import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from transformers.activations import ACT2FN from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( is_flash_attn_2_available, ) try: from .configuration_siglip2_navit_rope import Siglip2VisionConfig except: from configuration_siglip2_navit_rope import Siglip2VisionConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_varlen_func else: flash_attn_varlen_func = None # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb_vision( tensor: torch.Tensor, freqs: torch.Tensor ) -> torch.Tensor: orig_dtype = tensor.dtype tensor = tensor.float() cos = freqs.cos() sin = freqs.sin() cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() output = (tensor * cos) + (rotate_half(tensor) * sin) output = output.to(orig_dtype) return output class VisionRotaryEmbedding(nn.Module): def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, seqlen: int) -> torch.Tensor: seq = torch.arange( seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype ) freqs = torch.outer(seq, self.inv_freq) return freqs class PatchEmbed(nn.Module): def __init__( self, patch_size, num_channels, embed_dim, num_patches, preserve_original_pe=False ): super().__init__() self.patch_size = patch_size self.num_patches = num_patches self.embed_dim = embed_dim self.preserve_original_pe = preserve_original_pe self.proj = nn.Linear( num_channels * patch_size * patch_size, embed_dim ) # NOTE: bias默认为True if preserve_original_pe: assert num_patches**0.5 == int(num_patches**0.5), "num_patches must be a perfect square" self.pos_embed = nn.Embedding(num_patches, embed_dim) self.original_grid_size = int(num_patches**0.5) else: self.pos_embed = None self.original_grid_size = 0 def get_patch_coordinates(self, grid_hw: torch.Tensor, device: torch.device): """ 生成与2x2分块扫描顺序匹配的patch坐标。 """ all_h_coords, all_w_coords, all_target_sizes = [], [], [] for h, w in grid_hw: h, w = h.item(), w.item() # 生成标准网格坐标 h_grid, w_grid = torch.meshgrid( torch.arange(h, device=device, dtype=torch.float32), torch.arange(w, device=device, dtype=torch.float32), indexing='ij' ) # 重排列为分块扫描顺序 h_coords = h_grid.reshape( h//2, 2, w//2, 2 ).permute(0, 2, 1, 3).flatten() w_coords = w_grid.reshape( h//2, 2, w//2, 2 ).permute(0, 2, 1, 3).flatten() all_h_coords.append(h_coords) all_w_coords.append(w_coords) target_size = torch.tensor([h, w], device=device, dtype=torch.float32) all_target_sizes.append(target_size.expand(h * w, -1)) return torch.cat(all_h_coords), torch.cat(all_w_coords), torch.cat(all_target_sizes) def abs_pos_embed(self, grid_hw: torch.Tensor, mode='bicubic') -> torch.Tensor: pos_embed_weight = self.pos_embed.weight pos_embed_2d = pos_embed_weight.transpose(0, 1).reshape( self.embed_dim, self.original_grid_size, self.original_grid_size ).unsqueeze(0).to(torch.float32) if grid_hw.numel() == 0: return torch.empty(0, self.embed_dim, device=pos_embed_2d.device, dtype=pos_embed_weight.dtype) h_coords, w_coords, target_sizes = self.get_patch_coordinates(grid_hw, pos_embed_2d.device) if h_coords.shape[0] == 0: return torch.empty(0, self.embed_dim, device=pos_embed_2d.device, dtype=pos_embed_weight.dtype) target_h = target_sizes[:, 0] target_w = target_sizes[:, 1] # 这个归一化公式对于 align_corners=False 是正确的。 norm_w = (2.0 * (w_coords + 0.5) / target_w) - 1.0 norm_h = (2.0 * (h_coords + 0.5) / target_h) - 1.0 grid = torch.stack((norm_w, norm_h), dim=-1).unsqueeze(0).unsqueeze(0) interpolated_embed = F.grid_sample( pos_embed_2d, grid, mode=mode, align_corners=False, padding_mode='border' ) adapted_pos_embed = interpolated_embed.squeeze(0).squeeze(1).permute(1, 0) return adapted_pos_embed.to(pos_embed_weight.dtype) def forward(self, hidden_states: torch.Tensor, grid_hw: torch.Tensor) -> torch.Tensor: """ Args: hidden_states (torch.Tensor): input tensor of shape [seq_len, num_channels*patch_size*patch_size] grid_hw (torch.Tensor): 形状为 [num_images, 2] 的张量,表示每个图像的patch网格高度和宽度 Returns: torch.Tensor: output tensor of shape [seq_len, embed_dim] """ target_dtype = self.proj.weight.dtype hidden_states = self.proj(hidden_states.to(dtype=target_dtype)) if self.preserve_original_pe: pos_emb = self.abs_pos_embed(grid_hw) hidden_states = hidden_states + pos_emb return hidden_states class Siglip2MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class Siglip2Attention(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None, ) -> torch.Tensor: seq_length = hidden_states.shape[0] q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) q = q.reshape(seq_length, self.num_heads, -1) k = k.reshape(seq_length, self.num_heads, -1) v = v.reshape(seq_length, self.num_heads, -1) q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) attention_mask = torch.full( [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype, ) for i in range(1, len(cu_seqlens)): attention_mask[ ..