Upload folder using huggingface_hub
Browse files- config.json +53 -0
- configuration_olmo.py +44 -0
- modeling_olmo.py +156 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +4 -0
- tokenization_olmo_fast.py +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +235 -0
config.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_type": "swiglu",
|
| 3 |
+
"alibi": false,
|
| 4 |
+
"alibi_bias_max": 8.0,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"OLMoModelForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"attention_layer_norm": false,
|
| 10 |
+
"attention_layer_norm_with_affine": false,
|
| 11 |
+
"bias_for_layer_norm": false,
|
| 12 |
+
"block_group_size": 1,
|
| 13 |
+
"block_type": "sequential",
|
| 14 |
+
"clip_qkv": null,
|
| 15 |
+
"d_model": 2048,
|
| 16 |
+
"embedding_dropout": 0.0,
|
| 17 |
+
"embedding_size": 50304,
|
| 18 |
+
"eos_token_id": 50279,
|
| 19 |
+
"flash_attention": true,
|
| 20 |
+
"include_bias": false,
|
| 21 |
+
"init_cutoff_factor": null,
|
| 22 |
+
"init_device": "meta",
|
| 23 |
+
"init_fn": "mitchell",
|
| 24 |
+
"init_std": 0.02,
|
| 25 |
+
"layer_norm_type": "rms",
|
| 26 |
+
"layer_norm_with_affine": true,
|
| 27 |
+
"max_sequence_length": 2048,
|
| 28 |
+
"mlp_hidden_size": null,
|
| 29 |
+
"mlp_ratio": 8,
|
| 30 |
+
"model_type": "olmo",
|
| 31 |
+
"multi_query_attention": false,
|
| 32 |
+
"n_heads": 16,
|
| 33 |
+
"n_layers": 16,
|
| 34 |
+
"pad_token_id": 1,
|
| 35 |
+
"precision": "amp_bf16",
|
| 36 |
+
"residual_dropout": 0.0,
|
| 37 |
+
"rope": true,
|
| 38 |
+
"rope_full_precision": true,
|
| 39 |
+
"scale_logits": false,
|
| 40 |
+
"ternary": true,
|
| 41 |
+
"transformers_version": "4.38.2",
|
| 42 |
+
"use_cache": true,
|
| 43 |
+
"vocab_size": 50280,
|
| 44 |
+
"weight_tying": true,
|
| 45 |
+
"auto_map": {
|
| 46 |
+
"AutoConfig": "configuration_olmo.OLMoConfig",
|
| 47 |
+
"AutoModelForCausalLM": "modeling_olmo.OLMoForCausalLM",
|
| 48 |
+
"AutoTokenizer": [
|
| 49 |
+
"tokenization_olmo_fast.OLMoTokenizerFast",
|
| 50 |
+
"tokenization_olmo_fast.OLMoTokenizerFast"
|
| 51 |
+
]
|
| 52 |
+
}
|
| 53 |
+
}
|
configuration_olmo.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
OLMo configuration
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from transformers import AutoConfig, PretrainedConfig
|
| 6 |
+
from transformers.utils import logging
|
| 7 |
+
|
| 8 |
+
from olmo.config import ModelConfig
|
| 9 |
+
|
| 10 |
+
logger = logging.get_logger(__name__)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class OLMoConfig(PretrainedConfig):
|
| 14 |
+
model_type = "olmo"
|
| 15 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
| 16 |
+
|
| 17 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
| 18 |
+
model_config = ModelConfig()
|
| 19 |
+
all_kwargs = model_config.asdict()
|
| 20 |
+
all_kwargs.update(kwargs)
|
| 21 |
+
all_kwargs.update({"use_cache": use_cache})
|
| 22 |
+
all_kwargs.update(
|
| 23 |
+
{
|
| 24 |
+
"architectures": all_kwargs.get("architectures", ["OLMoModelForCausalLM"])
|
| 25 |
+
or ["OLMoModelForCausalLM"]
|
| 26 |
+
}
|
| 27 |
+
)
|
| 28 |
+
super().__init__(**all_kwargs)
|
| 29 |
+
|
| 30 |
+
@property
|
| 31 |
+
def num_attention_heads(self):
|
| 32 |
+
return self.n_heads
|
| 33 |
+
|
| 34 |
+
@property
|
| 35 |
+
def num_hidden_layers(self):
|
| 36 |
+
return self.n_layers
|
| 37 |
+
|
| 38 |
+
@property
|
| 39 |
+
def hidden_size(self):
|
| 40 |
+
return self.d_model
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
| 44 |
+
AutoConfig.register("olmo", OLMoConfig)
|
modeling_olmo.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import fields
|
| 2 |
+
from typing import List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import PreTrainedModel
|
| 6 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 7 |
+
from transformers.models.auto import AutoModelForCausalLM
|
| 8 |
+
|
| 9 |
+
from olmo.config import ModelConfig
|
| 10 |
+
from olmo.model import OLMo
|
| 11 |
+
|
| 12 |
+
from .configuration_olmo import OLMoConfig
