Create pipeline.py
Browse files- pipeline.py +33 -0
pipeline.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
3 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
4 |
+
import tensorflow as tf
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
class ToxicPipeline:
|
9 |
+
def __init__(self, model, tokenizer_path="tokenizer.json", max_len=150, label_map=None):
|
10 |
+
self.model = model
|
11 |
+
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
12 |
+
tokenizer_json = f.read()
|
13 |
+
self.tokenizer = tokenizer_from_json(tokenizer_json)
|
14 |
+
self.max_len = max_len
|
15 |
+
self.label_map = label_map
|
16 |
+
|
17 |
+
def __call__(self, text, image_desc):
|
18 |
+
input_text = text + " " + image_desc
|
19 |
+
seq = self.tokenizer.texts_to_sequences([input_text])
|
20 |
+
padded = pad_sequences(seq, maxlen=self.max_len, padding='post', truncating='post')
|
21 |
+
pred_probs = self.model.predict(padded)
|
22 |
+
pred_label = int(np.argmax(pred_probs, axis=1)[0])
|
23 |
+
if self.label_map:
|
24 |
+
return self.label_map.get(pred_label, pred_label)
|
25 |
+
return pred_label
|
26 |
+
|
27 |
+
# Example usage (for README):
|
28 |
+
# from huggingface_hub import from_pretrained_keras
|
29 |
+
# from pipeline import ToxicPipeline
|
30 |
+
# model = from_pretrained_keras("NightPrince/Toxic_Classification")
|
31 |
+
# pipeline = ToxicPipeline(model, tokenizer_path="data/tokenizer.json", label_map={0: "toxic", 1: "not toxic", ...})
|
32 |
+
# result = pipeline("This is a dangerous post", "Knife shown in the image")
|
33 |
+
# print(result)
|