Commit
·
8f83317
1
Parent(s):
9aca0b5
Upload model
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +144 -0
- added_tokens.json +4 -0
- config.json +25 -0
- config_sentence_transformers.json +49 -0
- eval/triplet_evaluation_results.csv +88 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +74 -0
- triplet_evaluation_results.csv +10 -0
- vocab.txt +0 -0
1_Dense/config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"in_features": 768, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d54c6b56e094486487b936026e753f82f01e3b833222f65fd2a6334fbfab822e
|
| 3 |
+
size 393304
|
README.md
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- ColBERT
|
| 4 |
+
- PyLate
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- feature-extraction
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
- loss:Contrastive
|
| 10 |
+
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
|
| 11 |
+
pipeline_tag: sentence-similarity
|
| 12 |
+
library_name: PyLate
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
model-index:
|
| 16 |
+
- name: PyLate model based on microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
|
| 17 |
+
results:
|
| 18 |
+
- task:
|
| 19 |
+
type: col-berttriplet
|
| 20 |
+
name: Col BERTTriplet
|
| 21 |
+
dataset:
|
| 22 |
+
name: Unknown
|
| 23 |
+
type: unknown
|
| 24 |
+
metrics:
|
| 25 |
+
- type: accuracy
|
| 26 |
+
value: 0.9996359348297119
|
| 27 |
+
name: Accuracy
|
| 28 |
+
language: en
|
| 29 |
+
license: apache-2.0
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
# PubMedBERT ColBERT
|
| 33 |
+
|
| 34 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext). It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
| 35 |
+
|
| 36 |
+
## Usage (txtai)
|
| 37 |
+
|
| 38 |
+
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
|
| 39 |
+
|
| 40 |
+
_Note: txtai 9.0+ is required for late interaction model support_
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
import txtai
|
| 44 |
+
|
| 45 |
+
embeddings = txtai.Embeddings(
|
| 46 |
+
sparse="neuml/pubmedbert-base-colbert",
|
| 47 |
+
content=True
|
| 48 |
+
)
|
| 49 |
+
embeddings.index(documents())
|
| 50 |
+
|
| 51 |
+
# Run a query
|
| 52 |
+
embeddings.search("query to run")
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
Late interaction models excel as reranker pipelines.
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
from txtai.pipeline import Reranker, Similarity
|
| 59 |
+
|
| 60 |
+
similarity = Similarity(path="neuml/pubmedbert-base-colbert", lateencode=True)
|
| 61 |
+
ranker = Reranker(embeddings, similarity)
|
| 62 |
+
ranker("query to run")
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
## Usage (PyLate)
|
| 66 |
+
|
| 67 |
+
Alternatively, the model can be loaded with [PyLate](https://github.com/lightonai/pylate).
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from pylate import rank, models
|
| 71 |
+
|
| 72 |
+
queries = [
|
| 73 |
+
"query A",
|
| 74 |
+
"query B",
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
documents = [
|
| 78 |
+
["document A", "document B"],
|
| 79 |
+
["document 1", "document C", "document B"],
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
documents_ids = [
|
| 83 |
+
[1, 2],
|
| 84 |
+
[1, 3, 2],
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
model = models.ColBERT(
|
| 88 |
+
model_name_or_path=pylate_model_id,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
queries_embeddings = model.encode(
|
| 92 |
+
queries,
|
| 93 |
+
is_query=True,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
documents_embeddings = model.encode(
|
| 97 |
+
documents,
|
| 98 |
+
is_query=False,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
reranked_documents = rank.rerank(
|
| 102 |
+
documents_ids=documents_ids,
|
| 103 |
+
queries_embeddings=queries_embeddings,
|
| 104 |
+
documents_embeddings=documents_embeddings,
|
| 105 |
+
)
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
## Evaluation Results
|
| 109 |
+
|
| 110 |
+
Performance of this model compared to the top base models on the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) is shown below. A popular smaller model was also evaluated along with the most downloaded PubMed similarity model on the Hugging Face Hub.
|
| 111 |
+
|
| 112 |
+
The following datasets were used to evaluate model performance.
