temp
Browse files- added_tokens.json +11 -0
- all_results.json +8 -0
- config.json +201 -0
- configuration_intern_vit.py +119 -0
- configuration_internlm2.py +150 -0
- configuration_internvl_chat.py +96 -0
- conversation.py +383 -0
- generation_config.json +4 -0
- model-00001-of-00011.safetensors +3 -0
- model-00002-of-00011.safetensors +3 -0
- model-00003-of-00011.safetensors +3 -0
- model-00004-of-00011.safetensors +3 -0
- model-00005-of-00011.safetensors +3 -0
- model-00006-of-00011.safetensors +3 -0
- model-00007-of-00011.safetensors +3 -0
- model-00008-of-00011.safetensors +3 -0
- model-00009-of-00011.safetensors +3 -0
- model-00010-of-00011.safetensors +3 -0
- model-00011-of-00011.safetensors +3 -0
- model.safetensors.index.json +941 -0
- modeling_intern_vit.py +435 -0
- modeling_internlm2.py +1415 -0
- modeling_internvl_chat.py +345 -0
- special_tokens_map.json +41 -0
- tokenization_internlm2.py +235 -0
- tokenizer.model +3 -0
- tokenizer_config.json +173 -0
- train_results.json +8 -0
- trainer_state.json +4056 -0
- training_args.bin +3 -0
- training_log.txt +0 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</box>": 92552,
|
| 3 |
+
"</img>": 92545,
|
| 4 |
+
"</quad>": 92548,
|
| 5 |
+
"</ref>": 92550,
|
| 6 |
+
"<IMG_CONTEXT>": 92546,
|
| 7 |
+
"<box>": 92551,
|
| 8 |
+
"<img>": 92544,
|
| 9 |
+
"<quad>": 92547,
|
| 10 |
+
"<ref>": 92549
|
| 11 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"train_loss": 1.1755684873563876,
|
| 4 |
+
"train_runtime": 47161.9361,
|
| 5 |
+
"train_samples": 85997,
|
| 6 |
+
"train_samples_per_second": 1.823,
|
| 7 |
+
"train_steps_per_second": 0.014
|
| 8 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"_name_or_path": "/data/jcy/ckpt/internvl-chat-v1-5",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"InternVLChatModel"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
|
| 9 |
+
"AutoModel": "modeling_internvl_chat.InternVLChatModel",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
|
| 11 |
+
},
|
| 12 |
+
"downsample_ratio": 0.5,
|
| 13 |
+
"dynamic_image_size": true,
|
| 14 |
+
"force_image_size": 448,
|
| 15 |
+
"llm_config": {
|
| 16 |
+
"_name_or_path": "internlm/internlm2-chat-20b",
|
| 17 |
+
"add_cross_attention": false,
|
| 18 |
+
"architectures": [
|
| 19 |
+
"InternLM2ForCausalLM"
|
| 20 |
+
],
|
| 21 |
+
"attn_implementation": "flash_attention_2",
|
| 22 |
+
"auto_map": {
|
| 23 |
+
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
| 24 |
+
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
|
| 25 |
+
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
|
| 26 |
+
},
|
| 27 |
+
"bad_words_ids": null,
|
| 28 |
+
"begin_suppress_tokens": null,
|
| 29 |
+
"bias": false,
|
| 30 |
+
"bos_token_id": 1,
|
| 31 |
+
"chunk_size_feed_forward": 0,
|
| 32 |
+
"cross_attention_hidden_size": null,
|
| 33 |
+
"decoder_start_token_id": null,
|
| 34 |
+
"diversity_penalty": 0.0,
|
| 35 |
+
"do_sample": false,
|
| 36 |
+
"early_stopping": false,
|
| 37 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 38 |
+
"eos_token_id": 2,
|
| 39 |
+
"exponential_decay_length_penalty": null,
|
| 40 |
+
"finetuning_task": null,
|
| 41 |
+
"forced_bos_token_id": null,
|
| 42 |
+
"forced_eos_token_id": null,
|
| 43 |
+
"hidden_act": "silu",
|
| 44 |
+
"hidden_size": 6144,
|
| 45 |
+
"id2label": {
|
| 46 |
+
"0": "LABEL_0",
|
| 47 |
+
"1": "LABEL_1"
|
| 48 |
+
},
|
| 49 |
+
"initializer_range": 0.02,
|
| 50 |
+
"intermediate_size": 16384,
|
| 51 |
+
"is_decoder": false,
|
| 52 |
+
"is_encoder_decoder": false,
|
| 53 |
+
"label2id": {
|
| 54 |
+
"LABEL_0": 0,
|
| 55 |
+
"LABEL_1": 1
|
| 56 |
+
},
|
| 57 |
+
"length_penalty": 1.0,
|
| 58 |
+
"max_length": 20,
|
| 59 |
+
"max_position_embeddings": 32768,
|
| 60 |
+
"min_length": 0,
|
| 61 |
+
"model_type": "internlm2",
|
| 62 |
+
"no_repeat_ngram_size": 0,
|
| 63 |
+
"num_attention_heads": 48,
|
| 64 |
+
"num_beam_groups": 1,
|
| 65 |
+
"num_beams": 1,
|
| 66 |
+
"num_hidden_layers": 48,
|
| 67 |
+
"num_key_value_heads": 8,
|
| 68 |
+
"num_return_sequences": 1,
|
| 69 |
+
"output_attentions": false,
|
| 70 |
+
"output_hidden_states": false,
|
| 71 |
+
"output_scores": false,
|
| 72 |
+
"pad_token_id": 2,
|
| 73 |
+
"prefix": null,
|
| 74 |
+
"problem_type": null,
|
| 75 |
+
"pruned_heads": {},
|
| 76 |
+
"remove_invalid_values": false,
|
| 77 |
+
"repetition_penalty": 1.0,
|
| 78 |
+
"return_dict": true,
|
| 79 |
+
"return_dict_in_generate": false,
|
| 80 |
+
"rms_norm_eps": 1e-05,
|
| 81 |
+
"rope_scaling": {
|
| 82 |
+
"factor": 3.0,
|
| 83 |
+
"type": "dynamic"
|
| 84 |
+
},
|
| 85 |
+
"rope_theta": 1000000,
|
| 86 |
+
"sep_token_id": null,
|
| 87 |
+
"suppress_tokens": null,
|
| 88 |
+
"task_specific_params": null,
|
| 89 |
+
"temperature": 1.0,
|
| 90 |
+
"tf_legacy_loss": false,
|
| 91 |
+
"tie_encoder_decoder": false,
|
| 92 |
+
"tie_word_embeddings": false,
|
| 93 |
+
"tokenizer_class": null,
|
| 94 |
+
"top_k": 50,
|
| 95 |
+
"top_p": 1.0,
|
| 96 |
+
"torch_dtype": "bfloat16",
|
| 97 |
+
"torchscript": false,
|
| 98 |
+
"transformers_version": "4.37.2",
|
| 99 |
+
"typical_p": 1.0,
|
| 100 |
+
"use_bfloat16": true,
|
| 101 |
+
"use_cache": false,
|
| 102 |
+
"vocab_size": 92553
|
| 103 |
+
},
|
| 104 |
+
"max_dynamic_patch": 12,
|
| 105 |
+
"min_dynamic_patch": 1,
|
| 106 |
+
"model_type": "internvl_chat",
|
| 107 |
+
"pad2square": false,
|
| 108 |
+
"ps_version": "v2",
|
| 109 |
+
"select_layer": -1,
|
| 110 |
+
"system_message": "You are an AI assistant whose name is InternLM (\u4e66\u751f\u00b7\u6d66\u8bed).",
|
| 111 |
+
"template": "internlm2-chat",
|
| 112 |
+
"torch_dtype": "bfloat16",
|
| 113 |
+
"transformers_version": null,
|
| 114 |
+
"use_backbone_lora": 0,
|
| 115 |
+
"use_llm_lora": 0,
|
| 116 |
+
"use_thumbnail": true,
|
| 117 |
+
"vision_config": {
|
| 118 |
+
"_name_or_path": "",
|
| 119 |
+
"add_cross_attention": false,
|
| 120 |
+
"architectures": [
|
| 121 |
+
"InternVisionModel"
|
| 122 |
+
],
|
| 123 |
+
"attention_dropout": 0.0,
|
| 124 |
+
"bad_words_ids": null,
|
| 125 |
+
"begin_suppress_tokens": null,
|
| 126 |
+
"bos_token_id": null,
|
| 127 |
+
"chunk_size_feed_forward": 0,
|
| 128 |
+
"cross_attention_hidden_size": null,
|
| 129 |
+
"decoder_start_token_id": null,
|
| 130 |
+
"diversity_penalty": 0.0,
|
| 131 |
+
"do_sample": false,
|
| 132 |
+
"drop_path_rate": 0.4,
|
| 133 |
+
"dropout": 0.0,
|
| 134 |
+
"early_stopping": false,
|
| 135 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 136 |
+
"eos_token_id": null,
|
| 137 |
+
"exponential_decay_length_penalty": null,
|
| 138 |
+
"finetuning_task": null,
|
| 139 |
+
"forced_bos_token_id": null,
|
| 140 |
+
"forced_eos_token_id": null,
|
| 141 |
+
"hidden_act": "gelu",
|
| 142 |
+
"hidden_size": 3200,
|
| 143 |
+
"id2label": {
|
| 144 |
+
"0": "LABEL_0",
|
| 145 |
+
"1": "LABEL_1"
|
| 146 |
+
},
|
| 147 |
+
"image_size": 448,
|
| 148 |
+
"initializer_factor": 0.1,
|
| 149 |
+
"initializer_range": 1e-10,
|
| 150 |
+
"intermediate_size": 12800,
|
| 151 |
+
"is_decoder": false,
|
| 152 |
+
"is_encoder_decoder": false,
|
| 153 |
+
"label2id": {
|
| 154 |
+
"LABEL_0": 0,
|
| 155 |
+
"LABEL_1": 1
|
| 156 |
+
},
|
| 157 |
+
"layer_norm_eps": 1e-06,
|
| 158 |
+
"length_penalty": 1.0,
|
| 159 |
+
"max_length": 20,
|
| 160 |
+
"min_length": 0,
|
| 161 |
+
"model_type": "intern_vit_6b",
|
| 162 |
+
"no_repeat_ngram_size": 0,
|
| 163 |
+
"norm_type": "rms_norm",
|
| 164 |
+
"num_attention_heads": 25,
|
| 165 |
+
"num_beam_groups": 1,
|
| 166 |
+
"num_beams": 1,
|
| 167 |
+
"num_channels": 3,
|
| 168 |
+
"num_hidden_layers": 45,
|
| 169 |
+
"num_return_sequences": 1,
|
| 170 |
+
"output_attentions": false,
|
| 171 |
+
"output_hidden_states": false,
|
| 172 |
+
"output_scores": false,
|
| 173 |
+
"pad_token_id": null,
|
| 174 |
+
"patch_size": 14,
|
| 175 |
+
"prefix": null,
|
| 176 |
+
"problem_type": null,
|
| 177 |
+
"pruned_heads": {},
|
| 178 |
+
"qk_normalization": true,
|
| 179 |
+
"qkv_bias": false,
|
| 180 |
+
"remove_invalid_values": false,
|
| 181 |
+
"repetition_penalty": 1.0,
|
| 182 |
+
"return_dict": true,
|
| 183 |
+
"return_dict_in_generate": false,
|
| 184 |
+
"sep_token_id": null,
|
| 185 |
+
"suppress_tokens": null,
|
| 186 |
+
"task_specific_params": null,
|
| 187 |
+
"temperature": 1.0,
|
| 188 |
+
"tf_legacy_loss": false,
|
| 189 |
+
"tie_encoder_decoder": false,
|
| 190 |
+
"tie_word_embeddings": true,
|
| 191 |
+
"tokenizer_class": null,
|
| 192 |
+
"top_k": 50,
|
| 193 |
+
"top_p": 1.0,
|
| 194 |
+
"torch_dtype": "bfloat16",
|
| 195 |
+
"torchscript": false,
|
| 196 |
+
"transformers_version": "4.37.2",
|
| 197 |
+
"typical_p": 1.0,
|
| 198 |
+
"use_bfloat16": true,
|
| 199 |
+
"use_flash_attn": true
|
| 200 |
+
}
|
| 201 |
+
}
|
configuration_intern_vit.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
import os
|
| 7 |
+
from typing import Union
|
| 8 |
+
|
| 9 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
|
| 12 |
+
logger = logging.get_logger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class InternVisionConfig(PretrainedConfig):
|
| 16 |
+
r"""
|
| 17 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
| 18 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
| 19 |
+
|
| 20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 21 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 25 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
| 26 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 27 |
+
The size (resolution) of each patch.
|
| 28 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 29 |
+
The size (resolution) of each image.
|
| 30 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
| 31 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
| 32 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
| 33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 34 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
| 35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 36 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
| 37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 38 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
| 39 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
| 40 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 41 |
+
Number of hidden layers in the Transformer encoder.
|
| 42 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
| 43 |
+
Whether to use flash attention mechanism.
