BRRYp2ECeVaAdLgmgIR0CGhL+Vkc0cdX2UKGgGR8BR4xtLteD4aAdLUWgIR0CGhSTufEn9dX2UKGgGR8BUJSmMwUQDaAdLhmgIR0CGhXVaOgg6dX2UKGgGR8BVRX09QoCuaAdLPmgIR0CGhaATZg5SdX2UKGgGR8BJaF8ohIOIaAdLXWgIR0CGhZuhK15TdX2UKGgGR8AtbH4oJAt4aAdLnWgIR0CGhbL8JlasdX2UKGgGR8BLjx/ViF0xaAdLfmgIR0CGhcZFXq7idX2UKGgGR8A9G1+y7f52aAdLe2gIR0CGhdTZQHiWdX2UKGgGR8BOYlrEcbR4aAdLiWgIR0CGhfB5X2dvdX2UKGgGR8BHsLGaQV9GaAdLkGgIR0CGhim1pj+adX2UKGgGR8BTQPPomoitaAdLgmgIR0CGhk2v0RODdX2UKGgGR8BJ3IAXEZR9aAdLeGgIR0CGh0voNd7fdX2UKGgGR8BWW82itaIOaAdLVWgIR0CGh3I+4b0fdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8380651b33423fe70c637c5cb4d4ccb5161f9cc7408d18e467aec88f2a15c464
3
+ size 147994
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d46486dec00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d46486deca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d46486ded40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d46486dede0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d46486dee80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d46486def20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d46486defc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d46486df060>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d46486df100>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d46486df1a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d46486df240>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d46486df2e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d4648669d40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 131072,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1738408904984616132,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoDK7xGArU/LuLvvcWpXbwmsZs82N6huwAAAAAAAAAAkyDCPsENrT8imbo+ZJRivrOizT4UViw+AAAAAAAAAABNrU0+SG9DPwOYVT6NdjW/jbldPmL0dz4AAAAAAAAAAN21tD6a2lw/BdvSPh30L7+JUOE+hleAPgAAAAAAAAAAjdHVvctQcz+h5A++inYXv2qeYb1V20u+AAAAAAAAAAC6+CC+fL5rPcHtgb1GVoy/4WKVPi5FQD4AAAAAAAAAAED6Tb5p3b0/KhAJvrs5ML7Edae+k000vQAAAAAAAAAAwOtkPgxXgT/zc/Y+PfYYv46QDz6iCv89AAAAAAAAAAB+M8S+2+g2P+oIjrxAOR6/0luEvoqViz0AAAAAAAAAAAfRBb93Ez0+4kYJv2IEhb/kexi+kgOgvgAAAAAAAAAA6qNpvqBXiT9i98e+ptYQvzpj8DzuKZ69AAAAAAAAAAAzCwO+F9pSPx3IMr4i/S6/nmvivVZDNjwAAAAAAAAAAK0kbj5PsKM/1WzTPq2K5L6Nc/49aAF4PgAAAAAAAAAAqv6VvhhdQD/eBeW+DFlJv1M+2r2pDQ6+AAAAAAAAAABm5lq8zk6zPwKt574ck/69fTVhPAggtj0AAAAAAAAAALOgUr6mEYw/BjrHvhsgGb+v5EU+2NxwvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.3107200000000001,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGgVafJ3gUGMAWyUS4GMAXSUR0CGb1961LJ0dX2UKGgGR8BUMVBQemvXaAdLfWgIR0CGb/TnaFmGdX2UKGgGR8BMB7fHggoxaAdLbGgIR0CGcJEaVD8cdX2UKGgGR8BZanOnl4keaAdLdGgIR0CGcKT3Zf2LdX2UKGgGR8BZHuKoAGSqaAdLrWgIR0CGcMmXPZ7HdX2UKGgGR8BI0LVe8f3faAdLc2gIR0CGcQP5HmRvdX2UKGgGR8BRWvyoXKr8aAdLV2gIR0CGcR+rlvIfdX2UKGgGR8A/YNQj2SMcaAdLa2gIR0CGcYiml67edX2UKGgGR8BTbB8UmD15aAdLX2gIR0CGcfWattALdX2UKGgGR8BD9qZML4N7aAdLZ2gIR0CGcgjqv/zbdX2UKGgGR8A/GIU8FINFaAdLbGgIR0CGclww0wajdX2UKGgGR8BFROi35N48aAdLdWgIR0CGck0aZQYUdX2UKGgGR8BSQiM98qnWaAdLeWgIR0CGcoMw1zhhdX2UKGgGR8BQxPwZwXImaAdLn2gIR0CGcvFZPl+3dX2UKGgGR8BFfsyi22G7aAdLh2gIR0CGc2fpUxVRdX2UKGgGR8BKhtLDhtLtaAdLXmgIR0CGc6e+VTrFdX2UKGgGR0Ay9ZIQOFxoaAdLx2gIR0CGc/D63y7PdX2UKGgGR8BSDAwsXizcaAdLaGgIR0CGdA+s5n14dX2UKGgGR8BUUkpy6tknaAdLjGgIR0CGdAACGN70dX2UKGgGR8BWnYKpkwvhaAdLk2gIR0CGdNOP/7zkdX2UKGgGR8ArwwFkhA4XaAdLaWgIR0CGdPKzRhMKdX2UKGgGR8BGrJn6Eal2aAdLTWgIR0CGdQUM5OrRdX2UKGgGR8BXPv5ckdFOaAdLUmgIR0CGdPhAnlXBdX2UKGgGR8BW8RRVIZqEaAdLgWgIR0CGdTg1m8NAdX2UKGgGR8Bjb6j3225QaAdLgmgIR0CGdVp8F6iTdX2UKGgGR8BWjFR51Ng0aAdLaWgIR0CGdXEXLvCudX2UKGgGR8Bgl0l7dBSlaAdLY2gIR0CGdZIH1OCYdX2UKGgGR8BAZpxeb/fgaAdLnGgIR0CGdd4N7SiNdX2UKGgGR8BTu+NxVAAyaAdLcGgIR0CGdv9F4LThdX2UKGgGR8BSenl8w5/9aAdLoGgIR0CGdx5wfhdddX2UKGgGR8Bn8iJAMUh3aAdLbmgIR0CGd3oGIKtxdX2UKGgGR8BFrQEZBLPEaAdLmmgIR0CGd/PFefI0dX2UKGgGR8A5nAfdRBNVaAdLh2gIR0CGeArp7kXDdX2UKGgGR8Bb/9qUNayKaAdLV2gIR0CGeAtbs4T9dX2UKGgGR8BU3pWNm16WaAdLY2gIR0CGeC0Z3s5XdX2UKGgGR8Bfs57CzkZKaAdLkWgIR0CGeNhqCYkWdX2UKGgGR8BNsqZtvXK9aAdLkmgIR0CGeNHDrJKbdX2UKGgGR8BEa1ct5D7ZaAdLdWgIR0CGeOgow22odX2UKGgGR8BEIwF9roGIaAdLiWgIR0CGeWfqX4TLdX2UKGgGR8BZ9N0ihWYGaAdLdWgIR0CGeX3u/k/9dX2UKGgGR8BJF/4ZdfLLaAdLkmgIR0CGec7PppvhdX2UKGgGR8BTCrNKRMewaAdLjWgIR0CGeh/SYw7DdX2UKGgGR8BWyR1xKg7HaAdLgGgIR0CGeiWi1y/9dX2UKGgGR8BVQiPU8V59aAdLmGgIR0CGemBq9GqhdX2UKGgGR8AzaBK+SKWLaAdLY2gIR0CGenO4XoC/dX2UKGgGR8Ajn3cHnlnzaAdLTWgIR0CGep3yI55rdX2UKGgGR8BYLP7FbVz7aAdLXmgIR0CGeyW43FUAdX2UKGgGR8BYDIsEq2BraAdLUGgIR0CGe2i9qUNbdX2UKGgGR8BOhrIYFaB7aAdLemgIR0CGe4cAiml7dX2UKGgGR8BTxjfrKNhmaAdLVGgIR0CGe5iy6cy4dX2UKGgGR8A43akyk9EDaAdLi2gIR0CGe51FH8TBdX2UKGgGR8BPzStV7x/eaAdLcGgIR0CGe6VJL/S6dX2UKGgGR8BQFbDEWIoFaAdLbmgIR0CGe8eXiR4hdX2UKGgGR8BLYUt7KJVKaAdLTWgIR0CGe+hPj4pMdX2UKGgGR8Bew9srNGExaAdLiWgIR0CGfSBz3h4udX2UKGgGR8BMJU8V58jSaAdLdmgIR0CGfXvwVj7RdX2UKGgGR8BSkv6TGHYZaAdLa2gIR0CGfbjIaLn+dX2UKGgGR8Bcee5OJtSAaAdLVGgIR0CGfck9lmOEdX2UKGgGR8BKHC8FpwjuaAdLZGgIR0CGfcKaXrt3dX2UKGgGR8BPHq2a2F37aAdLjmgIR0CGfeNYr8R+dX2UKGgGR8BTXRvvSc9XaAdLeWgIR0CGffCvX9R8dX2UKGgGR8BYp/w/gR9PaAdLUGgIR0CGfiClJpWWdX2UKGgGR8BgsO2oegctaAdLTmgIR0CGfjzmwJPZdX2UKGgGR8BVRDcVQAMlaAdLeWgIR0CGfkN0/4ZddX2UKGgGR8BMaD+irT6SaAdLWGgIR0CGfmZ6Uqx1dX2UKGgGR8Bh5qR+z+m4aAdLZWgIR0CGfr7KJVKgdX2UKGgGR8BUEzPOY6XCaAdLdmgIR0CGfxSzgMtsdX2UKGgGR8BaHRGQSzw+aAdLdGgIR0CGf4htcfNidX2UKGgGR0Ak9hisny/caAdLsGgIR0CGf6XWvr4WdX2UKGgGR8BTB6l+EytWaAdLSmgIR0CGgA01qFh5dX2UKGgGR8BV23RXwLE2aAdLlGgIR0CGgCscQyyldX2UKGgGR8BHz5ckdFOPaAdLUWgIR0CGgHUZNwirdX2UKGgGR8BAfuGsV+I/aAdLVWgIR0CGgG0AtFrmdX2UKGgGR8BJmHFxXGOuaAdLbmgIR0CGgQ0TDfm+dX2UKGgGR8BSg0UTL4etaAdLbmgIR0CGgW3trsSkdX2UKGgGR8BYvPeLvTgEaAdLhWgIR0CGgXWEsasIdX2UKGgGR8BCq9QwblzVaAdLbGgIR0CGgZ8zhxYJdX2UKGgGR8BRvzwhGH58aAdLXGgIR0CGgcRcNYr8dX2UKGgGR8BLVNQj2SMcaAdLdmgIR0CGgg0FbFCLdX2UKGgGR8BdA62fChvjaAdLkWgIR0CGgnZ13dKvdX2UKGgGR8BRqJv1lGwzaAdLf2gIR0CGgoDPnjhldX2UKGgGR8Bgem8mKIi1aAdLV2gIR0CGguoKD017dX2UKGgGR8BQU4IfKZDzaAdLhGgIR0CGg2qAjIJadX2UKGgGR8BQemEsasIWaAdLemgIR0CGg44ku6ErdX2UKGgGR8BI9hnJ1aGIaAdLgmgIR0CGg+97ngYQdX2UKGgGR8Ax2rCWNWELaAdLeWgIR0CGhC3BpHqedX2UKGgGR8BYCB5HEuQIaAdLvWgIR0CGhGx+KCQLdX2UKGgGR8BRRYp2ECeVaAdLgmgIR0CGhL+Vkc0cdX2UKGgGR8BR4xtLteD4aAdLUWgIR0CGhSTufEn9dX2UKGgGR8BUJSmMwUQDaAdLhmgIR0CGhXVaOgg6dX2UKGgGR8BVRX09QoCuaAdLPmgIR0CGhaATZg5SdX2UKGgGR8BJaF8ohIOIaAdLXWgIR0CGhZuhK15TdX2UKGgGR8AtbH4oJAt4aAdLnWgIR0CGhbL8JlasdX2UKGgGR8BLjx/ViF0xaAdLfmgIR0CGhcZFXq7idX2UKGgGR8A9G1+y7f52aAdLe2gIR0CGhdTZQHiWdX2UKGgGR8BOYlrEcbR4aAdLiWgIR0CGhfB5X2dvdX2UKGgGR8BHsLGaQV9GaAdLkGgIR0CGhim1pj+adX2UKGgGR8BTQPPomoitaAdLgmgIR0CGhk2v0RODdX2UKGgGR8BJ3IAXEZR9aAdLeGgIR0CGh0voNd7fdX2UKGgGR8BWW82itaIOaAdLVWgIR0CGh3I+4b0fdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 40,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:525e8ca6148f26cf50ba29228205746b0c182fbdf8b2f9c6170edad1984aa52e
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17bfc18289f2bdb54146352b29f6323ab62ea2f421f5b3b02972f1dc665e2d09
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (57.4 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -440.94223739999995, "std_reward": 136.594618179904, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-01T11:44:39.748704"}