|
| 113 |
+
|
| 114 |
+
- [PubMed QA](https://huggingface.co/datasets/qiaojin/PubMedQA)
|
| 115 |
+
- Subset: pqa_labeled, Split: train, Pair: (question, long_answer)
|
| 116 |
+
- [PubMed Subset](https://huggingface.co/datasets/awinml/pubmed_abstract_3_1k)
|
| 117 |
+
- Split: test, Pair: (title, text)
|
| 118 |
+
- [PubMed Summary](https://huggingface.co/datasets/armanc/scientific_papers)
|
| 119 |
+
- Subset: pubmed, Split: validation, Pair: (article, abstract)
|
| 120 |
+
|
| 121 |
+
Evaluation results are shown below. The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric.
|
| 122 |
+
|
| 123 |
+
| Model | PubMed QA | PubMed Subset | PubMed Summary | Average |
|
| 124 |
+
| ----------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- |
|
| 125 |
+
| [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 90.40 | 95.92 | 94.07 | 93.46 |
|
| 126 |
+
| [bge-base-en-v1.5](https://hf.co/BAAI/bge-base-en-v1.5) | 91.02 | 95.82 | 94.49 | 93.78 |
|
| 127 |
+
| [gte-base](https://hf.co/thenlper/gte-base) | 92.97 | 96.90 | 96.24 | 95.37 |
|
| 128 |
+
| [**pubmedbert-base-colbert**](https://hf.co/neuml/pubmedbert-base-colbert) | **93.94** | **97.21** | **95.27** | **95.47** |
|
| 129 |
+
| [**pubmedbert-base-colbert (MUVERA)**](https://hf.co/neuml/pubmedbert-base-colbert) | **88.77** | **93.51** | **95.18** | **92.49** |
|
| 130 |
+
| [pubmedbert-base-embeddings](https://hf.co/neuml/pubmedbert-base-embeddings) | 93.27 | 97.00 | 96.58 | 95.62 |
|
| 131 |
+
| [S-PubMedBert-MS-MARCO](https://hf.co/pritamdeka/S-PubMedBert-MS-MARCO) | 90.86 | 93.68 | 93.54 | 92.69 |
|
| 132 |
+
|
| 133 |
+
While this isn't the highest scoring model, note how it is the best model for the first two datasets, which are retrieval datasets. ColBERT models can be better at picking up on query nuances given that vectors are not mean pooled together.
|
| 134 |
+
|
| 135 |
+
The model also performs well enough for [MUVERA encoding](https://arxiv.org/abs/2405.19504). The goal with MUVERA is "good enough" recall that picks up on the signal and is then paired with a reranker pipeline.
|
| 136 |
+
|
| 137 |
+
### Full Model Architecture
|
| 138 |
+
|
| 139 |
+
```
|
| 140 |
+
ColBERT(
|
| 141 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 142 |
+
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 143 |
+
)
|
| 144 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[D] ": 30523,
|
| 3 |
+
"[Q] ": 30522
|
| 4 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 768,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 3072,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.48.2",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 30524
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.0.2",
|
| 4 |
+
"transformers": "4.48.2",
|
| 5 |
+
"pytorch": "2.8.0+cu128"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "MaxSim",
|
| 10 |
+
"query_prefix": "[Q] ",
|
| 11 |
+
"document_prefix": "[D] ",
|
| 12 |
+
"query_length": 512,
|
| 13 |
+
"document_length": 512,
|
| 14 |
+
"attend_to_expansion_tokens": false,
|
| 15 |
+
"skiplist_words": [
|
| 16 |
+
"!",
|
| 17 |
+
"\"",
|
| 18 |
+
"#",
|
| 19 |
+
"$",
|
| 20 |
+
"%",
|
| 21 |
+
"&",
|
| 22 |
+
"'",
|
| 23 |
+
"(",
|
| 24 |
+
")",
|
| 25 |
+
"*",
|
| 26 |
+
"+",
|
| 27 |
+
",",
|
| 28 |
+
"-",
|
| 29 |
+