|
| 44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 45 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 46 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
| 47 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 48 |
+
The epsilon used by the layer normalization layers.
|
| 49 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 51 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 52 |
+
Dropout rate for stochastic depth.
|
| 53 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 54 |
+
The dropout ratio for the attention probabilities.
|
| 55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 57 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
| 58 |
+
A factor for layer scale.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
model_type = 'intern_vit_6b'
|
| 62 |
+
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
num_channels=3,
|
| 66 |
+
patch_size=14,
|
| 67 |
+
image_size=224,
|
| 68 |
+
qkv_bias=False,
|
| 69 |
+
hidden_size=3200,
|
| 70 |
+
num_attention_heads=25,
|
| 71 |
+
intermediate_size=12800,
|
| 72 |
+
qk_normalization=True,
|
| 73 |
+
num_hidden_layers=48,
|
| 74 |
+
use_flash_attn=True,
|
| 75 |
+
hidden_act='gelu',
|
| 76 |
+
norm_type='rms_norm',
|
| 77 |
+
layer_norm_eps=1e-6,
|
| 78 |
+
dropout=0.0,
|
| 79 |
+
drop_path_rate=0.0,
|
| 80 |
+
attention_dropout=0.0,
|
| 81 |
+
initializer_range=0.02,
|
| 82 |
+
initializer_factor=0.1,
|
| 83 |
+
**kwargs,
|
| 84 |
+
):
|
| 85 |
+
super().__init__(**kwargs)
|
| 86 |
+
|
| 87 |
+
self.hidden_size = hidden_size
|
| 88 |
+
self.intermediate_size = intermediate_size
|
| 89 |
+
self.dropout = dropout
|
| 90 |
+
self.drop_path_rate = drop_path_rate
|
| 91 |
+
self.num_hidden_layers = num_hidden_layers
|
| 92 |
+
self.num_attention_heads = num_attention_heads
|
| 93 |
+
self.num_channels = num_channels
|
| 94 |
+
self.patch_size = patch_size
|
| 95 |
+
self.image_size = image_size
|
| 96 |
+
self.initializer_range = initializer_range
|
| 97 |
+
self.initializer_factor = initializer_factor
|
| 98 |
+
self.attention_dropout = attention_dropout
|
| 99 |
+
self.layer_norm_eps = layer_norm_eps
|
| 100 |
+
self.hidden_act = hidden_act
|
| 101 |
+
self.norm_type = norm_type
|
| 102 |
+
self.qkv_bias = qkv_bias
|
| 103 |
+
self.qk_normalization = qk_normalization
|
| 104 |
+
self.use_flash_attn = use_flash_attn
|
| 105 |
+
|
| 106 |
+
@classmethod
|
| 107 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
| 108 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 109 |
+
|
| 110 |
+
if 'vision_config' in config_dict:
|
| 111 |
+
config_dict = config_dict['vision_config']
|
| 112 |
+
|
| 113 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
| 114 |
+
logger.warning(
|
| 115 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 116 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internlm2.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" InternLM2 model configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
| 27 |
+
class InternLM2Config(PretrainedConfig):
|
| 28 |
+
r"""
|
| 29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
| 30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
| 31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
| 32 |
+
|
| 33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 34 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
| 40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
| 41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 42 |
+
Dimension of the hidden representations.
|
| 43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 44 |
+
Dimension of the MLP representations.
|
| 45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 46 |
+
Number of hidden layers in the Transformer encoder.
|
| 47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 49 |
+
num_key_value_heads (`int`, *optional*):
|
| 50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 56 |
+
`num_attention_heads`.
|
| 57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the decoder.
|
| 59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 65 |
+
The epsilon used by the rms normalization layers.
|
| 66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 68 |
+
relevant if `config.is_decoder=True`.
|
| 69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
| 70 |
+
Whether to tie weight embeddings
|
| 71 |
+
Example:
|
| 72 |
+
|
| 73 |
+
"""
|
| 74 |
+
model_type = 'internlm2'
|
| 75 |
+
_auto_class = 'AutoConfig'
|
| 76 |
+
|
| 77 |
+
def __init__( # pylint: disable=W0102
|
| 78 |
+
self,
|
| 79 |
+
vocab_size=103168,
|
| 80 |
+
hidden_size=4096,
|
| 81 |
+
intermediate_size=11008,
|
| 82 |
+
num_hidden_layers=32,
|
| 83 |
+
num_attention_heads=32,
|
| 84 |
+
num_key_value_heads=None,
|
| 85 |
+
hidden_act='silu',
|
| 86 |
+
max_position_embeddings=2048,
|
| 87 |
+
initializer_range=0.02,
|
| 88 |
+
rms_norm_eps=1e-6,
|
| 89 |
+
use_cache=True,
|
| 90 |
+
pad_token_id=0,
|
| 91 |
+
bos_token_id=1,
|
| 92 |
+
eos_token_id=2,
|
| 93 |
+
tie_word_embeddings=False,
|
| 94 |
+
bias=True,
|
| 95 |
+
rope_theta=10000,
|
| 96 |
+
rope_scaling=None,
|
| 97 |
+
attn_implementation='eager',
|
| 98 |
+
**kwargs,
|
| 99 |
+
):
|
| 100 |
+
self.vocab_size = vocab_size
|
| 101 |
+
self.max_position_embeddings = max_position_embeddings
|
| 102 |
+
self.hidden_size = hidden_size
|
| 103 |
+
self.intermediate_size = intermediate_size
|
| 104 |
+
self.num_hidden_layers = num_hidden_layers
|
| 105 |
+
self.num_attention_heads = num_attention_heads
|
| 106 |
+
self.bias = bias
|
| 107 |
+
|
| 108 |
+
if num_key_value_heads is None:
|
| 109 |
+
num_key_value_heads = num_attention_heads
|
| 110 |
+
self.num_key_value_heads = num_key_value_heads
|
| 111 |
+
|
| 112 |
+
self.hidden_act = hidden_act
|
| 113 |
+
self.initializer_range = initializer_range
|
| 114 |
+
self.rms_norm_eps = rms_norm_eps
|
| 115 |
+
self.use_cache = use_cache
|
| 116 |
+
self.rope_theta = rope_theta
|
| 117 |
+
self.rope_scaling = rope_scaling
|
| 118 |
+
self._rope_scaling_validation()
|
| 119 |
+
|
| 120 |
+
self.attn_implementation = attn_implementation
|
| 121 |
+
if self.attn_implementation is None:
|
| 122 |
+
self.attn_implementation = 'eager'
|
| 123 |
+
super().__init__(
|
| 124 |
+
pad_token_id=pad_token_id,
|
| 125 |
+
bos_token_id=bos_token_id,
|
| 126 |
+
eos_token_id=eos_token_id,
|
| 127 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 128 |
+
**kwargs,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
def _rope_scaling_validation(self):
|
| 132 |
+
"""
|
| 133 |
+
Validate the `rope_scaling` configuration.
|
| 134 |
+
"""
|
| 135 |
+
if self.rope_scaling is None:
|
| 136 |
+
return
|
| 137 |
+
|
| 138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 139 |
+
raise ValueError(
|
| 140 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
| 141 |
+
f'got {self.rope_scaling}'
|
| 142 |
+
)
|
| 143 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
| 144 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
| 145 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
| 146 |
+
raise ValueError(
|
| 147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 148 |
+
)
|
| 149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
| 150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_internvl_chat.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import copy
|
| 8 |
+
|
| 9 |
+
from transformers import AutoConfig, LlamaConfig
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 14 |
+
from .configuration_internlm2 import InternLM2Config
|
| 15 |
+
|
| 16 |
+
logger = logging.get_logger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class InternVLChatConfig(PretrainedConfig):
|
| 20 |
+
model_type = 'internvl_chat'
|
| 21 |
+
is_composition = True
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
vision_config=None,
|
| 26 |
+
llm_config=None,
|
| 27 |
+
use_backbone_lora=0,
|
| 28 |
+
use_llm_lora=0,
|
| 29 |
+
select_layer=-1,
|
| 30 |
+
force_image_size=None,
|
| 31 |
+
downsample_ratio=0.5,
|
| 32 |
+
template=None,
|
| 33 |
+
dynamic_image_size=False,
|
| 34 |
+
use_thumbnail=False,
|
| 35 |
+
ps_version='v1',
|
| 36 |
+
min_dynamic_patch=1,
|
| 37 |
+
max_dynamic_patch=6,
|
| 38 |
+
**kwargs):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
|
| 41 |
+
if vision_config is None:
|
| 42 |
+
vision_config = {}
|
| 43 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
| 44 |
+
|
| 45 |
+
if llm_config is None:
|
| 46 |
+
llm_config = {}
|
| 47 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
| 48 |
+
|
| 49 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
| 50 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
| 51 |
+
self.llm_config = LlamaConfig(**llm_config)
|
| 52 |
+
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
|
| 53 |
+
self.llm_config = InternLM2Config(**llm_config)
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
| 56 |
+
self.use_backbone_lora = use_backbone_lora
|
| 57 |
+
self.use_llm_lora = use_llm_lora
|
| 58 |
+
self.select_layer = select_layer
|
| 59 |
+
self.force_image_size = force_image_size
|
| 60 |
+
self.downsample_ratio = downsample_ratio
|
| 61 |
+
self.template = template
|
| 62 |
+
self.dynamic_image_size = dynamic_image_size
|
| 63 |
+
self.use_thumbnail = use_thumbnail
|
| 64 |
+
self.ps_version = ps_version # pixel shuffle version
|
| 65 |
+
self.min_dynamic_patch = min_dynamic_patch
|
| 66 |
+
self.max_dynamic_patch = max_dynamic_patch
|
| 67 |
+
|
| 68 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
| 69 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 70 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
| 71 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
| 72 |
+
|
| 73 |
+
def to_dict(self):
|
| 74 |
+
"""
|
| 75 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 79 |
+
"""
|
| 80 |
+
output = copy.deepcopy(self.__dict__)
|
| 81 |
+
output['vision_config'] = self.vision_config.to_dict()
|
| 82 |
+
output['llm_config'] = self.llm_config.to_dict()
|
| 83 |
+
output['model_type'] = self.__class__.model_type
|
| 84 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
| 85 |
+
output['use_llm_lora'] = self.use_llm_lora
|
| 86 |
+
output['select_layer'] = self.select_layer
|
| 87 |
+
output['force_image_size'] = self.force_image_size
|
| 88 |
+
output['downsample_ratio'] = self.downsample_ratio
|
| 89 |
+
output['template'] = self.template
|
| 90 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
| 91 |
+
output['use_thumbnail'] = self.use_thumbnail
|
| 92 |
+
output['ps_version'] = self.ps_version
|
| 93 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
| 94 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
| 95 |
+
|
| 96 |
+
return output
|
conversation.py
ADDED
|
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Conversation prompt templates.
|
| 3 |
+
|
| 4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
| 5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import dataclasses
|
| 9 |
+
from enum import IntEnum, auto
|
| 10 |
+
from typing import Any, Dict, List, Tuple, Union
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SeparatorStyle(IntEnum):
|
| 14 |
+
"""Separator styles."""
|
| 15 |
+
|
| 16 |
+
ADD_COLON_SINGLE = auto()
|
| 17 |
+
ADD_COLON_TWO = auto()
|
| 18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
| 19 |
+
NO_COLON_SINGLE = auto()
|
| 20 |
+
NO_COLON_TWO = auto()
|
| 21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
| 22 |
+
LLAMA2 = auto()
|
| 23 |
+
CHATGLM = auto()
|
| 24 |
+
CHATML = auto()
|
| 25 |
+
CHATINTERN = auto()
|
| 26 |
+
DOLLY = auto()
|
| 27 |
+
RWKV = auto()
|
| 28 |
+
PHOENIX = auto()
|
| 29 |
+
ROBIN = auto()
|
| 30 |
+
FALCON_CHAT = auto()
|
| 31 |
+
CHATGLM3 = auto()
|
| 32 |
+
INTERNVL_ZH = auto()
|
| 33 |
+
MPT = auto()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclasses.dataclass
|
| 37 |
+
class Conversation:
|
| 38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
| 39 |
+
|
| 40 |
+
# The name of this template
|
| 41 |
+
name: str
|
| 42 |
+
# The template of the system prompt
|
| 43 |
+
system_template: str = '{system_message}'
|
| 44 |
+
# The system message
|
| 45 |
+
system_message: str = ''
|
| 46 |
+
# The names of two roles
|
| 47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
| 48 |
+
# All messages. Each item is (role, message).
|
| 49 |
+
messages: List[List[str]] = ()
|
| 50 |
+
# The number of few shot examples
|
| 51 |
+
offset: int = 0
|
| 52 |
+
# The separator style and configurations
|
| 53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
| 54 |
+
sep: str = '\n'
|
| 55 |
+
sep2: str = None
|
| 56 |
+
# Stop criteria (the default one is EOS token)
|
| 57 |
+
stop_str: Union[str, List[str]] = None
|
| 58 |
+
# Stops generation if meeting any token in this list
|
| 59 |
+
stop_token_ids: List[int] = None
|
| 60 |
+
|
| 61 |
+
def get_prompt(self) -> str:
|
| 62 |
+
"""Get the prompt for generation."""
