Create onnx_runtime_draw_bboxes.py
Browse files- onnx_runtime_draw_bboxes.py +77 -0
onnx_runtime_draw_bboxes.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import onnxruntime as ort
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Load the ONNX model
|
| 7 |
+
model_path = "model.onnx"
|
| 8 |
+
session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
| 9 |
+
|
| 10 |
+
# Folder paths
|
| 11 |
+
input_folder = "input_images" # Folder containing images
|
| 12 |
+
output_folder = "output_images" # Folder to save processed images
|
| 13 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# Define model input shape
|
| 16 |
+
MODEL_INPUT_SIZE = (320, 320) # Change based on your model input size
|
| 17 |
+
|
| 18 |
+
# Define class labels (update based on your model)
|
| 19 |
+
CLASS_NAMES = ["person", "car", "truck", "bicycle", "dog", "cat"] # Update accordingly
|
| 20 |
+
|
| 21 |
+
def preprocess_image(image_path):
|
| 22 |
+
""" Preprocess image for ONNX model input """
|
| 23 |
+
image = cv2.imread(image_path)
|
| 24 |
+
original_image = image.copy() # Save original for later drawing
|
| 25 |
+
image = cv2.resize(image, MODEL_INPUT_SIZE) # Resize to model input size
|
| 26 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert to RGB
|
| 27 |
+
image = image.astype(np.float32) / 255.0 # Normalize
|
| 28 |
+
image = np.transpose(image, (2, 0, 1)) # Convert to CHW format
|
| 29 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
| 30 |
+
return image, original_image
|
| 31 |
+
|
| 32 |
+
def postprocess_output(output, orig_image):
|
| 33 |
+
""" Post-process ONNX model output """
|
| 34 |
+
height, width, _ = orig_image.shape
|
| 35 |
+
|
| 36 |
+
# Extract boxes, scores, and class indices
|
| 37 |
+
boxes = output[0] # Adjust key names if needed
|
| 38 |
+
scores = output[1]
|
| 39 |
+
class_indices = output[2]
|
| 40 |
+
|
| 41 |
+
# Draw bounding boxes
|
| 42 |
+
for i in range(len(scores)):
|
| 43 |
+
if scores[i] > 0.5: # Confidence threshold
|
| 44 |
+
x1, y1, x2, y2 = boxes[i] # Get box coordinates
|
| 45 |
+
x1, y1, x2, y2 = int(x1 * width), int(y1 * height), int(x2 * width), int(y2 * height) # Scale box
|
| 46 |
+
|
| 47 |
+
label = CLASS_NAMES[int(class_indices[i])]
|
| 48 |
+
confidence = scores[i]
|
| 49 |
+
|
| 50 |
+
# Draw bounding box
|
| 51 |
+
cv2.rectangle(orig_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 52 |
+
|
| 53 |
+
# Put label text
|
| 54 |
+
label_text = f"{label}: {confidence:.2f}"
|
| 55 |
+
cv2.putText(orig_image, label_text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 56 |
+
|
| 57 |
+
return orig_image
|
| 58 |
+
|
| 59 |
+
# Process all images in the input folder
|
| 60 |
+
for image_name in os.listdir(input_folder):
|
| 61 |
+
image_path = os.path.join(input_folder, image_name)
|
| 62 |
+
output_path = os.path.join(output_folder, image_name)
|
| 63 |
+
|
| 64 |
+
# Preprocess
|
| 65 |
+
image_tensor, orig_image = preprocess_image(image_path)
|
| 66 |
+
|
| 67 |
+
# Run inference
|
| 68 |
+
inputs = {session.get_inputs()[0].name: image_tensor}
|
| 69 |
+
outputs = session.run(None, inputs)
|
| 70 |
+
|
| 71 |
+
# Post-process and save image
|
| 72 |
+
processed_image = postprocess_output(outputs, orig_image)
|
| 73 |
+
cv2.imwrite(output_path, processed_image)
|
| 74 |
+
|
| 75 |
+
print(f"Processed: {image_name}")
|
| 76 |
+
|
| 77 |
+
print("Processing complete! Results saved in", output_folder)
|