".",
|
| 30 |
+
"/",
|
| 31 |
+
":",
|
| 32 |
+
";",
|
| 33 |
+
"<",
|
| 34 |
+
"=",
|
| 35 |
+
">",
|
| 36 |
+
"?",
|
| 37 |
+
"@",
|
| 38 |
+
"[",
|
| 39 |
+
"\\",
|
| 40 |
+
"]",
|
| 41 |
+
"^",
|
| 42 |
+
"_",
|
| 43 |
+
"`",
|
| 44 |
+
"{",
|
| 45 |
+
"|",
|
| 46 |
+
"}",
|
| 47 |
+
"~"
|
| 48 |
+
]
|
| 49 |
+
}
|
eval/triplet_evaluation_results.csv
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,accuracy
|
| 2 |
+
0.13025921583952066,2000,0.9988450407981873
|
| 3 |
+
0.2605184316790413,4000,0.999037504196167
|
| 4 |
+
0.3907776475185619,6000,0.9988450407981873
|
| 5 |
+
0.5210368633580826,8000,0.9994224905967712
|
| 6 |
+
0.6512960791976032,10000,0.9996150135993958
|
| 7 |
+
0.7815552950371238,12000,0.9992300271987915
|
| 8 |
+
0.9118145108766446,14000,0.9992300271987915
|
| 9 |
+
0.09512937595129375,2000,0.9996359348297119
|
| 10 |
+
0.1902587519025875,4000,1.0
|
| 11 |
+
0.2853881278538813,6000,1.0
|
| 12 |
+
0.380517503805175,8000,1.0
|
| 13 |
+
0.4756468797564688,10000,0.999817967414856
|
| 14 |
+
0.5707762557077626,12000,0.999817967414856
|
| 15 |
+
0.6659056316590564,14000,0.999817967414856
|
| 16 |
+
0.76103500761035,16000,0.999817967414856
|
| 17 |
+
0.8561643835616438,18000,0.999817967414856
|
| 18 |
+
0.9512937595129376,20000,0.999817967414856
|
| 19 |
+
0.09512937595129375,2000,0.999089777469635
|
| 20 |
+
0.1902587519025875,4000,0.9994539022445679
|
| 21 |
+
0.2853881278538813,6000,0.9994539022445679
|
| 22 |
+
0.380517503805175,8000,0.9994539022445679
|
| 23 |
+
0.4756468797564688,10000,0.9994539022445679
|
| 24 |
+
0.5707762557077626,12000,0.9994539022445679
|
| 25 |
+
0.6659056316590564,14000,0.9994539022445679
|
| 26 |
+
0.76103500761035,16000,0.9996359348297119
|
| 27 |
+
0.8561643835616438,18000,0.9996359348297119
|
| 28 |
+
0.9512937595129376,20000,0.9996359348297119
|
| 29 |
+
0.09512937595129375,2000,0.9983615875244141
|
| 30 |
+
0.1902587519025875,4000,0.9987256526947021
|
| 31 |
+
0.2853881278538813,6000,0.9987256526947021
|
| 32 |
+
0.380517503805175,8000,0.9996359348297119
|
| 33 |
+
0.4756468797564688,10000,0.9996359348297119
|
| 34 |
+
0.5707762557077626,12000,0.999817967414856
|
| 35 |
+
0.6659056316590564,14000,0.9996359348297119
|
| 36 |
+
0.76103500761035,16000,1.0
|
| 37 |
+
0.8561643835616438,18000,0.999817967414856
|
| 38 |
+
0.9512937595129376,20000,0.999817967414856
|
| 39 |
+
0.09512937595129375,2000,0.99817955493927
|
| 40 |
+
0.1902587519025875,4000,0.998907744884491
|
| 41 |
+
0.2853881278538813,6000,0.998907744884491
|
| 42 |
+
0.380517503805175,8000,0.9985436201095581
|
| 43 |
+
0.4756468797564688,10000,0.9983615875244141
|
| 44 |
+
0.5707762557077626,12000,0.9983615875244141
|
| 45 |
+
0.6659056316590564,14000,0.99817955493927
|
| 46 |
+
0.76103500761035,16000,0.9985436201095581
|
| 47 |
+
0.8561643835616438,18000,0.9983615875244141
|
| 48 |
+
0.9512937595129376,20000,0.9983615875244141
|
| 49 |
+
0.09512937595129375,2000,0.998907744884491
|
| 50 |
+
0.1902587519025875,4000,0.999271810054779
|
| 51 |
+
0.2853881278538813,6000,0.999089777469635
|
| 52 |
+
0.380517503805175,8000,0.999089777469635
|
| 53 |
+
0.4756468797564688,10000,0.9994539022445679
|
| 54 |
+
0.5707762557077626,12000,0.999271810054779
|
| 55 |
+
0.6659056316590564,14000,0.999271810054779
|
| 56 |
+
0.76103500761035,16000,0.999271810054779