|
| 63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
| 64 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
| 65 |
+
ret = system_prompt + self.sep
|
| 66 |
+
for role, message in self.messages:
|
| 67 |
+
if message:
|
| 68 |
+
ret += role + ': ' + message + self.sep
|
| 69 |
+
else:
|
| 70 |
+
ret += role + ':'
|
| 71 |
+
return ret
|
| 72 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
| 73 |
+
seps = [self.sep, self.sep2]
|
| 74 |
+
ret = system_prompt + seps[0]
|
| 75 |
+
for i, (role, message) in enumerate(self.messages):
|
| 76 |
+
if message:
|
| 77 |
+
ret += role + ': ' + message + seps[i % 2]
|
| 78 |
+
else:
|
| 79 |
+
ret += role + ':'
|
| 80 |
+
return ret
|
| 81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
| 82 |
+
ret = system_prompt + self.sep
|
| 83 |
+
for role, message in self.messages:
|
| 84 |
+
if message:
|
| 85 |
+
ret += role + ': ' + message + self.sep
|
| 86 |
+
else:
|
| 87 |
+
ret += role + ': ' # must be end with a space
|
| 88 |
+
return ret
|
| 89 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
| 90 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
| 91 |
+
for role, message in self.messages:
|
| 92 |
+
if message:
|
| 93 |
+
ret += role + '\n' + message + self.sep
|
| 94 |
+
else:
|
| 95 |
+
ret += role + '\n'
|
| 96 |
+
return ret
|
| 97 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
| 98 |
+
ret = system_prompt
|
| 99 |
+
for role, message in self.messages:
|
| 100 |
+
if message:
|
| 101 |
+
ret += role + message + self.sep
|
| 102 |
+
else:
|
| 103 |
+
ret += role
|
| 104 |
+
return ret
|
| 105 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
| 106 |
+
seps = [self.sep, self.sep2]
|
| 107 |
+
ret = system_prompt
|
| 108 |
+
for i, (role, message) in enumerate(self.messages):
|
| 109 |
+
if message:
|
| 110 |
+
ret += role + message + seps[i % 2]
|
| 111 |
+
else:
|
| 112 |
+
ret += role
|
| 113 |
+
return ret
|
| 114 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
| 115 |
+
ret = system_prompt
|
| 116 |
+
for i, (role, message) in enumerate(self.messages):
|
| 117 |
+
if message:
|
| 118 |
+
ret += (
|
| 119 |
+
role
|
| 120 |
+
+ ': '
|
| 121 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
| 122 |
+
)
|
| 123 |
+
ret += '\n\n'
|
| 124 |
+
else:
|
| 125 |
+
ret += role + ':'
|
| 126 |
+
return ret
|
| 127 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
| 128 |
+
seps = [self.sep, self.sep2]
|
| 129 |
+
if self.system_message:
|
| 130 |
+
ret = system_prompt
|
| 131 |
+
else:
|
| 132 |
+
ret = '[INST] '
|
| 133 |
+
for i, (role, message) in enumerate(self.messages):
|
| 134 |
+
tag = self.roles[i % 2]
|
| 135 |
+
if message:
|
| 136 |
+
if i == 0:
|
| 137 |
+
ret += message + ' '
|
| 138 |
+
else:
|
| 139 |
+
ret += tag + ' ' + message + seps[i % 2]
|
| 140 |
+
else:
|
| 141 |
+
ret += tag
|
| 142 |
+
return ret
|
| 143 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
| 144 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
| 145 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
| 146 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
| 147 |
+
if system_prompt:
|
| 148 |
+
ret = system_prompt + self.sep
|
| 149 |
+
else:
|
| 150 |
+
ret = ''
|
| 151 |
+
|
| 152 |
+
for i, (role, message) in enumerate(self.messages):
|
| 153 |
+
if i % 2 == 0:
|
| 154 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
| 155 |
+
|
| 156 |
+
if message:
|
| 157 |
+
ret += f'{role}:{message}{self.sep}'
|
| 158 |
+
else:
|
| 159 |
+
ret += f'{role}:'
|
| 160 |
+
return ret
|
| 161 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
| 162 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
| 163 |
+
for role, message in self.messages:
|
| 164 |
+
if message:
|
| 165 |
+
ret += role + '\n' + message + self.sep + '\n'
|
| 166 |
+
else:
|
| 167 |
+
ret += role + '\n'
|
| 168 |
+
return ret
|
| 169 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
| 170 |
+
ret = ''
|
| 171 |
+
if self.system_message:
|
| 172 |
+
ret += system_prompt
|
| 173 |
+
for role, message in self.messages:
|
| 174 |
+
if message:
|
| 175 |
+
ret += role + '\n' + ' ' + message
|
| 176 |
+
else:
|
| 177 |
+
ret += role
|
| 178 |
+
return ret
|
| 179 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
| 180 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
| 181 |
+
seps = [self.sep, self.sep2]
|
| 182 |
+
ret = system_prompt
|
| 183 |
+
for i, (role, message) in enumerate(self.messages):
|
| 184 |
+
# if i % 2 == 0:
|
| 185 |
+
# ret += "<s>"
|
| 186 |
+
if message:
|
| 187 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
| 188 |
+
else:
|
| 189 |
+
ret += role + ':'
|
| 190 |
+
return ret
|
| 191 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
| 192 |
+
seps = [self.sep, self.sep2]
|
| 193 |
+
ret = system_prompt
|
| 194 |
+
for i, (role, message) in enumerate(self.messages):
|
| 195 |
+
if message:
|
| 196 |
+
ret += role + ':\n' + message + seps[i % 2]
|
| 197 |
+
if i % 2 == 1:
|
| 198 |
+
ret += '\n\n'
|
| 199 |
+
else:
|
| 200 |
+
ret += role + ':\n'
|
| 201 |
+
return ret
|
| 202 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
| 203 |
+
ret = system_prompt
|
| 204 |
+
for role, message in self.messages:
|
| 205 |
+
if message:
|
| 206 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
| 207 |
+
else:
|
| 208 |
+
ret += role + ': ' + '<s>'
|
| 209 |
+
return ret
|
| 210 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
| 211 |
+
ret = system_prompt + self.sep
|
| 212 |
+
for role, message in self.messages:
|
| 213 |
+
if message:
|
| 214 |
+
ret += role + ':\n' + message + self.sep
|
| 215 |
+
else:
|
| 216 |
+
ret += role + ':\n'
|
| 217 |
+
return ret
|
| 218 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
| 219 |
+
ret = ''
|
| 220 |
+
if self.system_message:
|
| 221 |
+
ret += system_prompt + self.sep
|
| 222 |
+
for role, message in self.messages:
|
| 223 |
+
if message:
|
| 224 |
+
ret += role + ': ' + message + self.sep
|
| 225 |
+
else:
|
| 226 |
+
ret += role + ':'
|
| 227 |
+
|
| 228 |
+
return ret
|
| 229 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
| 230 |
+
seps = [self.sep, self.sep2]
|
| 231 |
+
ret = self.system_message + seps[0]
|
| 232 |
+
for i, (role, message) in enumerate(self.messages):
|
| 233 |
+
if message:
|
| 234 |
+
ret += role + ': ' + message + seps[i % 2]
|
| 235 |
+
else:
|
| 236 |
+
ret += role + ':'
|
| 237 |
+
return ret
|
| 238 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
| 239 |
+
ret = system_prompt + self.sep
|
| 240 |
+
for role, message in self.messages:
|
| 241 |
+
if message:
|
| 242 |
+
if type(message) is tuple:
|
| 243 |
+
message, _, _ = message
|
| 244 |
+
ret += role + message + self.sep
|
| 245 |
+
else:
|
| 246 |
+
ret += role
|
| 247 |
+
return ret
|
| 248 |
+
else:
|
| 249 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
| 250 |
+
|
| 251 |
+
def set_system_message(self, system_message: str):
|
| 252 |
+
"""Set the system message."""
|
| 253 |
+
self.system_message = system_message
|
| 254 |
+
|
| 255 |
+
def append_message(self, role: str, message: str):
|
| 256 |
+
"""Append a new message."""
|
| 257 |
+
self.messages.append([role, message])
|
| 258 |
+
|
| 259 |
+
def update_last_message(self, message: str):
|
| 260 |
+
"""Update the last output.
|
| 261 |
+
|
| 262 |
+
The last message is typically set to be None when constructing the prompt,
|
| 263 |
+
so we need to update it in-place after getting the response from a model.
|
| 264 |
+
"""
|
| 265 |
+
self.messages[-1][1] = message
|
| 266 |
+
|
| 267 |
+
def to_gradio_chatbot(self):
|
| 268 |
+
"""Convert the conversation to gradio chatbot format."""
|
| 269 |
+
ret = []
|
| 270 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
| 271 |
+
if i % 2 == 0:
|
| 272 |
+
ret.append([msg, None])
|
| 273 |
+
else:
|
| 274 |
+
ret[-1][-1] = msg
|
| 275 |
+
return ret
|
| 276 |
+
|
| 277 |
+
def to_openai_api_messages(self):
|
| 278 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
| 279 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
| 280 |
+
|
| 281 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
| 282 |
+
if i % 2 == 0:
|
| 283 |
+
ret.append({'role': 'user', 'content': msg})
|
| 284 |
+
else:
|
| 285 |
+
if msg is not None:
|
| 286 |
+
ret.append({'role': 'assistant', 'content': msg})
|
| 287 |
+
return ret
|
| 288 |
+
|
| 289 |
+
def copy(self):
|
| 290 |
+
return Conversation(
|
| 291 |
+
name=self.name,
|
| 292 |
+
system_template=self.system_template,
|
| 293 |
+
system_message=self.system_message,
|
| 294 |
+
roles=self.roles,
|
| 295 |
+
messages=[[x, y] for x, y in self.messages],
|
| 296 |
+
offset=self.offset,
|
| 297 |
+
sep_style=self.sep_style,
|
| 298 |
+
sep=self.sep,
|
| 299 |
+
sep2=self.sep2,
|
| 300 |
+
stop_str=self.stop_str,
|
| 301 |
+
stop_token_ids=self.stop_token_ids,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
def dict(self):
|
| 305 |
+
return {
|
| 306 |
+
'template_name': self.name,
|
| 307 |
+
'system_message': self.system_message,
|
| 308 |
+
'roles': self.roles,
|
| 309 |
+
'messages': self.messages,
|
| 310 |
+
'offset': self.offset,
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
# A global registry for all conversation templates
|
| 315 |
+
conv_templates: Dict[str, Conversation] = {}
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
| 319 |
+
"""Register a new conversation template."""
|
| 320 |
+
if not override:
|
| 321 |
+
assert (
|
| 322 |
+
template.name not in conv_templates
|
| 323 |
+
), f'{template.name} has been registered.'
|
| 324 |
+
|
| 325 |
+
conv_templates[template.name] = template
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def get_conv_template(name: str) -> Conversation:
|
| 329 |
+
"""Get a conversation template."""
