File size: 18,709 Bytes
ffa1f50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""
Demand Data Filtering Module
This module filters demand data to include only products that are ready for optimization.
Excludes products that:
1. Have no line type assignments (non-standalone masters)
2. Have zero staffing requirements (both Humanizer and UNICEF staff = 0)
The filtered data is used by the optimization system.
"""
import pandas as pd
from typing import Dict, List, Tuple
from src.preprocess import extract
class DemandFilter:
"""
Filters demand data to include only products ready for optimization
"""
def __init__(self):
self.demand_data = None
self.kit_levels = None
self.kit_dependencies = None
self.line_assignments = None
self.team_requirements = None
self.speed_data = None
def load_data(self, force_reload=False):
"""Load all necessary data for filtering"""
try:
# Skip loading if data already exists and not forcing reload
if not force_reload and self.demand_data is not None:
print("๐ Using cached filter data (set force_reload=True to refresh)")
return True
print("๐ Loading fresh filtering data...")
# Get start date for demand data from optimization config
from src.config.optimization_config import get_date_span
date_span, start_date, end_date = get_date_span()
print(f"๐๏ธ DEMAND FILTERING DATE: Using {start_date.date() if start_date else 'None'} (same as optimization)")
# Load demand data directly from extract
demand_df = extract.read_orders_data(start_date=start_date)
self.demand_data = demand_df.groupby('Material Number')["Order quantity (GMEIN)"].sum().to_dict()
# Load kit hierarchy data
kit_levels, dependencies, _ = extract.get_production_order_data()
self.kit_levels = kit_levels
self.kit_dependencies = dependencies
# Load line assignments from kit line match data
kit_line_match = extract.read_kit_line_match_data()
kit_line_match_dict = kit_line_match.set_index("kit_name")["line_type"].to_dict()
# Convert string line names to numeric IDs
from src.config.constants import LineType
line_name_to_id = {
"long line": LineType.LONG_LINE,
"mini load": LineType.MINI_LOAD,
"miniload": LineType.MINI_LOAD,
"Long_line": LineType.LONG_LINE,
"Mini_load": LineType.MINI_LOAD,
}
self.line_assignments = {}
for kit, line_name in kit_line_match_dict.items():
if isinstance(line_name, str) and line_name.strip():
line_id = line_name_to_id.get(line_name.strip())
if line_id is not None:
self.line_assignments[kit] = line_id
elif isinstance(line_name, (int, float)) and not pd.isna(line_name):
self.line_assignments[kit] = int(line_name)
# Load team requirements from Kits Calculation data
kits_df = extract.read_personnel_requirement_data()
self.team_requirements = {
'UNICEF Fixed term': kits_df.set_index('Kit')['UNICEF staff'].to_dict(),
'Humanizer': kits_df.set_index('Kit')['Humanizer'].to_dict()
}
# Load production speed data
self.speed_data = extract.read_package_speed_data()
print(f"โ
Filtering data loaded: {len(self.demand_data)} products with demand, {len(self.speed_data)} with speed data")
return True
except Exception as e:
print(f"Error loading data for filtering: {str(e)}")
return False
def standalone_master_filter(self, product_id: str) -> Tuple[str, bool]:
"""
Classify product type and check if it's a standalone master.
Returns:
Tuple[str, bool]: (product_type, is_standalone_master)
"""
if product_id in self.kit_levels:
level = self.kit_levels[product_id]
if level == 0:
return "prepack", False
elif level == 1:
return "subkit", False
elif level == 2:
# Check if this master is standalone (no subkits/prepacks)
dependencies = self.kit_dependencies.get(product_id, [])
is_standalone = len(dependencies) == 0
return "master", is_standalone
else:
return "unknown", False
else:
return "unclassified", False
def _get_line_type_capacity(self, line_type: int) -> int:
"""
Calculate the total capacity in hours for a specific line type.
Args:
line_type: The line type ID (e.g., 6 for Long Line, 7 for Mini Load)
Returns:
int: Total capacity in hours for this line type
"""
from src.config.optimization_config import get_line_cnt_per_type, get_max_hour_per_shift_per_person, get_active_shift_list, get_date_span
line_cnt_per_type = get_line_cnt_per_type()
max_hours_per_shift_dict = get_max_hour_per_shift_per_person()
active_shifts = get_active_shift_list()
date_span, _, _ = get_date_span() # Get date span dynamically
# Get line count for this specific line type
line_count = line_cnt_per_type.get(line_type, 0)
# Calculate total hours per day (sum of all active shift hours)
total_hours_per_day = sum(max_hours_per_shift_dict.get(shift, 0) for shift in active_shifts)
# Calculate available capacity hours
# Available hours = line_count ร total_hours_per_day ร days_in_period
available_hours = line_count * total_hours_per_day * len(date_span)
return available_hours
def get_maximum_packaging_capacity(self) -> int:
"""
Get the maximum packaging capacity across all line types.