|
| 57 |
+
0.8561643835616438,18000,0.999089777469635
|
| 58 |
+
0.9512937595129376,20000,0.999089777469635
|
| 59 |
+
0.09905403397553365,2000,0.998598575592041
|
| 60 |
+
0.1981080679510673,4000,0.9989989995956421
|
| 61 |
+
0.297162101926601,6000,0.9991992115974426
|
| 62 |
+
0.3962161359021346,8000,0.9989989995956421
|
| 63 |
+
0.49527016987766825,10000,0.9991992115974426
|
| 64 |
+
0.594324203853202,12000,0.9989989995956421
|
| 65 |
+
0.6933782378287355,14000,0.9991992115974426
|
| 66 |
+
0.7924322718042692,16000,0.9989989995956421
|
| 67 |
+
0.8914863057798029,18000,0.9989989995956421
|
| 68 |
+
0.9905403397553365,20000,0.9989989995956421
|
| 69 |
+
0.09512937595129375,2000,0.9983615875244141
|
| 70 |
+
0.1902587519025875,4000,0.9985436201095581
|
| 71 |
+
0.2853881278538813,6000,0.9987256526947021
|
| 72 |
+
0.380517503805175,8000,0.9987256526947021
|
| 73 |
+
0.4756468797564688,10000,0.999089777469635
|
| 74 |
+
0.5707762557077626,12000,0.999271810054779
|
| 75 |
+
0.6659056316590564,14000,0.9994539022445679
|
| 76 |
+
0.76103500761035,16000,0.998907744884491
|
| 77 |
+
0.8561643835616438,18000,0.9994539022445679
|
| 78 |
+
0.9512937595129376,20000,0.999271810054779
|
| 79 |
+
0.09512937595129375,2000,0.999089777469635
|
| 80 |
+
0.1902587519025875,4000,0.999089777469635
|
| 81 |
+
0.2853881278538813,6000,0.999271810054779
|
| 82 |
+
0.380517503805175,8000,0.999271810054779
|
| 83 |
+
0.4756468797564688,10000,0.9994539022445679
|
| 84 |
+
0.5707762557077626,12000,0.999817967414856
|
| 85 |
+
0.6659056316590564,14000,0.9996359348297119
|
| 86 |
+
0.76103500761035,16000,0.999817967414856
|
| 87 |
+
0.8561643835616438,18000,0.999817967414856
|
| 88 |
+
0.9512937595129376,20000,0.9996359348297119
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2a46d33500d2dda112f63014cec8d3314497b6fe6e378e23bc21b754d6a3c57
|
| 3 |
+
size 437957472
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Dense",
|
| 12 |
+
"type": "pylate.models.Dense.Dense"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[MASK]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"30522": {
|
| 44 |
+
"content": "[Q] ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"30523": {
|
| 52 |
+
"content": "[D] ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"clean_up_tokenization_spaces": true,
|
| 61 |
+
"cls_token": "[CLS]",
|
| 62 |
+
"do_basic_tokenize": true,
|
| 63 |
+
"do_lower_case": true,
|
| 64 |
+
"extra_special_tokens": {},
|
| 65 |
+
"mask_token": "[MASK]",
|
| 66 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 67 |
+
"never_split": null,
|
| 68 |
+
"pad_token": "[MASK]",
|
| 69 |
+
"sep_token": "[SEP]",
|
| 70 |
+
"strip_accents": null,
|
| 71 |
+
"tokenize_chinese_chars": true,
|
| 72 |
+
"tokenizer_class": "BertTokenizer",
|
| 73 |
+
"unk_token": "[UNK]"
|
| 74 |
+
}
|
triplet_evaluation_results.csv
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,accuracy
|
| 2 |
+
-1,-1,0.9998083710670471
|
| 3 |
+
-1,-1,0.9999090433120728
|
| 4 |
+
-1,-1,0.9998180866241455
|
| 5 |
+
-1,-1,0.999454140663147
|
| 6 |
+
-1,-1,0.9991812109947205
|
| 7 |
+
-1,-1,0.9993631839752197
|
| 8 |
+
-1,-1,0.999399721622467
|
| 9 |
+
-1,-1,0.9992722272872925
|
| 10 |
+
-1,-1,0.9998180866241455
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|