|
| 330 |
+
return conv_templates[name].copy()
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
register_conv_template(
|
| 334 |
+
Conversation(
|
| 335 |
+
name='Hermes-2',
|
| 336 |
+
system_template='<|im_start|>system\n{system_message}',
|
| 337 |
+
system_message='Answer the questions.',
|
| 338 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
| 339 |
+
sep_style=SeparatorStyle.MPT,
|
| 340 |
+
sep='<|im_end|>',
|
| 341 |
+
stop_token_ids=[
|
| 342 |
+
2,
|
| 343 |
+
6,
|
| 344 |
+
7,
|
| 345 |
+
8,
|
| 346 |
+
],
|
| 347 |
+
stop_str='<|endoftext|>',
|
| 348 |
+
)
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
register_conv_template(
|
| 353 |
+
Conversation(
|
| 354 |
+
name='internlm2-chat',
|
| 355 |
+
system_template='<|im_start|>system\n{system_message}',
|
| 356 |
+
system_message='You are an AI assistant whose name is InternLM (书生·浦语).',
|
| 357 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
| 358 |
+
sep_style=SeparatorStyle.MPT,
|
| 359 |
+
sep='<|im_end|>',
|
| 360 |
+
stop_token_ids=[
|
| 361 |
+
2,
|
| 362 |
+
92543,
|
| 363 |
+
92542
|
| 364 |
+
]
|
| 365 |
+
)
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
register_conv_template(
|
| 370 |
+
Conversation(
|
| 371 |
+
name='phi3-chat',
|
| 372 |
+
system_template='<|system|>\n{system_message}',
|
| 373 |
+
system_message='You are an AI assistant whose name is Phi-3.',
|
| 374 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
| 375 |
+
sep_style=SeparatorStyle.MPT,
|
| 376 |
+
sep='<|end|>',
|
| 377 |
+
stop_token_ids=[
|
| 378 |
+
2,
|
| 379 |
+
32000,
|
| 380 |
+
32007
|
| 381 |
+
]
|
| 382 |
+
)
|
| 383 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.37.2"
|
| 4 |
+
}
|
model-00001-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71da14ff2afb6a4d98042027f17e541edc57aad359b59597b1f5848934f5e609
|
| 3 |
+
size 4988569440
|
model-00002-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:291ea6a5037584d76aa28d97f941ce4ca3a6f48b6ac01101d6468d8248fd31cf
|
| 3 |
+
size 4937253584
|
model-00003-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b69ebce7afabc0e4a7270dd821f7ff1cdd0bccebc247dfedf23ccea4d67201db
|
| 3 |
+
size 4801189400
|
model-00004-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad041f73cb40eab2f6d1b6751d1f4744e40557eeeb5b13016ec27d71466c7944
|
| 3 |
+
size 4882322840
|
model-00005-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13621c3845cb85a0d815ab30a883597ad6f4f215525b2fd2b54284254fe9f336
|
| 3 |
+
size 4882322880
|
model-00006-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:414b0b5a8400db260ef25592edc1b50aa01efae7a22155bd74bd192fcbaacc29
|
| 3 |
+
size 4983011128
|
model-00007-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6fa96cf6e026052de3dd6df99e9cb2a0de6f3683c6ff250878de1ea251ea10c
|
| 3 |
+
size 4957820488
|
model-00008-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:216d57683ad508d8966b5c2df975eabcbc439e746b73a33f66d36846b8a304e6
|
| 3 |
+
size 4882322880
|
model-00009-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:517d5257c7011b45b4af7a7918307f5aae19af75b809caa838e241a657340224
|
| 3 |
+
size 4983011128
|
model-00010-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f93cc2db3da50790e894d1b29daa2d24f2c55b1b27e8e3dc7d0c33bb2d89de31
|
| 3 |
+
size 4957820488
|
model-00011-of-00011.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2dfc70d01dfde06e48c5d5d819d1772aa63c3b2c1e2ba14611eac8f62b72594a
|
| 3 |
+
size 1772842232
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,941 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 51028372224
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"language_model.model.layers.0.attention.wo.weight": "model-00003-of-00011.safetensors",
|
| 7 |
+
"language_model.model.layers.0.attention.wqkv.weight": "model-00003-of-00011.safetensors",
|
| 8 |
+
"language_model.model.layers.0.attention_norm.weight": "model-00003-of-00011.safetensors",
|
| 9 |
+
"language_model.model.layers.0.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
|
| 10 |
+
"language_model.model.layers.0.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
|
| 11 |
+
"language_model.model.layers.0.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
|
| 12 |
+
"language_model.model.layers.0.ffn_norm.weight": "model-00003-of-00011.safetensors",
|
| 13 |
+
"language_model.model.layers.1.attention.wo.weight": "model-00003-of-00011.safetensors",
|
| 14 |
+
"language_model.model.layers.1.attention.wqkv.weight": "model-00003-of-00011.safetensors",
|
| 15 |
+
"language_model.model.layers.1.attention_norm.weight": "model-00003-of-00011.safetensors",
|
| 16 |
+
"language_model.model.layers.1.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
|
| 17 |
+
"language_model.model.layers.1.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
|
| 18 |
+
"language_model.model.layers.1.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
|
| 19 |
+
"language_model.model.layers.1.ffn_norm.weight": "model-00003-of-00011.safetensors",
|
| 20 |
+
"language_model.model.layers.10.attention.wo.weight": "model-00005-of-00011.safetensors",
|
| 21 |
+
"language_model.model.layers.10.attention.wqkv.weight": "model-00005-of-00011.safetensors",
|
| 22 |
+
"language_model.model.layers.10.attention_norm.weight": "model-00005-of-00011.safetensors",
|
| 23 |
+
"language_model.model.layers.10.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
|
| 24 |
+
"language_model.model.layers.10.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
|
| 25 |
+
"language_model.model.layers.10.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
|
| 26 |
+
"language_model.model.layers.10.ffn_norm.weight": "model-00005-of-00011.safetensors",
|
| 27 |
+
"language_model.model.layers.11.attention.wo.weight": "model-00005-of-00011.safetensors",
|
| 28 |
+
"language_model.model.layers.11.attention.wqkv.weight": "model-00005-of-00011.safetensors",
|
| 29 |
+
"language_model.model.layers.11.attention_norm.weight": "model-00005-of-00011.safetensors",
|
| 30 |
+
"language_model.model.layers.11.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
|
| 31 |
+
"language_model.model.layers.11.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
|
| 32 |
+
"language_model.model.layers.11.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
|
| 33 |
+
"language_model.model.layers.11.ffn_norm.weight": "model-00005-of-00011.safetensors",
|
| 34 |
+
"language_model.model.layers.12.attention.wo.weight": "model-00005-of-00011.safetensors",
|
| 35 |
+
"language_model.model.layers.12.attention.wqkv.weight": "model-00005-of-00011.safetensors",
|
| 36 |
+
"language_model.model.layers.12.attention_norm.weight": "model-00005-of-00011.safetensors",
|
| 37 |
+
"language_model.model.layers.12.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
|
| 38 |
+
"language_model.model.layers.12.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
|
| 39 |
+
"language_model.model.layers.12.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
|
| 40 |
+
"language_model.model.layers.12.ffn_norm.weight": "model-00005-of-00011.safetensors",
|
| 41 |
+
"language_model.model.layers.13.attention.wo.weight": "model-00005-of-00011.safetensors",
|
| 42 |
+
"language_model.model.layers.13.attention.wqkv.weight": "model-00005-of-00011.safetensors",
|
| 43 |
+
"language_model.model.layers.13.attention_norm.weight": "model-00005-of-00011.safetensors",
|
| 44 |
+
"language_model.model.layers.13.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
|
| 45 |
+
"language_model.model.layers.13.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
|
| 46 |
+
"language_model.model.layers.13.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
|
| 47 |
+
"language_model.model.layers.13.ffn_norm.weight": "model-00005-of-00011.safetensors",
|
| 48 |
+
"language_model.model.layers.14.attention.wo.weight": "model-00005-of-00011.safetensors",
|
| 49 |
+
"language_model.model.layers.14.attention.wqkv.weight": "model-00005-of-00011.safetensors",
|
| 50 |
+
"language_model.model.layers.14.attention_norm.weight": "model-00005-of-00011.safetensors",
|
| 51 |
+
"language_model.model.layers.14.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
|
| 52 |
+
"language_model.model.layers.14.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
|
| 53 |
+
"language_model.model.layers.14.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
|
| 54 |
+
"language_model.model.layers.14.ffn_norm.weight": "model-00005-of-00011.safetensors",
|
| 55 |
+
"language_model.model.layers.15.attention.wo.weight": "model-00005-of-00011.safetensors",
|
| 56 |
+
"language_model.model.layers.15.attention.wqkv.weight": "model-00005-of-00011.safetensors",
|
| 57 |
+
"language_model.model.layers.15.attention_norm.weight": "model-00006-of-00011.safetensors",
|
| 58 |
+
"language_model.model.layers.15.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
|
| 59 |
+
"language_model.model.layers.15.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
|
| 60 |
+
"language_model.model.layers.15.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
|
| 61 |
+
"language_model.model.layers.15.ffn_norm.weight": "model-00006-of-00011.safetensors",
|
| 62 |
+
"language_model.model.layers.16.attention.wo.weight": "model-00006-of-00011.safetensors",
|
| 63 |
+
"language_model.model.layers.16.attention.wqkv.weight": "model-00006-of-00011.safetensors",
|
| 64 |
+
"language_model.model.layers.16.attention_norm.weight": "model-00006-of-00011.safetensors",
|
| 65 |
+
"language_model.model.layers.16.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
|
| 66 |
+
"language_model.model.layers.16.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
|
| 67 |
+
"language_model.model.layers.16.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
|
| 68 |
+
"language_model.model.layers.16.ffn_norm.weight": "model-00006-of-00011.safetensors",
|
| 69 |
+
"language_model.model.layers.17.attention.wo.weight": "model-00006-of-00011.safetensors",
|
| 70 |
+
"language_model.model.layers.17.attention.wqkv.weight": "model-00006-of-00011.safetensors",
|
| 71 |
+
"language_model.model.layers.17.attention_norm.weight": "model-00006-of-00011.safetensors",
|
| 72 |
+
"language_model.model.layers.17.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
|
| 73 |
+
"language_model.model.layers.17.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
|
| 74 |
+
"language_model.model.layers.17.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
|
| 75 |
+
"language_model.model.layers.17.ffn_norm.weight": "model-00006-of-00011.safetensors",
|
| 76 |
+
"language_model.model.layers.18.attention.wo.weight": "model-00006-of-00011.safetensors",
|
| 77 |
+
"language_model.model.layers.18.attention.wqkv.weight": "model-00006-of-00011.safetensors",
|
| 78 |
+
"language_model.model.layers.18.attention_norm.weight": "model-00006-of-00011.safetensors",
|
| 79 |
+
"language_model.model.layers.18.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
|
| 80 |
+
"language_model.model.layers.18.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
|
| 81 |
+
"language_model.model.layers.18.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
|
| 82 |
+
"language_model.model.layers.18.ffn_norm.weight": "model-00006-of-00011.safetensors",
|
| 83 |
+
"language_model.model.layers.19.attention.wo.weight": "model-00006-of-00011.safetensors",
|
| 84 |
+
"language_model.model.layers.19.attention.wqkv.weight": "model-00006-of-00011.safetensors",
|
| 85 |
+
"language_model.model.layers.19.attention_norm.weight": "model-00006-of-00011.safetensors",
|
| 86 |
+
"language_model.model.layers.19.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
|
| 87 |
+
"language_model.model.layers.19.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
|
| 88 |
+
"language_model.model.layers.19.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
|
| 89 |
+
"language_model.model.layers.19.ffn_norm.weight": "model-00006-of-00011.safetensors",
|
| 90 |
+
"language_model.model.layers.2.attention.wo.weight": "model-00003-of-00011.safetensors",
|
| 91 |
+
"language_model.model.layers.2.attention.wqkv.weight": "model-00003-of-00011.safetensors",
|
| 92 |
+
"language_model.model.layers.2.attention_norm.weight": "model-00003-of-00011.safetensors",
|
| 93 |
+
"language_model.model.layers.2.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
|
| 94 |
+
"language_model.model.layers.2.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
|
| 95 |
+
"language_model.model.layers.2.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
|
| 96 |
+
"language_model.model.layers.2.ffn_norm.weight": "model-00003-of-00011.safetensors",
|
| 97 |
+
"language_model.model.layers.20.attention.wo.weight": "model-00006-of-00011.safetensors",
|
| 98 |
+
"language_model.model.layers.20.attention.wqkv.weight": "model-00006-of-00011.safetensors",
|
| 99 |
+
"language_model.model.layers.20.attention_norm.weight": "model-00006-of-00011.safetensors",
|
| 100 |
+
"language_model.model.layers.20.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
|
| 101 |
+
"language_model.model.layers.20.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
|
| 102 |
+
"language_model.model.layers.20.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
|
| 103 |
+
"language_model.model.layers.20.ffn_norm.weight": "model-00006-of-00011.safetensors",
|
| 104 |
+
"language_model.model.layers.21.attention.wo.weight": "model-00006-of-00011.safetensors",
|
| 105 |
+
"language_model.model.layers.21.attention.wqkv.weight": "model-00006-of-00011.safetensors",
|
| 106 |
+
"language_model.model.layers.21.attention_norm.weight": "model-00006-of-00011.safetensors",
|
| 107 |
+
"language_model.model.layers.21.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
|
| 108 |
+
"language_model.model.layers.21.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
|
| 109 |
+
"language_model.model.layers.21.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
|
| 110 |
+
"language_model.model.layers.21.ffn_norm.weight": "model-00006-of-00011.safetensors",
|
| 111 |
+
"language_model.model.layers.22.attention.wo.weight": "model-00007-of-00011.safetensors",
|
| 112 |
+
"language_model.model.layers.22.attention.wqkv.weight": "model-00006-of-00011.safetensors",
|
| 113 |
+
"language_model.model.layers.22.attention_norm.weight": "model-00007-of-00011.safetensors",
|
| 114 |
+
"language_model.model.layers.22.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
|
| 115 |
+
"language_model.model.layers.22.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
|
| 116 |
+
"language_model.model.layers.22.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
|
| 117 |
+
"language_model.model.layers.22.ffn_norm.weight": "model-00007-of-00011.safetensors",
|
| 118 |
+
"language_model.model.layers.23.attention.wo.weight": "model-00007-of-00011.safetensors",
|
| 119 |
+
"language_model.model.layers.23.attention.wqkv.weight": "model-00007-of-00011.safetensors",
|
| 120 |
+
"language_model.model.layers.23.attention_norm.weight": "model-00007-of-00011.safetensors",
|
| 121 |
+
"language_model.model.layers.23.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
|
| 122 |
+
"language_model.model.layers.23.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
|
| 123 |
+
"language_model.model.layers.23.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
|
| 124 |
+
"language_model.model.layers.23.ffn_norm.weight": "model-00007-of-00011.safetensors",
|
| 125 |
+
"language_model.model.layers.24.attention.wo.weight": "model-00007-of-00011.safetensors",
|
| 126 |
+
"language_model.model.layers.24.attention.wqkv.weight": "model-00007-of-00011.safetensors",