Returns:
int: Maximum total capacity in hours across all lines
"""
from src.config.optimization_config import get_line_cnt_per_type
line_cnt_per_type = get_line_cnt_per_type()
total_capacity = 0
for line_type, line_count in line_cnt_per_type.items():
if line_count > 0: # Only count active lines
line_capacity = self._get_line_type_capacity(line_type)
total_capacity += line_capacity
return total_capacity
def too_high_demand_filter(self, product_id: str) -> bool:
"""
Check if the demand for a product is too high.
A product has "too high demand" when the total processing hours needed
exceeds the available capacity hours for the product's assigned line type.
NOTE: This method assumes all prerequisite data is available (demand > 0,
line assignment exists, speed data exists). The main filter function
should handle these edge cases.
Calculation:
- Processing hours needed = demand_quantity / production_speed_per_hour
- Available hours = line_count ร hours_per_shift ร shifts_per_day ร days_in_period
Args:
product_id: The product ID to check
Returns:
bool: True if demand is too high (should be excluded), False otherwise
"""
# Get demand for this product (assumes demand > 0, checked by main filter)
demand = self.demand_data.get(product_id, 0)
if demand <= 0:
return False
# Get line assignment for this product (assumes exists, checked by main filter)
if self.line_assignments is None or product_id not in self.line_assignments:
return False
line_type = self.line_assignments.get(product_id)
# Get production speed data (assumes exists, checked by main filter)
if self.speed_data is None or product_id not in self.speed_data:
return False
production_speed_per_hour = self.speed_data[product_id]
# Calculate processing hours needed
processing_hours_needed = demand / production_speed_per_hour
# Get available capacity for this specific line type
available_hours = self._get_line_type_capacity(line_type)
# Check if processing hours needed exceeds available capacity
is_too_high = processing_hours_needed > available_hours
if is_too_high:
print(f"โ ๏ธ HIGH DEMAND WARNING: {product_id} needs {processing_hours_needed:.1f}h but only {available_hours:.1f}h available (line_type={line_type}, demand={demand}, speed={production_speed_per_hour:.1f}/h)")
return is_too_high
def is_product_ready_for_optimization(self, product_id: str) -> Tuple[bool, List[str]]:
"""
Check if a single product is ready for optimization.
1) Should have demand higher than 0
2) Should be right type - standalone master, subkit, prepack
3) Should have line assignment
4) Should have staffing requirements
5) Should have production speed data
Returns:
Tuple[bool, List[str]]: (is_ready, exclusion_reasons)
"""
exclusion_reasons = []
# Check if product has positive demand
demand = self.demand_data.get(product_id, 0)
if demand <= 0:
exclusion_reasons.append("No demand or zero demand")
# Classify product type
product_type, is_standalone_master = self.standalone_master_filter(product_id)
# Check line assignment logic
has_line_assignment = product_id in self.line_assignments
# For masters: standalone should have line assignment, non-standalone should NOT
if product_type == "master":
if is_standalone_master:
if not has_line_assignment:
exclusion_reasons.append("Standalone master missing line assignment")
elif self.line_assignments.get(product_id) != 6: # 6 = LONG_LINE
exclusion_reasons.append("Standalone master should have long line assignment")
else:
# Non-standalone masters should NOT have line assignment (excluded from production)
exclusion_reasons.append("Non-standalone master (excluded from production)")
else:
# For subkits and prepacks, check normal line assignment
if not has_line_assignment:
exclusion_reasons.append("No line assignment")
# Check staffing requirements
unicef_staff = self.team_requirements.get('UNICEF Fixed term', {}).get(product_id, 0)
humanizer_staff = self.team_requirements.get('Humanizer', {}).get(product_id, 0)
total_staff = unicef_staff + humanizer_staff
if total_staff == 0:
exclusion_reasons.append("Zero staffing requirements")
# Check production speed data
if self.speed_data is None or product_id not in self.speed_data:
exclusion_reasons.append("Missing production speed data")
# Check if demand is too high (only if we have all required data)
if self.too_high_demand_filter(product_id):
exclusion_reasons.append("Demand exceeds available production capacity")
is_ready = len(exclusion_reasons) == 0
return is_ready, exclusion_reasons
def filter_products(self) -> Tuple[List[str], Dict[str, int], List[str], Dict[str, int]]:
"""
Filter products into included and excluded lists based on optimization readiness.
Uses is_product_ready_for_optimization() to check all criteria.
