import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import tokenizer_from_json import json import os # Hugging Face expects a class named Pipeline with __call__(self, inputs) class Pipeline: def __init__(self): # Load tokenizer with open("tokenizer.json", "r", encoding="utf-8") as f: tokenizer_json = f.read() self.tokenizer = tokenizer_from_json(tokenizer_json) self.max_len = 150 # Load model (SavedModel format) self.model = tf.keras.models.load_model(".") # Load label map if available self.label_map = None if os.path.exists("label_map.json"): with open("label_map.json", "r", encoding="utf-8") as f: self.label_map = json.load(f) def __call__(self, inputs): # Accepts a dict with keys 'text' and 'image_desc' text = inputs.get("text", "") image_desc = inputs.get("image_desc", "") input_text = text + " " + image_desc seq = self.tokenizer.texts_to_sequences([input_text]) padded = pad_sequences(seq, maxlen=self.max_len, padding='post', truncating='post') pred_probs = self.model.predict(padded) pred_label = int(np.argmax(pred_probs, axis=1)[0]) score = float(np.max(pred_probs)) if self.label_map: label = self.label_map.get(str(pred_label), pred_label) else: label = pred_label return {"label": label, "score": score}