|
| 127 |
+
"language_model.model.layers.24.attention_norm.weight": "model-00007-of-00011.safetensors",
|
| 128 |
+
"language_model.model.layers.24.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
|
| 129 |
+
"language_model.model.layers.24.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
|
| 130 |
+
"language_model.model.layers.24.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
|
| 131 |
+
"language_model.model.layers.24.ffn_norm.weight": "model-00007-of-00011.safetensors",
|
| 132 |
+
"language_model.model.layers.25.attention.wo.weight": "model-00007-of-00011.safetensors",
|
| 133 |
+
"language_model.model.layers.25.attention.wqkv.weight": "model-00007-of-00011.safetensors",
|
| 134 |
+
"language_model.model.layers.25.attention_norm.weight": "model-00007-of-00011.safetensors",
|
| 135 |
+
"language_model.model.layers.25.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
|
| 136 |
+
"language_model.model.layers.25.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
|
| 137 |
+
"language_model.model.layers.25.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
|
| 138 |
+
"language_model.model.layers.25.ffn_norm.weight": "model-00007-of-00011.safetensors",
|
| 139 |
+
"language_model.model.layers.26.attention.wo.weight": "model-00007-of-00011.safetensors",
|
| 140 |
+
"language_model.model.layers.26.attention.wqkv.weight": "model-00007-of-00011.safetensors",
|
| 141 |
+
"language_model.model.layers.26.attention_norm.weight": "model-00007-of-00011.safetensors",
|
| 142 |
+
"language_model.model.layers.26.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
|
| 143 |
+
"language_model.model.layers.26.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
|
| 144 |
+
"language_model.model.layers.26.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
|
| 145 |
+
"language_model.model.layers.26.ffn_norm.weight": "model-00007-of-00011.safetensors",
|
| 146 |
+
"language_model.model.layers.27.attention.wo.weight": "model-00007-of-00011.safetensors",
|
| 147 |
+
"language_model.model.layers.27.attention.wqkv.weight": "model-00007-of-00011.safetensors",
|
| 148 |
+
"language_model.model.layers.27.attention_norm.weight": "model-00007-of-00011.safetensors",
|
| 149 |
+
"language_model.model.layers.27.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
|
| 150 |
+
"language_model.model.layers.27.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
|
| 151 |
+
"language_model.model.layers.27.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
|
| 152 |
+
"language_model.model.layers.27.ffn_norm.weight": "model-00007-of-00011.safetensors",
|
| 153 |
+
"language_model.model.layers.28.attention.wo.weight": "model-00007-of-00011.safetensors",
|
| 154 |
+
"language_model.model.layers.28.attention.wqkv.weight": "model-00007-of-00011.safetensors",
|
| 155 |
+
"language_model.model.layers.28.attention_norm.weight": "model-00008-of-00011.safetensors",
|
| 156 |
+
"language_model.model.layers.28.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
|
| 157 |
+
"language_model.model.layers.28.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
|
| 158 |
+
"language_model.model.layers.28.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
|
| 159 |
+
"language_model.model.layers.28.ffn_norm.weight": "model-00008-of-00011.safetensors",
|
| 160 |
+
"language_model.model.layers.29.attention.wo.weight": "model-00008-of-00011.safetensors",
|
| 161 |
+
"language_model.model.layers.29.attention.wqkv.weight": "model-00008-of-00011.safetensors",
|
| 162 |
+
"language_model.model.layers.29.attention_norm.weight": "model-00008-of-00011.safetensors",
|
| 163 |
+
"language_model.model.layers.29.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
|
| 164 |
+
"language_model.model.layers.29.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
|
| 165 |
+
"language_model.model.layers.29.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
|
| 166 |
+
"language_model.model.layers.29.ffn_norm.weight": "model-00008-of-00011.safetensors",
|
| 167 |
+
"language_model.model.layers.3.attention.wo.weight": "model-00003-of-00011.safetensors",
|
| 168 |
+
"language_model.model.layers.3.attention.wqkv.weight": "model-00003-of-00011.safetensors",
|
| 169 |
+
"language_model.model.layers.3.attention_norm.weight": "model-00004-of-00011.safetensors",
|
| 170 |
+
"language_model.model.layers.3.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
|
| 171 |
+
"language_model.model.layers.3.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
|
| 172 |
+
"language_model.model.layers.3.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
|
| 173 |
+
"language_model.model.layers.3.ffn_norm.weight": "model-00004-of-00011.safetensors",
|
| 174 |
+
"language_model.model.layers.30.attention.wo.weight": "model-00008-of-00011.safetensors",
|
| 175 |
+
"language_model.model.layers.30.attention.wqkv.weight": "model-00008-of-00011.safetensors",
|
| 176 |
+
"language_model.model.layers.30.attention_norm.weight": "model-00008-of-00011.safetensors",
|
| 177 |
+
"language_model.model.layers.30.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
|
| 178 |
+
"language_model.model.layers.30.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
|
| 179 |
+
"language_model.model.layers.30.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
|
| 180 |
+
"language_model.model.layers.30.ffn_norm.weight": "model-00008-of-00011.safetensors",
|
| 181 |
+
"language_model.model.layers.31.attention.wo.weight": "model-00008-of-00011.safetensors",
|
| 182 |
+
"language_model.model.layers.31.attention.wqkv.weight": "model-00008-of-00011.safetensors",
|
| 183 |
+
"language_model.model.layers.31.attention_norm.weight": "model-00008-of-00011.safetensors",
|
| 184 |
+
"language_model.model.layers.31.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
|
| 185 |
+
"language_model.model.layers.31.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
|
| 186 |
+
"language_model.model.layers.31.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
|
| 187 |
+
"language_model.model.layers.31.ffn_norm.weight": "model-00008-of-00011.safetensors",
|
| 188 |
+
"language_model.model.layers.32.attention.wo.weight": "model-00008-of-00011.safetensors",
|
| 189 |
+
"language_model.model.layers.32.attention.wqkv.weight": "model-00008-of-00011.safetensors",
|
| 190 |
+
"language_model.model.layers.32.attention_norm.weight": "model-00008-of-00011.safetensors",
|
| 191 |
+
"language_model.model.layers.32.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
|
| 192 |
+
"language_model.model.layers.32.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
|
| 193 |
+
"language_model.model.layers.32.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
|
| 194 |
+
"language_model.model.layers.32.ffn_norm.weight": "model-00008-of-00011.safetensors",
|
| 195 |
+
"language_model.model.layers.33.attention.wo.weight": "model-00008-of-00011.safetensors",
|
| 196 |
+
"language_model.model.layers.33.attention.wqkv.weight": "model-00008-of-00011.safetensors",
|
| 197 |
+
"language_model.model.layers.33.attention_norm.weight": "model-00008-of-00011.safetensors",
|
| 198 |
+
"language_model.model.layers.33.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
|
| 199 |
+
"language_model.model.layers.33.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
|
| 200 |
+
"language_model.model.layers.33.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
|
| 201 |
+
"language_model.model.layers.33.ffn_norm.weight": "model-00008-of-00011.safetensors",
|
| 202 |
+
"language_model.model.layers.34.attention.wo.weight": "model-00008-of-00011.safetensors",
|
| 203 |
+
"language_model.model.layers.34.attention.wqkv.weight": "model-00008-of-00011.safetensors",
|
| 204 |
+
"language_model.model.layers.34.attention_norm.weight": "model-00009-of-00011.safetensors",
|
| 205 |
+
"language_model.model.layers.34.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
|
| 206 |
+
"language_model.model.layers.34.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
|
| 207 |
+
"language_model.model.layers.34.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
|
| 208 |
+
"language_model.model.layers.34.ffn_norm.weight": "model-00009-of-00011.safetensors",
|
| 209 |
+
"language_model.model.layers.35.attention.wo.weight": "model-00009-of-00011.safetensors",
|
| 210 |
+
"language_model.model.layers.35.attention.wqkv.weight": "model-00009-of-00011.safetensors",
|
| 211 |
+
"language_model.model.layers.35.attention_norm.weight": "model-00009-of-00011.safetensors",
|
| 212 |
+
"language_model.model.layers.35.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
|
| 213 |
+
"language_model.model.layers.35.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
|
| 214 |
+
"language_model.model.layers.35.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
|
| 215 |
+
"language_model.model.layers.35.ffn_norm.weight": "model-00009-of-00011.safetensors",
|
| 216 |
+
"language_model.model.layers.36.attention.wo.weight": "model-00009-of-00011.safetensors",
|
| 217 |
+
"language_model.model.layers.36.attention.wqkv.weight": "model-00009-of-00011.safetensors",
|
| 218 |
+
"language_model.model.layers.36.attention_norm.weight": "model-00009-of-00011.safetensors",
|
| 219 |
+
"language_model.model.layers.36.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
|
| 220 |
+
"language_model.model.layers.36.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
|
| 221 |
+
"language_model.model.layers.36.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
|
| 222 |
+
"language_model.model.layers.36.ffn_norm.weight": "model-00009-of-00011.safetensors",
|
| 223 |
+
"language_model.model.layers.37.attention.wo.weight": "model-00009-of-00011.safetensors",
|
| 224 |
+
"language_model.model.layers.37.attention.wqkv.weight": "model-00009-of-00011.safetensors",
|
| 225 |
+
"language_model.model.layers.37.attention_norm.weight": "model-00009-of-00011.safetensors",
|
| 226 |
+
"language_model.model.layers.37.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
|
| 227 |
+
"language_model.model.layers.37.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
|
| 228 |
+
"language_model.model.layers.37.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
|
| 229 |
+
"language_model.model.layers.37.ffn_norm.weight": "model-00009-of-00011.safetensors",
|
| 230 |
+
"language_model.model.layers.38.attention.wo.weight": "model-00009-of-00011.safetensors",
|
| 231 |
+
"language_model.model.layers.38.attention.wqkv.weight": "model-00009-of-00011.safetensors",
|
| 232 |
+
"language_model.model.layers.38.attention_norm.weight": "model-00009-of-00011.safetensors",
|
| 233 |
+
"language_model.model.layers.38.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
|
| 234 |
+
"language_model.model.layers.38.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
|
| 235 |
+
"language_model.model.layers.38.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
|
| 236 |
+
"language_model.model.layers.38.ffn_norm.weight": "model-00009-of-00011.safetensors",
|
| 237 |
+
"language_model.model.layers.39.attention.wo.weight": "model-00009-of-00011.safetensors",
|
| 238 |
+
"language_model.model.layers.39.attention.wqkv.weight": "model-00009-of-00011.safetensors",
|
| 239 |
+
"language_model.model.layers.39.attention_norm.weight": "model-00009-of-00011.safetensors",
|
| 240 |
+
"language_model.model.layers.39.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
|
| 241 |
+
"language_model.model.layers.39.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
|
| 242 |
+
"language_model.model.layers.39.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
|
| 243 |
+
"language_model.model.layers.39.ffn_norm.weight": "model-00009-of-00011.safetensors",
|
| 244 |
+
"language_model.model.layers.4.attention.wo.weight": "model-00004-of-00011.safetensors",
|
| 245 |
+
"language_model.model.layers.4.attention.wqkv.weight": "model-00004-of-00011.safetensors",
|
| 246 |
+
"language_model.model.layers.4.attention_norm.weight": "model-00004-of-00011.safetensors",
|
| 247 |
+
"language_model.model.layers.4.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
|
| 248 |
+
"language_model.model.layers.4.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
|
| 249 |
+
"language_model.model.layers.4.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
|
| 250 |
+
"language_model.model.layers.4.ffn_norm.weight": "model-00004-of-00011.safetensors",
|
| 251 |
+
"language_model.model.layers.40.attention.wo.weight": "model-00009-of-00011.safetensors",
|
| 252 |
+
"language_model.model.layers.40.attention.wqkv.weight": "model-00009-of-00011.safetensors",
|
| 253 |
+
"language_model.model.layers.40.attention_norm.weight": "model-00009-of-00011.safetensors",
|
| 254 |
+
"language_model.model.layers.40.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
|
| 255 |
+
"language_model.model.layers.40.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
|
| 256 |
+
"language_model.model.layers.40.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
|
| 257 |
+
"language_model.model.layers.40.ffn_norm.weight": "model-00009-of-00011.safetensors",
|
| 258 |
+
"language_model.model.layers.41.attention.wo.weight": "model-00010-of-00011.safetensors",
|
| 259 |
+
"language_model.model.layers.41.attention.wqkv.weight": "model-00009-of-00011.safetensors",
|
| 260 |
+
"language_model.model.layers.41.attention_norm.weight": "model-00010-of-00011.safetensors",
|
| 261 |
+
"language_model.model.layers.41.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
|
| 262 |
+
"language_model.model.layers.41.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
|
| 263 |
+
"language_model.model.layers.41.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
|
| 264 |
+
"language_model.model.layers.41.ffn_norm.weight": "model-00010-of-00011.safetensors",
|
| 265 |
+
"language_model.model.layers.42.attention.wo.weight": "model-00010-of-00011.safetensors",
|
| 266 |
+
"language_model.model.layers.42.attention.wqkv.weight": "model-00010-of-00011.safetensors",
|
| 267 |
+
"language_model.model.layers.42.attention_norm.weight": "model-00010-of-00011.safetensors",
|
| 268 |
+
"language_model.model.layers.42.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
|
| 269 |
+
"language_model.model.layers.42.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
|
| 270 |
+
"language_model.model.layers.42.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
|
| 271 |
+
"language_model.model.layers.42.ffn_norm.weight": "model-00010-of-00011.safetensors",
|
| 272 |
+
"language_model.model.layers.43.attention.wo.weight": "model-00010-of-00011.safetensors",
|
| 273 |
+
"language_model.model.layers.43.attention.wqkv.weight": "model-00010-of-00011.safetensors",
|
| 274 |
+
"language_model.model.layers.43.attention_norm.weight": "model-00010-of-00011.safetensors",
|
| 275 |
+
"language_model.model.layers.43.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
|
| 276 |
+
"language_model.model.layers.43.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
|
| 277 |
+
"language_model.model.layers.43.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
|
| 278 |
+
"language_model.model.layers.43.ffn_norm.weight": "model-00010-of-00011.safetensors",
|
| 279 |
+
"language_model.model.layers.44.attention.wo.weight": "model-00010-of-00011.safetensors",
|
| 280 |
+
"language_model.model.layers.44.attention.wqkv.weight": "model-00010-of-00011.safetensors",
|
| 281 |
+
"language_model.model.layers.44.attention_norm.weight": "model-00010-of-00011.safetensors",
|
| 282 |
+
"language_model.model.layers.44.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