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def create_model_config_from_pretrained_config(config: OLMoConfig):
|
| 16 |
+
"""
|
| 17 |
+
Utility function
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
kwargs = {}
|
| 21 |
+
for field in fields(ModelConfig):
|
| 22 |
+
kwargs[field.name] = getattr(config, field.name)
|
| 23 |
+
|
| 24 |
+
model_config = ModelConfig(**kwargs)
|
| 25 |
+
return model_config
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class OLMoForCausalLM(PreTrainedModel):
|
| 29 |
+
"""
|
| 30 |
+
Extremely barebones HF model wrapper.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
config_class = OLMoConfig
|
| 34 |
+
base_model_prefix = "model"
|
| 35 |
+
_no_split_modules = ["OLMoBlock"]
|
| 36 |
+
|
| 37 |
+
def __init__(self, config: OLMoConfig, model: Optional[OLMo] = None, init_params: bool = False):
|
| 38 |
+
super().__init__(config)
|
| 39 |
+
|
| 40 |
+
if not model:
|
| 41 |
+
model_config = create_model_config_from_pretrained_config(config)
|
| 42 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
| 43 |
+
model_config.init_device = "cpu"
|
| 44 |
+
self.model = OLMo(model_config, init_params=init_params)
|
| 45 |
+
else:
|
| 46 |
+
self.model = model
|
| 47 |
+
|
| 48 |
+
def forward(
|
| 49 |
+
self,
|
| 50 |
+
input_ids: torch.LongTensor = None,
|
| 51 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 52 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 53 |
+
attention_bias: Optional[torch.Tensor] = None,
|
| 54 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 55 |
+
labels: Optional[torch.LongTensor] = None,
|
| 56 |
+
use_cache: Optional[bool] = None,
|
| 57 |
+
output_attentions: Optional[bool] = None,
|
| 58 |
+
output_hidden_states: Optional[bool] = None,
|
| 59 |
+
return_dict: Optional[bool] = None,
|
| 60 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 61 |
+
if use_cache is None:
|
| 62 |
+
use_cache = self.config.use_cache
|
| 63 |
+
|
| 64 |
+
if output_attentions:
|
| 65 |
+
raise ValueError("output_attentions is not yet supported in OLMo")
|
| 66 |
+
|
| 67 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 68 |
+
|
| 69 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 70 |
+
outputs = self.model.forward(
|
| 71 |
+
input_ids=input_ids,
|
| 72 |
+
input_embeddings=inputs_embeds,
|
| 73 |
+
attention_mask=attention_mask,
|
| 74 |
+
attention_bias=attention_bias,
|
| 75 |
+
past_key_values=past_key_values,
|
| 76 |
+
use_cache=use_cache,
|
| 77 |
+
output_hidden_states=output_hidden_states,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
logits = outputs.logits
|
| 81 |
+
hidden_states = outputs.hidden_states
|
| 82 |
+
|
| 83 |
+
loss = None
|
| 84 |
+
if labels is not None:
|
| 85 |
+
# Shift so that tokens < n predict n
|
| 86 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 87 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 88 |
+
# Flatten the tokens
|
| 89 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
| 90 |
+
shift_logits = shift_logits.view(-1, self.config.embedding_size)
|
| 91 |
+
shift_labels = shift_labels.view(-1)
|
| 92 |
+
# Enable model parallelism
|
| 93 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 94 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 95 |
+
|
| 96 |
+
if not return_dict:
|
| 97 |
+
output = (logits,) + outputs[1:]
|
| 98 |
+
return (loss,) + output if loss is not None else output
|
| 99 |
+
|
| 100 |
+
return CausalLMOutputWithPast(
|
| 101 |
+
loss=loss,
|
| 102 |
+
logits=logits,
|
| 103 |
+
past_key_values=outputs.attn_key_values,
|
| 104 |
+
hidden_states=hidden_states,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def can_generate(self) -> bool:
|
| 108 |
+
return True
|
| 109 |
+
|
| 110 |
+
def prepare_inputs_for_generation(
|
| 111 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
| 112 |
+
):
|
| 113 |
+
if past_key_values:
|
| 114 |
+
# This is because we want the model to only process the last generated token.
|
| 115 |
+
input_ids = input_ids[:, -1:]
|
| 116 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
| 117 |
+
|
| 118 |
+
model_inputs.update(kwargs)
