Update processing_llava.py
Browse files- processing_llava.py +97 -47
processing_llava.py
CHANGED
|
@@ -13,12 +13,16 @@
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
"""
|
| 16 |
-
Processor class for
|
| 17 |
"""
|
| 18 |
|
| 19 |
|
|
|
|
| 20 |
from typing import List, Optional, Union
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
from transformers.feature_extraction_utils import BatchFeature
|
| 23 |
from transformers.image_utils import ImageInput
|
| 24 |
from transformers.tokenization_utils_base import (
|
|
@@ -28,52 +32,73 @@ from transformers.tokenization_utils_base import (
|
|
| 28 |
TruncationStrategy,
|
| 29 |
)
|
| 30 |
from transformers.utils import TensorType
|
| 31 |
-
import torch
|
| 32 |
-
from open_clip.transform import PreprocessCfg, image_transform_v2
|
| 33 |
-
from modeling_llava import LlavaForConditionalGeneration
|
| 34 |
-
from PIL import Image
|
| 35 |
-
import math
|
| 36 |
|
| 37 |
|
| 38 |
-
class
|
| 39 |
-
def __init__(self,
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
self.
|
| 43 |
-
self.
|
| 44 |
-
self.max_tokens = max_tokens
|
| 45 |
|
| 46 |
-
def __call__(
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
outputs = []
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
width, height = image.size
|
| 56 |
crop_size = self.crop_size
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
total_tokens = math.inf
|
| 61 |
-
while total_tokens >
|
| 62 |
-
total_tokens =
|
| 63 |
-
(
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
/ crop_size
|
| 67 |
)
|
| 68 |
-
if total_tokens >
|
| 69 |
crop_size += 10
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
if x_steps < 1:
|
| 73 |
x_steps = 1
|
| 74 |
-
y_steps = int(
|
| 75 |
if y_steps < 1:
|
| 76 |
y_steps = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
x_coords = []
|
| 78 |
y_coords = []
|
| 79 |
for i in range(x_steps):
|
|
@@ -85,6 +110,7 @@ class OpenCLIPImageProcessor:
|
|
| 85 |
if y_coords[-1][1] != height:
|
| 86 |
y_coords[-1][1] = height
|
| 87 |
image_parts = []
|
|
|
|
| 88 |
for i in range(len(x_coords)):
|
| 89 |
for j in range(len(y_coords)):
|
| 90 |
image_parts.append(
|
|
@@ -92,20 +118,38 @@ class OpenCLIPImageProcessor:
|
|
| 92 |
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
|
| 93 |
)
|
| 94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
for image_part in image_parts:
|
| 96 |
-
outputs.append(self.
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
@property
|
| 101 |
-
def model_input_names(self):
|
| 102 |
-
return ["pixel_values"]
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
def __init__(self, image_processor: OpenCLIPImageProcessor, tokenizer):
|
| 107 |
self.image_processor = image_processor
|
| 108 |
self.tokenizer = tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
def __call__(
|
| 111 |
self,
|
|
@@ -113,20 +157,24 @@ class LlavaProcessor:
|
|
| 113 |
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
| 114 |
] = None,
|
| 115 |
images: ImageInput = None,
|
| 116 |
-
model
|
|
|
|
|
|
|
| 117 |
padding: Union[bool, str, PaddingStrategy] = False,
|
| 118 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 119 |
max_length=None,
|
| 120 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 121 |
) -> BatchFeature:
|
| 122 |
if images is not None:
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
]
|
| 126 |
-
|
| 127 |
-
|
|
|
|
| 128 |
image_features = model.multi_modal_projector(image_outputs)
|
| 129 |
-
image_features = image_features.unsqueeze(0)
|
| 130 |
else:
|
| 131 |
image_features = None
|
| 132 |
text_inputs = self.tokenizer(
|
|
@@ -136,7 +184,8 @@ class LlavaProcessor:
|
|
| 136 |
truncation=truncation,
|
| 137 |
max_length=max_length,
|
| 138 |
)
|
| 139 |
-
|
|
|
|
| 140 |
return BatchFeature(data={**text_inputs, "image_features": image_features})
|
| 141 |
|
| 142 |
def batch_decode(self, *args, **kwargs):
|
|
@@ -150,3 +199,4 @@ class LlavaProcessor:
|
|
| 150 |
tokenizer_input_names = self.tokenizer.model_input_names
|
| 151 |
image_processor_input_names = self.image_processor.model_input_names
|
| 152 |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
|
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
"""
|
| 16 |
+
Processor class for HelpingAI-V.