|
| 283 |
+
"language_model.model.layers.44.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
|
| 284 |
+
"language_model.model.layers.44.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
|
| 285 |
+
"language_model.model.layers.44.ffn_norm.weight": "model-00010-of-00011.safetensors",
|
| 286 |
+
"language_model.model.layers.45.attention.wo.weight": "model-00010-of-00011.safetensors",
|
| 287 |
+
"language_model.model.layers.45.attention.wqkv.weight": "model-00010-of-00011.safetensors",
|
| 288 |
+
"language_model.model.layers.45.attention_norm.weight": "model-00010-of-00011.safetensors",
|
| 289 |
+
"language_model.model.layers.45.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
|
| 290 |
+
"language_model.model.layers.45.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
|
| 291 |
+
"language_model.model.layers.45.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
|
| 292 |
+
"language_model.model.layers.45.ffn_norm.weight": "model-00010-of-00011.safetensors",
|
| 293 |
+
"language_model.model.layers.46.attention.wo.weight": "model-00010-of-00011.safetensors",
|
| 294 |
+
"language_model.model.layers.46.attention.wqkv.weight": "model-00010-of-00011.safetensors",
|
| 295 |
+
"language_model.model.layers.46.attention_norm.weight": "model-00010-of-00011.safetensors",
|
| 296 |
+
"language_model.model.layers.46.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
|
| 297 |
+
"language_model.model.layers.46.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
|
| 298 |
+
"language_model.model.layers.46.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
|
| 299 |
+
"language_model.model.layers.46.ffn_norm.weight": "model-00010-of-00011.safetensors",
|
| 300 |
+
"language_model.model.layers.47.attention.wo.weight": "model-00010-of-00011.safetensors",
|
| 301 |
+
"language_model.model.layers.47.attention.wqkv.weight": "model-00010-of-00011.safetensors",
|
| 302 |
+
"language_model.model.layers.47.attention_norm.weight": "model-00011-of-00011.safetensors",
|
| 303 |
+
"language_model.model.layers.47.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
|
| 304 |
+
"language_model.model.layers.47.feed_forward.w2.weight": "model-00011-of-00011.safetensors",
|
| 305 |
+
"language_model.model.layers.47.feed_forward.w3.weight": "model-00011-of-00011.safetensors",
|
| 306 |
+
"language_model.model.layers.47.ffn_norm.weight": "model-00011-of-00011.safetensors",
|
| 307 |
+
"language_model.model.layers.5.attention.wo.weight": "model-00004-of-00011.safetensors",
|
| 308 |
+
"language_model.model.layers.5.attention.wqkv.weight": "model-00004-of-00011.safetensors",
|
| 309 |
+
"language_model.model.layers.5.attention_norm.weight": "model-00004-of-00011.safetensors",
|
| 310 |
+
"language_model.model.layers.5.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
|
| 311 |
+
"language_model.model.layers.5.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
|
| 312 |
+
"language_model.model.layers.5.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
|
| 313 |
+
"language_model.model.layers.5.ffn_norm.weight": "model-00004-of-00011.safetensors",
|
| 314 |
+
"language_model.model.layers.6.attention.wo.weight": "model-00004-of-00011.safetensors",
|
| 315 |
+
"language_model.model.layers.6.attention.wqkv.weight": "model-00004-of-00011.safetensors",
|
| 316 |
+
"language_model.model.layers.6.attention_norm.weight": "model-00004-of-00011.safetensors",
|
| 317 |
+
"language_model.model.layers.6.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
|
| 318 |
+
"language_model.model.layers.6.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
|
| 319 |
+
"language_model.model.layers.6.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
|
| 320 |
+
"language_model.model.layers.6.ffn_norm.weight": "model-00004-of-00011.safetensors",
|
| 321 |
+
"language_model.model.layers.7.attention.wo.weight": "model-00004-of-00011.safetensors",
|
| 322 |
+
"language_model.model.layers.7.attention.wqkv.weight": "model-00004-of-00011.safetensors",
|
| 323 |
+
"language_model.model.layers.7.attention_norm.weight": "model-00004-of-00011.safetensors",
|
| 324 |
+
"language_model.model.layers.7.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
|
| 325 |
+
"language_model.model.layers.7.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
|
| 326 |
+
"language_model.model.layers.7.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
|
| 327 |
+
"language_model.model.layers.7.ffn_norm.weight": "model-00004-of-00011.safetensors",
|
| 328 |
+
"language_model.model.layers.8.attention.wo.weight": "model-00004-of-00011.safetensors",
|
| 329 |
+
"language_model.model.layers.8.attention.wqkv.weight": "model-00004-of-00011.safetensors",
|
| 330 |
+
"language_model.model.layers.8.attention_norm.weight": "model-00004-of-00011.safetensors",
|
| 331 |
+
"language_model.model.layers.8.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
|
| 332 |
+
"language_model.model.layers.8.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
|
| 333 |
+
"language_model.model.layers.8.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
|
| 334 |
+
"language_model.model.layers.8.ffn_norm.weight": "model-00004-of-00011.safetensors",
|
| 335 |
+
"language_model.model.layers.9.attention.wo.weight": "model-00004-of-00011.safetensors",
|
| 336 |
+
"language_model.model.layers.9.attention.wqkv.weight": "model-00004-of-00011.safetensors",
|
| 337 |
+
"language_model.model.layers.9.attention_norm.weight": "model-00005-of-00011.safetensors",
|
| 338 |
+
"language_model.model.layers.9.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
|
| 339 |
+
"language_model.model.layers.9.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
|
| 340 |
+
"language_model.model.layers.9.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
|
| 341 |
+
"language_model.model.layers.9.ffn_norm.weight": "model-00005-of-00011.safetensors",
|
| 342 |
+
"language_model.model.norm.weight": "model-00011-of-00011.safetensors",
|
| 343 |
+
"language_model.model.tok_embeddings.weight": "model-00003-of-00011.safetensors",
|
| 344 |
+
"language_model.output.weight": "model-00011-of-00011.safetensors",
|
| 345 |
+
"mlp1.0.bias": "model-00011-of-00011.safetensors",
|
| 346 |
+
"mlp1.0.weight": "model-00011-of-00011.safetensors",
|
| 347 |
+
"mlp1.1.bias": "model-00011-of-00011.safetensors",
|
| 348 |
+
"mlp1.1.weight": "model-00011-of-00011.safetensors",
|
| 349 |
+
"mlp1.3.bias": "model-00011-of-00011.safetensors",
|
| 350 |
+
"mlp1.3.weight": "model-00011-of-00011.safetensors",
|
| 351 |
+
"vision_model.embeddings.class_embedding": "model-00001-of-00011.safetensors",
|
| 352 |
+
"vision_model.embeddings.patch_embedding.bias": "model-00001-of-00011.safetensors",
|
| 353 |
+
"vision_model.embeddings.patch_embedding.weight": "model-00001-of-00011.safetensors",
|
| 354 |
+
"vision_model.embeddings.position_embedding": "model-00001-of-00011.safetensors",
|
| 355 |
+
"vision_model.encoder.layers.0.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 356 |
+
"vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 357 |
+
"vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 358 |
+
"vision_model.encoder.layers.0.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 359 |
+
"vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 360 |
+
"vision_model.encoder.layers.0.ls1": "model-00001-of-00011.safetensors",
|
| 361 |
+
"vision_model.encoder.layers.0.ls2": "model-00001-of-00011.safetensors",
|
| 362 |
+
"vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 363 |
+
"vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 364 |
+
"vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 365 |
+
"vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 366 |
+
"vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00011.safetensors",
|
| 367 |
+
"vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00011.safetensors",
|
| 368 |
+
"vision_model.encoder.layers.1.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 369 |
+
"vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 370 |
+
"vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 371 |
+
"vision_model.encoder.layers.1.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 372 |
+
"vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 373 |
+
"vision_model.encoder.layers.1.ls1": "model-00001-of-00011.safetensors",
|
| 374 |
+
"vision_model.encoder.layers.1.ls2": "model-00001-of-00011.safetensors",
|
| 375 |
+
"vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 376 |
+
"vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 377 |
+
"vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 378 |
+
"vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 379 |
+
"vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00011.safetensors",
|
| 380 |
+
"vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00011.safetensors",
|
| 381 |
+
"vision_model.encoder.layers.10.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 382 |
+
"vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 383 |
+
"vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 384 |
+
"vision_model.encoder.layers.10.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 385 |
+
"vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 386 |
+
"vision_model.encoder.layers.10.ls1": "model-00001-of-00011.safetensors",
|
| 387 |
+
"vision_model.encoder.layers.10.ls2": "model-00001-of-00011.safetensors",
|
| 388 |
+
"vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 389 |
+
"vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 390 |
+
"vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 391 |
+
"vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 392 |
+
"vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00011.safetensors",
|
| 393 |
+
"vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00011.safetensors",
|
| 394 |
+
"vision_model.encoder.layers.11.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 395 |
+
"vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 396 |
+
"vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 397 |
+
"vision_model.encoder.layers.11.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 398 |
+
"vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 399 |
+
"vision_model.encoder.layers.11.ls1": "model-00001-of-00011.safetensors",
|
| 400 |
+
"vision_model.encoder.layers.11.ls2": "model-00001-of-00011.safetensors",
|
| 401 |
+
"vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 402 |
+
"vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 403 |
+
"vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 404 |
+
"vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 405 |
+
"vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00011.safetensors",
|
| 406 |
+
"vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00011.safetensors",
|
| 407 |
+
"vision_model.encoder.layers.12.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 408 |
+
"vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 409 |
+
"vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 410 |
+
"vision_model.encoder.layers.12.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 411 |
+
"vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 412 |
+
"vision_model.encoder.layers.12.ls1": "model-00001-of-00011.safetensors",
|
| 413 |
+
"vision_model.encoder.layers.12.ls2": "model-00001-of-00011.safetensors",
|
| 414 |
+
"vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 415 |
+
"vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 416 |
+
"vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 417 |
+
"vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 418 |
+
"vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00011.safetensors",
|
| 419 |
+
"vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00011.safetensors",
|
| 420 |
+
"vision_model.encoder.layers.13.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 421 |
+
"vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 422 |
+
"vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 423 |
+
"vision_model.encoder.layers.13.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 424 |
+
"vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 425 |
+
"vision_model.encoder.layers.13.ls1": "model-00001-of-00011.safetensors",
|
| 426 |
+
"vision_model.encoder.layers.13.ls2": "model-00001-of-00011.safetensors",
|
| 427 |
+
"vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 428 |
+
"vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 429 |
+
"vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 430 |
+
"vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 431 |
+
"vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00011.safetensors",
|
| 432 |
+
"vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00011.safetensors",
|
| 433 |
+
"vision_model.encoder.layers.14.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 434 |
+
"vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 435 |
+
"vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 436 |
+
"vision_model.encoder.layers.14.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 437 |
+
"vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 438 |
+
"vision_model.encoder.layers.14.ls1": "model-00001-of-00011.safetensors",
|
| 439 |
+
"vision_model.encoder.layers.14.ls2": "model-00001-of-00011.safetensors",
|
| 440 |
+
"vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 441 |
+
"vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 442 |
+
"vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 443 |
+
"vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 444 |
+
"vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00011.safetensors",
|
| 445 |
+
"vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00011.safetensors",
|
| 446 |
+
"vision_model.encoder.layers.15.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 447 |
+
"vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 448 |
+
"vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 449 |
+
"vision_model.encoder.layers.15.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 450 |
+
"vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 451 |
+
"vision_model.encoder.layers.15.ls1": "model-00001-of-00011.safetensors",
|
| 452 |
+
"vision_model.encoder.layers.15.ls2": "model-00001-of-00011.safetensors",
|
| 453 |
+
"vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 454 |
+
"vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 455 |
+
"vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 456 |
+
"vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 457 |
+
"vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00011.safetensors",
|
| 458 |
+
"vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00011.safetensors",
|
| 459 |
+
"vision_model.encoder.layers.16.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 460 |
+
"vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 461 |
+
"vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 462 |
+
"vision_model.encoder.layers.16.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 463 |
+
"vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 464 |
+
"vision_model.encoder.layers.16.ls1": "model-00001-of-00011.safetensors",
|
| 465 |
+
"vision_model.encoder.layers.16.ls2": "model-00001-of-00011.safetensors",
|
| 466 |
+
"vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 467 |
+
"vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 468 |
+
"vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 469 |
+
"vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 470 |
+
"vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00011.safetensors",
|
| 471 |
+
"vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00011.safetensors",
|
| 472 |
+
"vision_model.encoder.layers.17.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 473 |
+
"vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 474 |
+
"vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 475 |
+
"vision_model.encoder.layers.17.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 476 |
+
"vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 477 |
+
"vision_model.encoder.layers.17.ls1": "model-00001-of-00011.safetensors",
|
| 478 |
+
"vision_model.encoder.layers.17.ls2": "model-00001-of-00011.safetensors",
|
| 479 |
+
"vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 480 |
+
"vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 481 |
+
"vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 482 |
+
"vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 483 |
+
"vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00011.safetensors",
|
| 484 |
+
"vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00011.safetensors",
|
| 485 |
+
"vision_model.encoder.layers.18.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 486 |
+
"vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 487 |
+
"vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 488 |
+
"vision_model.encoder.layers.18.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 489 |
+
"vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 490 |
+
"vision_model.encoder.layers.18.ls1": "model-00001-of-00011.safetensors",
|
| 491 |
+
"vision_model.encoder.layers.18.ls2": "model-00001-of-00011.safetensors",
|
| 492 |
+
"vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 493 |
+
"vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 494 |
+
"vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 495 |
+
"vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 496 |
+
"vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00011.safetensors",
|
| 497 |
+
"vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00011.safetensors",
|
| 498 |
+
"vision_model.encoder.layers.19.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 499 |
+
"vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 500 |
+
"vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 501 |
+
"vision_model.encoder.layers.19.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 502 |
+
"vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 503 |
+
"vision_model.encoder.layers.19.ls1": "model-00001-of-00011.safetensors",
|
| 504 |
+
"vision_model.encoder.layers.19.ls2": "model-00001-of-00011.safetensors",
|
| 505 |
+
"vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 506 |
+
"vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 507 |
+
"vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 508 |
+
"vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 509 |
+
"vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00011.safetensors",
|
| 510 |
+
"vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00011.safetensors",
|
| 511 |
+
"vision_model.encoder.layers.2.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 512 |
+
"vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 513 |
+
"vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 514 |
+
"vision_model.encoder.layers.2.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 515 |
+
"vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 516 |
+
"vision_model.encoder.layers.2.ls1": "model-00001-of-00011.safetensors",
|
| 517 |
+
"vision_model.encoder.layers.2.ls2": "model-00001-of-00011.safetensors",
|
| 518 |
+
"vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 519 |
+
"vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 520 |
+
"vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 521 |
+
"vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 522 |
+
"vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00011.safetensors",
|
| 523 |
+
"vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00011.safetensors",
|
| 524 |
+
"vision_model.encoder.layers.20.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 525 |
+
"vision_model.encoder.layers.20.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 526 |
+
"vision_model.encoder.layers.20.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 527 |
+
"vision_model.encoder.layers.20.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 528 |
+
"vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 529 |
+
"vision_model.encoder.layers.20.ls1": "model-00001-of-00011.safetensors",
|
| 530 |
+
"vision_model.encoder.layers.20.ls2": "model-00001-of-00011.safetensors",
|
| 531 |
+
"vision_model.encoder.layers.20.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 532 |
+
"vision_model.encoder.layers.20.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 533 |
+
"vision_model.encoder.layers.20.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 534 |
+
"vision_model.encoder.layers.20.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 535 |
+
"vision_model.encoder.layers.20.norm1.weight": "model-00002-of-00011.safetensors",
|
| 536 |
+
"vision_model.encoder.layers.20.norm2.weight": "model-00002-of-00011.safetensors",
|
| 537 |
+
"vision_model.encoder.layers.21.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 538 |
+
"vision_model.encoder.layers.21.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 539 |
+
"vision_model.encoder.layers.21.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 540 |
+
"vision_model.encoder.layers.21.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 541 |
+
"vision_model.encoder.layers.21.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 542 |
+
"vision_model.encoder.layers.21.ls1": "model-00002-of-00011.safetensors",
|
| 543 |
+
"vision_model.encoder.layers.21.ls2": "model-00002-of-00011.safetensors",
|
| 544 |
+
"vision_model.encoder.layers.21.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 545 |
+
"vision_model.encoder.layers.21.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 546 |
+
"vision_model.encoder.layers.21.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 547 |
+
"vision_model.encoder.layers.21.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 548 |
+
"vision_model.encoder.layers.21.norm1.weight": "model-00002-of-00011.safetensors",
|
| 549 |
+
"vision_model.encoder.layers.21.norm2.weight": "model-00002-of-00011.safetensors",
|
| 550 |
+
"vision_model.encoder.layers.22.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 551 |
+
"vision_model.encoder.layers.22.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 552 |
+
"vision_model.encoder.layers.22.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 553 |
+
"vision_model.encoder.layers.22.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 554 |
+
"vision_model.encoder.layers.22.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 555 |
+
"vision_model.encoder.layers.22.ls1": "model-00002-of-00011.safetensors",
|
| 556 |
+
"vision_model.encoder.layers.22.ls2": "model-00002-of-00011.safetensors",
|
| 557 |
+
"vision_model.encoder.layers.22.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 558 |
+
"vision_model.encoder.layers.22.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 559 |
+
"vision_model.encoder.layers.22.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 560 |
+
"vision_model.encoder.layers.22.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 561 |
+
"vision_model.encoder.layers.22.norm1.weight": "model-00002-of-00011.safetensors",
|
| 562 |
+
"vision_model.encoder.layers.22.norm2.weight": "model-00002-of-00011.safetensors",
|
| 563 |
+
"vision_model.encoder.layers.23.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 564 |
+
"vision_model.encoder.layers.23.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 565 |
+
"vision_model.encoder.layers.23.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 566 |
+
"vision_model.encoder.layers.23.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 567 |
+
"vision_model.encoder.layers.23.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 568 |
+
"vision_model.encoder.layers.23.ls1": "model-00002-of-00011.safetensors",
|
| 569 |
+
"vision_model.encoder.layers.23.ls2": "model-00002-of-00011.safetensors",
|
| 570 |
+
"vision_model.encoder.layers.23.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 571 |
+
"vision_model.encoder.layers.23.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 572 |
+
"vision_model.encoder.layers.23.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 573 |
+
"vision_model.encoder.layers.23.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 574 |
+
"vision_model.encoder.layers.23.norm1.weight": "model-00002-of-00011.safetensors",
|
| 575 |
+
"vision_model.encoder.layers.23.norm2.weight": "model-00002-of-00011.safetensors",
|
| 576 |
+
"vision_model.encoder.layers.24.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 577 |
+
"vision_model.encoder.layers.24.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 578 |
+
"vision_model.encoder.layers.24.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 579 |
+
"vision_model.encoder.layers.24.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 580 |
+
"vision_model.encoder.layers.24.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 581 |
+
"vision_model.encoder.layers.24.ls1": "model-00002-of-00011.safetensors",
|
| 582 |
+
"vision_model.encoder.layers.24.ls2": "model-00002-of-00011.safetensors",
|
| 583 |
+
"vision_model.encoder.layers.24.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 584 |
+
"vision_model.encoder.layers.24.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 585 |
+
"vision_model.encoder.layers.24.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 586 |
+
"vision_model.encoder.layers.24.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 587 |
+
"vision_model.encoder.layers.24.norm1.weight": "model-00002-of-00011.safetensors",
|
| 588 |
+
"vision_model.encoder.layers.24.norm2.weight": "model-00002-of-00011.safetensors",
|
| 589 |
+
"vision_model.encoder.layers.25.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 590 |
+
"vision_model.encoder.layers.25.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 591 |
+
"vision_model.encoder.layers.25.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 592 |
+
"vision_model.encoder.layers.25.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 593 |
+
"vision_model.encoder.layers.25.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 594 |
+
"vision_model.encoder.layers.25.ls1": "model-00002-of-00011.safetensors",
|
| 595 |
+
"vision_model.encoder.layers.25.ls2": "model-00002-of-00011.safetensors",
|
| 596 |
+
"vision_model.encoder.layers.25.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 597 |
+
"vision_model.encoder.layers.25.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 598 |
+
"vision_model.encoder.layers.25.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 599 |
+
"vision_model.encoder.layers.25.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 600 |
+
"vision_model.encoder.layers.25.norm1.weight": "model-00002-of-00011.safetensors",
|
| 601 |
+
"vision_model.encoder.layers.25.norm2.weight": "model-00002-of-00011.safetensors",
|
| 602 |
+
"vision_model.encoder.layers.26.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 603 |
+
"vision_model.encoder.layers.26.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 604 |
+
"vision_model.encoder.layers.26.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 605 |
+
"vision_model.encoder.layers.26.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 606 |
+
"vision_model.encoder.layers.26.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 607 |
+
"vision_model.encoder.layers.26.ls1": "model-00002-of-00011.safetensors",
|
| 608 |
+
"vision_model.encoder.layers.26.ls2": "model-00002-of-00011.safetensors",
|
| 609 |
+
"vision_model.encoder.layers.26.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 610 |
+
"vision_model.encoder.layers.26.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 611 |
+
"vision_model.encoder.layers.26.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 612 |
+
"vision_model.encoder.layers.26.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 613 |
+
"vision_model.encoder.layers.26.norm1.weight": "model-00002-of-00011.safetensors",
|
| 614 |
+
"vision_model.encoder.layers.26.norm2.weight": "model-00002-of-00011.safetensors",
|
| 615 |
+
"vision_model.encoder.layers.27.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 616 |
+
"vision_model.encoder.layers.27.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 617 |
+
"vision_model.encoder.layers.27.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 618 |
+
"vision_model.encoder.layers.27.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 619 |
+
"vision_model.encoder.layers.27.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 620 |
+
"vision_model.encoder.layers.27.ls1": "model-00002-of-00011.safetensors",
|
| 621 |
+
"vision_model.encoder.layers.27.ls2": "model-00002-of-00011.safetensors",
|
| 622 |
+
"vision_model.encoder.layers.27.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 623 |
+
"vision_model.encoder.layers.27.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 624 |
+
"vision_model.encoder.layers.27.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 625 |
+
"vision_model.encoder.layers.27.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 626 |
+
"vision_model.encoder.layers.27.norm1.weight": "model-00002-of-00011.safetensors",
|
| 627 |
+
"vision_model.encoder.layers.27.norm2.weight": "model-00002-of-00011.safetensors",
|
| 628 |
+
"vision_model.encoder.layers.28.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 629 |
+
"vision_model.encoder.layers.28.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 630 |
+
"vision_model.encoder.layers.28.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 631 |
+
"vision_model.encoder.layers.28.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 632 |
+
"vision_model.encoder.layers.28.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 633 |
+
"vision_model.encoder.layers.28.ls1": "model-00002-of-00011.safetensors",
|
| 634 |
+
"vision_model.encoder.layers.28.ls2": "model-00002-of-00011.safetensors",
|
| 635 |
+
"vision_model.encoder.layers.28.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 636 |
+
"vision_model.encoder.layers.28.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 637 |
+
"vision_model.encoder.layers.28.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 638 |
+
"vision_model.encoder.layers.28.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 639 |
+
"vision_model.encoder.layers.28.norm1.weight": "model-00002-of-00011.safetensors",
|
| 640 |
+
"vision_model.encoder.layers.28.norm2.weight": "model-00002-of-00011.safetensors",
|
| 641 |
+
"vision_model.encoder.layers.29.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 642 |
+
"vision_model.encoder.layers.29.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 643 |
+
"vision_model.encoder.layers.29.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 644 |
+
"vision_model.encoder.layers.29.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 645 |
+
"vision_model.encoder.layers.29.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 646 |
+
"vision_model.encoder.layers.29.ls1": "model-00002-of-00011.safetensors",
|
| 647 |
+
"vision_model.encoder.layers.29.ls2": "model-00002-of-00011.safetensors",
|
| 648 |
+
"vision_model.encoder.layers.29.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 649 |