|
| 119 |
+
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
| 120 |
+
return model_inputs
|
| 121 |
+
|
| 122 |
+
# TODO: these are required to make the implementation complete.
|
| 123 |
+
# def resize_position_embeddings(self, new_num_position_embeddings: int):
|
| 124 |
+
# pass
|
| 125 |
+
#
|
| 126 |
+
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
|
| 127 |
+
# pass
|
| 128 |
+
#
|
| 129 |
+
# def _reorder_cache(self, past_key_values, beam_idx):
|
| 130 |
+
# pass
|
| 131 |
+
|
| 132 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 133 |
+
return self.model.transformer.wte
|
| 134 |
+
|
| 135 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
| 136 |
+
self.model.transformer.wte = value
|
| 137 |
+
|
| 138 |
+
def get_output_embeddings(self):
|
| 139 |
+
if self.config.weight_tying:
|
| 140 |
+
return self.model.transformer.wte
|
| 141 |
+
else:
|
| 142 |
+
return self.model.transformer.ff_out
|
| 143 |
+
|
| 144 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
| 145 |
+
if self.config.weight_tying:
|
| 146 |
+
self.model.transformer.wte = value
|
| 147 |
+
else:
|
| 148 |
+
self.model.transformer.ff_out = value
|
| 149 |
+
|
| 150 |
+
def tie_weights(self):
|
| 151 |
+
if self.config.weight_tying:
|
| 152 |
+
self.model.transformer.ff_out = self.model.transformer.wte
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
|
| 156 |
+
AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1aedbdb8a9c944a7994b7afacc7ccac4fbc2c2b745231f0bd943b92a3101191
|
| 3 |
+
size 4707362312
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": "|||IP_ADDRESS|||",
|
| 3 |
+
"pad_token": "<|padding|>"
|
| 4 |
+
}
|
tokenization_olmo_fast.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, PreTrainedTokenizerFast
|
| 2 |
+
|
| 3 |
+
from hf_olmo.configuration_olmo import OLMoConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class OLMoTokenizerFast(PreTrainedTokenizerFast):
|
| 7 |
+
# Note: OLMo's tokenizer is already a wrapper around huggingface. This is potentially unnecessary.
|
| 8 |
+
pass
|
| 9 |
+
|
| 10 |
+
# def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 11 |
+
# # This is required to make the implementation complete.
|
| 12 |
+
# pass
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Register the tokenizer class so that it is available for transformer pipelines, auto-loading etc.
|
| 16 |
+
AutoTokenizer.register(OLMoConfig, fast_tokenizer_class=OLMoTokenizerFast)
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<|endoftext|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|padding|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"50254": {
|
| 20 |
+
"content": " ",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": false
|
| 26 |
+
},
|
| 27 |
+
"50255": {
|
| 28 |
+
"content": " ",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": false
|
| 34 |
+
},
|
| 35 |
+
"50256": {
|
| 36 |
+
"content": " ",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": true,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": false
|
| 42 |
+
},
|
| 43 |
+
"50257": {
|
| 44 |
+
"content": " ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"50258": {
|
| 52 |
+
"content": " ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
},
|
| 59 |
+
"50259": {
|
| 60 |
+
"content": " ",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": false
|
| 66 |
+
},
|
| 67 |
+
"50260": {
|
| 68 |
+
"content": " ",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": true,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": false
|
| 74 |
+
},
|
| 75 |
+
"50261": {
|
| 76 |
+
"content": " ",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": true,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"50262": {
|
| 84 |
+
"content": " ",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": true,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"50263": {
|
| 92 |
+
"content": " ",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": true,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"50264": {
|
| 100 |
+
"content": " ",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": true,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"50265": {
|
| 108 |
+
"content": " ",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": true,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"50266": {
|
| 116 |
+
"content": " ",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": true,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": false
|
| 122 |
+
},
|
| 123 |
+
"50267": {
|
| 124 |
+
"content": " ",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": true,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": false
|
| 130 |
+
},
|
| 131 |
+
"50268": {
|
| 132 |
+
"content": " ",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": true,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": false
|
| 138 |
+
},
|
| 139 |
+
"50269": {
|
| 140 |
+
"content": " ",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": true,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": false
|
| 146 |
+
},
|
| 147 |
+
"50270": {
|
| 148 |
+
"content": " ",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": true,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": false
|
| 154 |
+
},
|
| 155 |
+
"50271": {
|
| 156 |
+
"content": " ",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": true,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": false
|
| 162 |
+
},
|
| 163 |
+
"50272": {
|
| 164 |
+
"content": " ",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": true,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": false
|
| 170 |
+
},
|
| 171 |
+
"50273": {
|
| 172 |
+
"content": " ",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": true,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": false
|
| 178 |
+
},
|
| 179 |
+
"50274": {
|
| 180 |
+
"content": " ",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": true,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": false
|
| 186 |
+
},
|
| 187 |
+
"50275": {
|
| 188 |
+
"content": " ",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": true,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": false
|
| 194 |
+
},
|
| 195 |
+
"50276": {
|
| 196 |
+
"content": " ",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": true,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": false
|
| 202 |
+
},
|
| 203 |
+
"50277": {
|
| 204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": true,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": false
|
| 210 |
+
},
|
| 211 |
+
"50278": {
|
| 212 |
+
"content": "|||PHONE_NUMBER|||",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": true,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": false
|
| 218 |
+
},
|
| 219 |
+
"50279": {
|
| 220 |
+
"content": "|||IP_ADDRESS|||",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": true,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": false
|
| 226 |
+
}
|
| 227 |
+
},
|
| 228 |
+
"clean_up_tokenization_spaces": true,
|
| 229 |
+
"eos_token": "|||IP_ADDRESS|||",
|
| 230 |
+
"max_length": null,
|
| 231 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 232 |
+
"pad_token": "<|padding|>",
|
| 233 |
+
"tokenizer_class": "OLMoTokenizer",
|
| 234 |
+
"truncation": "right"
|
| 235 |
+
}
|