Returns:
Tuple containing:
- included_products: List of product IDs ready for optimization
- included_demand: Dict of {product_id: demand} for included products
- excluded_products: List of product IDs excluded from optimization
- excluded_demand: Dict of {product_id: demand} for excluded products
"""
if not self.load_data():
raise Exception("Failed to load data for filtering")
included_products = []
included_demand = {}
excluded_products = []
excluded_demand = {}
excluded_details = {}
for product_id, demand in self.demand_data.items():
is_ready, exclusion_reasons = self.is_product_ready_for_optimization(product_id)
if is_ready:
included_products.append(product_id)
included_demand[product_id] = demand
else:
excluded_products.append(product_id)
excluded_demand[product_id] = demand
excluded_details[product_id] = exclusion_reasons
# Sort products for consistent output
included_products.sort()
excluded_products.sort()
# Print data quality warnings for included products
included_without_hierarchy = sum(1 for pid in included_products if self.standalone_master_filter(pid)[0] == "unclassified")
if included_without_hierarchy > 0:
print(f"\nโ ๏ธ DATA QUALITY WARNING: {included_without_hierarchy} included products missing hierarchy data")
return included_products, included_demand, excluded_products, excluded_demand
def get_filtered_product_list(self) -> List[str]:
"""Get list of products ready for optimization"""
included_products, _, _, _ = self.filter_products()
return included_products
def get_filtered_demand_dictionary(self) -> Dict[str, int]:
"""Get demand dictionary for products ready for optimization"""
_, included_demand, _, _ = self.filter_products()
return included_demand
def get_complete_product_analysis(self) -> Dict:
"""Get complete analysis of all products for visualization"""
included_products, included_demand, excluded_products, excluded_demand = self.filter_products()
all_products = {**included_demand, **excluded_demand}
product_details = {}
# Load speed data for additional validation
speed_data = None
try:
from src.config import optimization_config
from src.preprocess import extract
speed_data = extract.read_package_speed_data()
except Exception as e:
print(f"Warning: Could not load speed data for analysis: {e}")
for product_id, demand in all_products.items():
product_type, is_standalone_master = self.standalone_master_filter(product_id)
is_ready, exclusion_reasons = self.is_product_ready_for_optimization(product_id)
# Get staffing info
unicef_staff = self.team_requirements.get('UNICEF Fixed term', {}).get(product_id, 0)
humanizer_staff = self.team_requirements.get('Humanizer', {}).get(product_id, 0)
# Get line assignment
line_assignment = self.line_assignments.get(product_id)
# Get production speed info
has_speed_data = speed_data is not None and product_id in speed_data
# too high demand
has_too_high_demand = self.too_high_demand_filter(product_id)
product_details[product_id] = {
'demand': demand,
'product_type': product_type,
'is_standalone_master': is_standalone_master,
'is_included_in_optimization': is_ready,
'exclusion_reasons': exclusion_reasons,
'unicef_staff': unicef_staff,
'humanizer_staff': humanizer_staff,
'total_staff': unicef_staff + humanizer_staff,
'line_assignment': line_assignment,
'has_line_assignment': line_assignment is not None,
'has_staffing': (unicef_staff + humanizer_staff) > 0,
'has_hierarchy': product_type != "unclassified",
'has_speed_data': has_speed_data,
'has_too_high_demand': has_too_high_demand
}
# Calculate data quality statistics for included products
included_without_speed = sum(1 for pid in included_products if not product_details[pid]['has_speed_data'])
included_without_hierarchy = sum(1 for pid in included_products if not product_details[pid]['has_hierarchy'])
# Count products excluded due to too high demand
excluded_with_too_high_demand = sum(1 for pid in excluded_products if product_details[pid]['has_too_high_demand'])
return {
'included_count': len(included_products),
'included_demand': sum(included_demand.values()),
'excluded_count': len(excluded_products),
'excluded_demand': sum(excluded_demand.values()),
'total_products': len(all_products),
'total_demand': sum(all_products.values()),
'product_details': product_details,
'standalone_masters_count': sum(1 for p in product_details.values() if p['is_standalone_master']),
'included_products': included_products,
'excluded_products': excluded_products,
# Data quality metrics for included products
'included_missing_speed_count': included_without_speed,
'included_missing_hierarchy_count': included_without_hierarchy,
'excluded_with_too_high_demand_count': excluded_with_too_high_demand
}
# Test script when run directly
if __name__ == "__main__":
# Test the filtering
filter_instance = DemandFilter()
included_products, included_demand, excluded_products, excluded_demand = filter_instance.filter_products()
print(f"\n=== FILTERING TEST RESULTS ===")
print(f"Included products: {included_products[:5]}..." if len(included_products) > 5 else f"Included products: {included_products}")
print(f"Excluded products: {excluded_products[:5]}..." if len(excluded_products) > 5 else f"Excluded products: {excluded_products}")
|