|
| 17 |
"""
|
| 18 |
|
| 19 |
|
| 20 |
+
import math
|
| 21 |
from typing import List, Optional, Union
|
| 22 |
|
| 23 |
+
import torch
|
| 24 |
+
from PIL import Image
|
| 25 |
+
from transformers import ImageProcessingMixin, ProcessorMixin, SiglipImageProcessor, AutoTokenizer, AutoImageProcessor
|
| 26 |
from transformers.feature_extraction_utils import BatchFeature
|
| 27 |
from transformers.image_utils import ImageInput
|
| 28 |
from transformers.tokenization_utils_base import (
|
|
|
|
| 32 |
TruncationStrategy,
|
| 33 |
)
|
| 34 |
from transformers.utils import TensorType
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
+
class MultiCropImageProcessor(ImageProcessingMixin):
|
| 38 |
+
def __init__(self, model_name, max_crops=0, **kwargs):
|
| 39 |
+
self.processor = SiglipImageProcessor.from_pretrained(model_name)
|
| 40 |
+
self.crop_size = 384
|
| 41 |
+
self.max_crops = max_crops
|
| 42 |
+
self.stride_ratio = 2
|
|
|
|
| 43 |
|
| 44 |
+
def __call__(
|
| 45 |
+
self,
|
| 46 |
+
images: List[Image.Image],
|
| 47 |
+
max_crops: int = -1,
|
| 48 |
+
):
|
| 49 |
+
res = {
|
| 50 |
+
"pixel_values": [],
|
| 51 |
+
"coords": [],
|
| 52 |
}
|
| 53 |
+
if max_crops < 0:
|
| 54 |
+
max_crops = self.max_crops
|
| 55 |
+
for image in images:
|
| 56 |
+
outputs, output_coords = self.process_image(image, max_crops)
|
| 57 |
+
res["pixel_values"].append(outputs)
|
| 58 |
+
res["coords"].append(output_coords)
|
| 59 |
+
return res
|
| 60 |
|
| 61 |
+
def process_image(
|
| 62 |
+
self,
|
| 63 |
+
image: Image.Image,
|
| 64 |
+
max_crops: int
|
| 65 |
+
):
|
| 66 |
outputs = []
|
| 67 |
+
output_coords = []
|
| 68 |
+
outputs.append(self.processor(image, return_tensors="pt").pixel_values)
|
| 69 |
+
output_coords.append(torch.tensor([0.5, 0.5]))
|
| 70 |
width, height = image.size
|
| 71 |
crop_size = self.crop_size
|
| 72 |
+
stride = crop_size // self.stride_ratio
|
| 73 |
+
if (
|
| 74 |
+
max_crops == 0
|
| 75 |
+
or width <= (crop_size + stride)
|
| 76 |
+
and height <= (crop_size + stride)
|
| 77 |
+
):
|
| 78 |
+
outputs = torch.cat(outputs, dim=0)
|
| 79 |
+
output_coords = torch.cat(output_coords, dim=0)
|
| 80 |
+
return outputs, output_coords
|
| 81 |
total_tokens = math.inf
|
| 82 |
+
while total_tokens > max_crops:
|
| 83 |
+
total_tokens = (
|
| 84 |
+
math.floor((width - crop_size) / stride) + 1
|
| 85 |
+
) * (
|
| 86 |
+
math.floor((height - crop_size) / stride) + 1
|
|
|
|
| 87 |
)
|
| 88 |
+
if total_tokens > max_crops:
|
| 89 |
crop_size += 10
|
| 90 |
+
stride = crop_size // self.stride_ratio
|
| 91 |
+
stride = crop_size // self.stride_ratio
|
| 92 |
+
x_steps = int(math.floor((width - crop_size) / stride) + 1)
|
| 93 |
if x_steps < 1:
|
| 94 |
x_steps = 1
|
| 95 |
+
y_steps = int(math.floor((height - crop_size) / stride) + 1)
|
| 96 |
if y_steps < 1:
|
| 97 |
y_steps = 1
|
| 98 |
+
if x_steps == 1 and y_steps == 1:
|
| 99 |
+
outputs = torch.cat(outputs, dim=0)
|
| 100 |
+
output_coords = torch.cat(output_coords, dim=0)
|
| 101 |
+
return outputs, output_coords
|
| 102 |
x_coords = []
|
| 103 |
y_coords = []
|
| 104 |
for i in range(x_steps):
|
|
|
|
| 110 |
if y_coords[-1][1] != height:
|
| 111 |
y_coords[-1][1] = height
|
| 112 |
image_parts = []
|
| 113 |
+
part_coords = []
|
| 114 |
for i in range(len(x_coords)):
|
| 115 |
for j in range(len(y_coords)):
|
| 116 |
