Create convert_tflite_2_onnx.py
Browse files- convert_tflite_2_onnx.py +42 -0
convert_tflite_2_onnx.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
|
| 3 |
+
# Load the TFLite model
|
| 4 |
+
tflite_model_path = 'model.tflite'
|
| 5 |
+
interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
|
| 6 |
+
interpreter.allocate_tensors()
|
| 7 |
+
|
| 8 |
+
# Export the TFLite model back to a TensorFlow SavedModel
|
| 9 |
+
saved_model_dir = 'saved_model'
|
| 10 |
+
|
| 11 |
+
# Convert the TFLite model back to a TensorFlow model
|
| 12 |
+
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
|
| 13 |
+
tf.saved_model.save(interpreter, saved_model_dir)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
pip install tf2onnx
|
| 17 |
+
pip install onnx_runtime
|
| 18 |
+
python -m tf2onnx.convert --saved-model saved_model --output model.onnx --opset 11
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
import onnxruntime as ort
|
| 22 |
+
import numpy as np
|
| 23 |
+
from PIL import Image
|
| 24 |
+
|
| 25 |
+
# Load ONNX model
|
| 26 |
+
onnx_model_path = 'model.onnx'
|
| 27 |
+
session = ort.InferenceSession(onnx_model_path)
|
| 28 |
+
|
| 29 |
+
# Load image and preprocess (resize, normalize)
|
| 30 |
+
image_path = 'image.jpg'
|
| 31 |
+
image = Image.open(image_path).resize((320, 320)) # Assuming 320x320 model input size
|
| 32 |
+
image_data = np.array(image).astype('float32')
|
| 33 |
+
image_data = np.expand_dims(image_data, axis=0) # Add batch dimension
|
| 34 |
+
|
| 35 |
+
# Run inference
|
| 36 |
+
input_name = session.get_inputs()[0].name
|
| 37 |
+
output = session.run(None, {input_name: image_data})
|
| 38 |
+
|
| 39 |
+
# Output contains predictions, including bounding boxes and class labels
|
| 40 |
+
print(output)
|
| 41 |
+
|
| 42 |
+
|