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i], ] = 0 q = q.transpose(0, 1) k = k.transpose(0, 1) v = v.transpose(0, 1) attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax( attn_weights, dim=-1, dtype=torch.float32 ).to(q.dtype) attn_output = torch.matmul(attn_weights, v) attn_output = attn_output.transpose(0, 1) attn_output = attn_output.reshape(seq_length, -1) attn_output = self.out_proj(attn_output) return attn_output class Siglip2FlashAttention2(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None, ) -> torch.Tensor: seq_length = hidden_states.shape[0] q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) # 将 q, k, v 重塑为多头注意力的形状 q = q.reshape(seq_length, self.num_heads, -1) k = k.reshape(seq_length, self.num_heads, -1) v = v.reshape(seq_length, self.num_heads, -1) q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() attn_output = flash_attn_varlen_func( q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen ).reshape(seq_length, -1) attn_output = self.out_proj(attn_output) return attn_output class Siglip2SdpaAttention(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None, ) -> torch.Tensor: seq_length = hidden_states.shape[0] q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) q = q.reshape(seq_length, self.num_heads, -1) k = k.reshape(seq_length, self.num_heads, -1) v = v.reshape(seq_length, self.num_heads, -1) q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) attention_mask = torch.zeros( [1, seq_length, seq_length], device=q.device, dtype=torch.bool ) for i in range(1, len(cu_seqlens)): attention_mask[ ..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i], ] = True q = q.transpose(0, 1) k = k.transpose(0, 1) v = v.transpose(0, 1) attn_output = F.scaled_dot_product_attention( q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attention_mask, dropout_p=0.0 ) attn_output = attn_output.squeeze(0).transpose(0, 1) attn_output = attn_output.reshape(seq_length, -1) attn_output = self.out_proj(attn_output) return attn_output VISION_ATTENTION_CLASSES = { "eager": Siglip2Attention, "flash_attention_2": Siglip2FlashAttention2, "sdpa": Siglip2SdpaAttention, } class Siglip2EncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.embed_dim = config.hidden_size self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation]( config=config ) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Siglip2MLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) # Ignore copy def forward(self, hidden_states, cu_seqlens, rotary_pos_emb): residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states = self.self_attn( hidden_states=hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class Siglip2Encoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Siglip2EncoderLayer`]. Args: config: Siglip2Config """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList( [Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = True # Ignore copy def forward( self, hidden_states, cu_seqlens, rotary_pos_emb, ): for encoder_layer in self.layers: if self.gradient_checkpointing and self.training: hidden_states = torch.utils.checkpoint.checkpoint( encoder_layer, hidden_states, cu_seqlens, rotary_pos_emb, use_reentrant=False, ) else: hidden_states = encoder_layer( hidden_states, cu_seqlens, rotary_pos_emb, ) return hidden_states class Siglip2VisionTransformer(nn.Module): def __init__(self, config: Siglip2VisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = PatchEmbed( patch_size=config.patch_size, num_channels=config.num_channels, embed_dim=embed_dim, num_patches=config.num_patches, preserve_original_pe=config.preserve_original_pe, ) head_dim = config.hidden_size // config.num_attention_heads self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2, config.rope_theta) self.encoder = Siglip2Encoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) def rot_pos_emb(self, grid_hw): pos_ids = [] for h, w in grid_hw: hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) hpos_ids = hpos_ids.reshape( h // 2, 2, w // 2, 2, ) hpos_ids = hpos_ids.permute(0, 2, 1, 3) hpos_ids = hpos_ids.flatten() wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) wpos_ids = wpos_ids.reshape( h // 2, 2, w // 2, 2, ) wpos_ids = wpos_ids.permute(0, 2, 1, 3) wpos_ids = wpos_ids.flatten() pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1)) pos_ids = torch.cat(pos_ids, dim=0) max_grid_size = grid_hw.max() rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) return rotary_pos_emb def forward( self, hidden_states: torch.Tensor, grid_hw: torch.Tensor, ): hidden_states = self.embeddings(hidden_states, grid_hw) rotary_pos_emb = self.rot_pos_emb(grid_hw) cu_seqlens = (grid_hw[:, 0] * grid_hw[:, 1]).cumsum(dim=0, dtype=torch.int32) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) hidden_states = self.encoder( hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb ) hidden_states = self.post_layernorm(hidden_states) return hidden_states class Siglip2VisionModel(PreTrainedModel): supports_gradient_checkpointing = True _supports_flash_attn_2 = True _supports_sdpa = True config_class = Siglip2VisionConfig main_input_name = "pixel_values" def __init__(self, config): super().__init__(config) self.vision_model = Siglip2VisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding def forward( self, hidden_states: torch.Tensor, grid_hw: torch.Tensor ) -> torch.Tensor: return self.vision_model(hidden_states, grid_hw)