image_parts.append(
|
|
|
|
| 118 |
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
|
| 119 |
)
|
| 120 |
)
|
| 121 |
+
part_coords.append(
|
| 122 |
+
torch.tensor(
|
| 123 |
+
[
|
| 124 |
+
(x_coords[i][0] + x_coords[i][1]) / 2 / width,
|
| 125 |
+
(y_coords[j][0] + y_coords[j][1]) / 2 / height,
|
| 126 |
+
]
|
| 127 |
+
)
|
| 128 |
+
)
|
| 129 |
for image_part in image_parts:
|
| 130 |
+
outputs.append(self.processor(image_part, return_tensors="pt").pixel_values)
|
| 131 |
+
for part_coord in part_coords:
|
| 132 |
+
output_coords.append(part_coord)
|
| 133 |
+
outputs = torch.cat(outputs, dim=0)
|
| 134 |
+
output_coords = torch.stack(output_coords, dim=0)
|
| 135 |
+
return outputs, output_coords
|
| 136 |
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
class LlavaProcessor(ProcessorMixin):
|
| 139 |
+
attributes = ["image_processor", "tokenizer"]
|
| 140 |
+
image_processor_class = MultiCropImageProcessor
|
| 141 |
+
tokenizer_class = "SiglipTokenizer"
|
| 142 |
|
| 143 |
+
def __init__(self, image_processor: MultiCropImageProcessor, tokenizer):
|
|
|
|
| 144 |
self.image_processor = image_processor
|
| 145 |
self.tokenizer = tokenizer
|
| 146 |
+
self.search_model = None
|
| 147 |
+
|
| 148 |
+
@classmethod
|
| 149 |
+
def from_pretrained(cls, path, trust_remote_code=True, **kwargs):
|
| 150 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=trust_remote_code)
|
| 151 |
+
image_processor = MultiCropImageProcessor(path, trust_remote_code=trust_remote_code)
|
| 152 |
+
return LlavaProcessor(image_processor, tokenizer)
|
| 153 |
|
| 154 |
def __call__(
|
| 155 |
self,
|
|
|
|
| 157 |
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
| 158 |
] = None,
|
| 159 |
images: ImageInput = None,
|
| 160 |
+
model = None,
|
| 161 |
+
max_crops: int = 0,
|
| 162 |
+
num_tokens = None,
|
| 163 |
padding: Union[bool, str, PaddingStrategy] = False,
|
| 164 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 165 |
max_length=None,
|
| 166 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 167 |
) -> BatchFeature:
|
| 168 |
if images is not None:
|
| 169 |
+
processor_outputs = self.image_processor(images, max_crops)
|
| 170 |
+
pixel_values = processor_outputs["pixel_values"]
|
| 171 |
+
pixel_values = [
|
| 172 |
+
value.to(model.device).to(model.dtype) for value in pixel_values
|
| 173 |
]
|
| 174 |
+
coords = processor_outputs["coords"]
|
| 175 |
+
coords = [value.to(model.device).to(model.dtype) for value in coords]
|
| 176 |
+
image_outputs = model.vision_model(pixel_values, coords, num_tokens)
|
| 177 |
image_features = model.multi_modal_projector(image_outputs)
|
|
|
|
| 178 |
else:
|
| 179 |
image_features = None
|
| 180 |
text_inputs = self.tokenizer(
|
|
|
|
| 184 |
truncation=truncation,
|
| 185 |
max_length=max_length,
|
| 186 |
)
|
| 187 |
+
text_inputs['input_ids'] = text_inputs['input_ids'].to(model.device)
|
| 188 |
+
text_inputs['attention_mask'] = text_inputs['attention_mask'].to(model.device)
|
| 189 |
return BatchFeature(data={**text_inputs, "image_features": image_features})
|
| 190 |
|
| 191 |
def batch_decode(self, *args, **kwargs):
|
|
|
|
| 199 |
tokenizer_input_names = self.tokenizer.model_input_names
|
| 200 |
image_processor_input_names = self.image_processor.model_input_names
|
| 201 |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 202 |
+
|