+
"vision_model.encoder.layers.29.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 650 |
+
"vision_model.encoder.layers.29.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 651 |
+
"vision_model.encoder.layers.29.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 652 |
+
"vision_model.encoder.layers.29.norm1.weight": "model-00002-of-00011.safetensors",
|
| 653 |
+
"vision_model.encoder.layers.29.norm2.weight": "model-00002-of-00011.safetensors",
|
| 654 |
+
"vision_model.encoder.layers.3.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 655 |
+
"vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 656 |
+
"vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 657 |
+
"vision_model.encoder.layers.3.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 658 |
+
"vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 659 |
+
"vision_model.encoder.layers.3.ls1": "model-00001-of-00011.safetensors",
|
| 660 |
+
"vision_model.encoder.layers.3.ls2": "model-00001-of-00011.safetensors",
|
| 661 |
+
"vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 662 |
+
"vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 663 |
+
"vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 664 |
+
"vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 665 |
+
"vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00011.safetensors",
|
| 666 |
+
"vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00011.safetensors",
|
| 667 |
+
"vision_model.encoder.layers.30.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 668 |
+
"vision_model.encoder.layers.30.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 669 |
+
"vision_model.encoder.layers.30.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 670 |
+
"vision_model.encoder.layers.30.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 671 |
+
"vision_model.encoder.layers.30.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 672 |
+
"vision_model.encoder.layers.30.ls1": "model-00002-of-00011.safetensors",
|
| 673 |
+
"vision_model.encoder.layers.30.ls2": "model-00002-of-00011.safetensors",
|
| 674 |
+
"vision_model.encoder.layers.30.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 675 |
+
"vision_model.encoder.layers.30.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 676 |
+
"vision_model.encoder.layers.30.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 677 |
+
"vision_model.encoder.layers.30.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 678 |
+
"vision_model.encoder.layers.30.norm1.weight": "model-00002-of-00011.safetensors",
|
| 679 |
+
"vision_model.encoder.layers.30.norm2.weight": "model-00002-of-00011.safetensors",
|
| 680 |
+
"vision_model.encoder.layers.31.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 681 |
+
"vision_model.encoder.layers.31.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 682 |
+
"vision_model.encoder.layers.31.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 683 |
+
"vision_model.encoder.layers.31.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 684 |
+
"vision_model.encoder.layers.31.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 685 |
+
"vision_model.encoder.layers.31.ls1": "model-00002-of-00011.safetensors",
|
| 686 |
+
"vision_model.encoder.layers.31.ls2": "model-00002-of-00011.safetensors",
|
| 687 |
+
"vision_model.encoder.layers.31.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 688 |
+
"vision_model.encoder.layers.31.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 689 |
+
"vision_model.encoder.layers.31.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 690 |
+
"vision_model.encoder.layers.31.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 691 |
+
"vision_model.encoder.layers.31.norm1.weight": "model-00002-of-00011.safetensors",
|
| 692 |
+
"vision_model.encoder.layers.31.norm2.weight": "model-00002-of-00011.safetensors",
|
| 693 |
+
"vision_model.encoder.layers.32.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 694 |
+
"vision_model.encoder.layers.32.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 695 |
+
"vision_model.encoder.layers.32.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 696 |
+
"vision_model.encoder.layers.32.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 697 |
+
"vision_model.encoder.layers.32.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 698 |
+
"vision_model.encoder.layers.32.ls1": "model-00002-of-00011.safetensors",
|
| 699 |
+
"vision_model.encoder.layers.32.ls2": "model-00002-of-00011.safetensors",
|
| 700 |
+
"vision_model.encoder.layers.32.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 701 |
+
"vision_model.encoder.layers.32.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 702 |
+
"vision_model.encoder.layers.32.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 703 |
+
"vision_model.encoder.layers.32.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 704 |
+
"vision_model.encoder.layers.32.norm1.weight": "model-00002-of-00011.safetensors",
|
| 705 |
+
"vision_model.encoder.layers.32.norm2.weight": "model-00002-of-00011.safetensors",
|
| 706 |
+
"vision_model.encoder.layers.33.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 707 |
+
"vision_model.encoder.layers.33.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 708 |
+
"vision_model.encoder.layers.33.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 709 |
+
"vision_model.encoder.layers.33.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 710 |
+
"vision_model.encoder.layers.33.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 711 |
+
"vision_model.encoder.layers.33.ls1": "model-00002-of-00011.safetensors",
|
| 712 |
+
"vision_model.encoder.layers.33.ls2": "model-00002-of-00011.safetensors",
|
| 713 |
+
"vision_model.encoder.layers.33.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 714 |
+
"vision_model.encoder.layers.33.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 715 |
+
"vision_model.encoder.layers.33.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 716 |
+
"vision_model.encoder.layers.33.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 717 |
+
"vision_model.encoder.layers.33.norm1.weight": "model-00002-of-00011.safetensors",
|
| 718 |
+
"vision_model.encoder.layers.33.norm2.weight": "model-00002-of-00011.safetensors",
|
| 719 |
+
"vision_model.encoder.layers.34.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 720 |
+
"vision_model.encoder.layers.34.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 721 |
+
"vision_model.encoder.layers.34.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 722 |
+
"vision_model.encoder.layers.34.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 723 |
+
"vision_model.encoder.layers.34.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 724 |
+
"vision_model.encoder.layers.34.ls1": "model-00002-of-00011.safetensors",
|
| 725 |
+
"vision_model.encoder.layers.34.ls2": "model-00002-of-00011.safetensors",
|
| 726 |
+
"vision_model.encoder.layers.34.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 727 |
+
"vision_model.encoder.layers.34.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 728 |
+
"vision_model.encoder.layers.34.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 729 |
+
"vision_model.encoder.layers.34.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 730 |
+
"vision_model.encoder.layers.34.norm1.weight": "model-00002-of-00011.safetensors",
|
| 731 |
+
"vision_model.encoder.layers.34.norm2.weight": "model-00002-of-00011.safetensors",
|
| 732 |
+
"vision_model.encoder.layers.35.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 733 |
+
"vision_model.encoder.layers.35.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 734 |
+
"vision_model.encoder.layers.35.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 735 |
+
"vision_model.encoder.layers.35.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 736 |
+
"vision_model.encoder.layers.35.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 737 |
+
"vision_model.encoder.layers.35.ls1": "model-00002-of-00011.safetensors",
|
| 738 |
+
"vision_model.encoder.layers.35.ls2": "model-00002-of-00011.safetensors",
|
| 739 |
+
"vision_model.encoder.layers.35.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 740 |
+
"vision_model.encoder.layers.35.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 741 |
+
"vision_model.encoder.layers.35.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 742 |
+
"vision_model.encoder.layers.35.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 743 |
+
"vision_model.encoder.layers.35.norm1.weight": "model-00002-of-00011.safetensors",
|
| 744 |
+
"vision_model.encoder.layers.35.norm2.weight": "model-00002-of-00011.safetensors",
|
| 745 |
+
"vision_model.encoder.layers.36.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 746 |
+
"vision_model.encoder.layers.36.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 747 |
+
"vision_model.encoder.layers.36.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 748 |
+
"vision_model.encoder.layers.36.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 749 |
+
"vision_model.encoder.layers.36.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 750 |
+
"vision_model.encoder.layers.36.ls1": "model-00002-of-00011.safetensors",
|
| 751 |
+
"vision_model.encoder.layers.36.ls2": "model-00002-of-00011.safetensors",
|
| 752 |
+
"vision_model.encoder.layers.36.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 753 |
+
"vision_model.encoder.layers.36.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 754 |
+
"vision_model.encoder.layers.36.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 755 |
+
"vision_model.encoder.layers.36.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 756 |
+
"vision_model.encoder.layers.36.norm1.weight": "model-00002-of-00011.safetensors",
|
| 757 |
+
"vision_model.encoder.layers.36.norm2.weight": "model-00002-of-00011.safetensors",
|
| 758 |
+
"vision_model.encoder.layers.37.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 759 |
+
"vision_model.encoder.layers.37.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 760 |
+
"vision_model.encoder.layers.37.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 761 |
+
"vision_model.encoder.layers.37.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 762 |
+
"vision_model.encoder.layers.37.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 763 |
+
"vision_model.encoder.layers.37.ls1": "model-00002-of-00011.safetensors",
|
| 764 |
+
"vision_model.encoder.layers.37.ls2": "model-00002-of-00011.safetensors",
|
| 765 |
+
"vision_model.encoder.layers.37.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 766 |
+
"vision_model.encoder.layers.37.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 767 |
+
"vision_model.encoder.layers.37.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 768 |
+
"vision_model.encoder.layers.37.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 769 |
+
"vision_model.encoder.layers.37.norm1.weight": "model-00002-of-00011.safetensors",
|
| 770 |
+
"vision_model.encoder.layers.37.norm2.weight": "model-00002-of-00011.safetensors",
|
| 771 |
+
"vision_model.encoder.layers.38.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 772 |
+
"vision_model.encoder.layers.38.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 773 |
+
"vision_model.encoder.layers.38.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 774 |
+
"vision_model.encoder.layers.38.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 775 |
+
"vision_model.encoder.layers.38.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 776 |
+
"vision_model.encoder.layers.38.ls1": "model-00002-of-00011.safetensors",
|
| 777 |
+
"vision_model.encoder.layers.38.ls2": "model-00002-of-00011.safetensors",
|
| 778 |
+
"vision_model.encoder.layers.38.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 779 |
+
"vision_model.encoder.layers.38.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 780 |
+
"vision_model.encoder.layers.38.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 781 |
+
"vision_model.encoder.layers.38.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 782 |
+
"vision_model.encoder.layers.38.norm1.weight": "model-00002-of-00011.safetensors",
|
| 783 |
+
"vision_model.encoder.layers.38.norm2.weight": "model-00002-of-00011.safetensors",
|
| 784 |
+
"vision_model.encoder.layers.39.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 785 |
+
"vision_model.encoder.layers.39.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 786 |
+
"vision_model.encoder.layers.39.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 787 |
+
"vision_model.encoder.layers.39.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 788 |
+
"vision_model.encoder.layers.39.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 789 |
+
"vision_model.encoder.layers.39.ls1": "model-00002-of-00011.safetensors",
|
| 790 |
+
"vision_model.encoder.layers.39.ls2": "model-00002-of-00011.safetensors",
|
| 791 |
+
"vision_model.encoder.layers.39.mlp.fc1.bias": "model-00002-of-00011.safetensors",
|
| 792 |
+
"vision_model.encoder.layers.39.mlp.fc1.weight": "model-00002-of-00011.safetensors",
|
| 793 |
+
"vision_model.encoder.layers.39.mlp.fc2.bias": "model-00002-of-00011.safetensors",
|
| 794 |
+
"vision_model.encoder.layers.39.mlp.fc2.weight": "model-00002-of-00011.safetensors",
|
| 795 |
+
"vision_model.encoder.layers.39.norm1.weight": "model-00002-of-00011.safetensors",
|
| 796 |
+
"vision_model.encoder.layers.39.norm2.weight": "model-00002-of-00011.safetensors",
|
| 797 |
+
"vision_model.encoder.layers.4.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 798 |
+
"vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 799 |
+
"vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 800 |
+
"vision_model.encoder.layers.4.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 801 |
+
"vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 802 |
+
"vision_model.encoder.layers.4.ls1": "model-00001-of-00011.safetensors",
|
| 803 |
+
"vision_model.encoder.layers.4.ls2": "model-00001-of-00011.safetensors",
|
| 804 |
+
"vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 805 |
+
"vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 806 |
+
"vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 807 |
+
"vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 808 |
+
"vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00011.safetensors",
|
| 809 |
+
"vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00011.safetensors",
|
| 810 |
+
"vision_model.encoder.layers.40.attn.k_norm.weight": "model-00002-of-00011.safetensors",
|
| 811 |
+
"vision_model.encoder.layers.40.attn.proj.bias": "model-00002-of-00011.safetensors",
|
| 812 |
+
"vision_model.encoder.layers.40.attn.proj.weight": "model-00002-of-00011.safetensors",
|
| 813 |
+
"vision_model.encoder.layers.40.attn.q_norm.weight": "model-00002-of-00011.safetensors",
|
| 814 |
+
"vision_model.encoder.layers.40.attn.qkv.weight": "model-00002-of-00011.safetensors",
|
| 815 |
+
"vision_model.encoder.layers.40.ls1": "model-00002-of-00011.safetensors",
|
| 816 |
+
"vision_model.encoder.layers.40.ls2": "model-00002-of-00011.safetensors",
|
| 817 |
+
"vision_model.encoder.layers.40.mlp.fc1.bias": "model-00003-of-00011.safetensors",
|
| 818 |
+
"vision_model.encoder.layers.40.mlp.fc1.weight": "model-00003-of-00011.safetensors",
|
| 819 |
+
"vision_model.encoder.layers.40.mlp.fc2.bias": "model-00003-of-00011.safetensors",
|
| 820 |
+
"vision_model.encoder.layers.40.mlp.fc2.weight": "model-00003-of-00011.safetensors",
|
| 821 |
+
"vision_model.encoder.layers.40.norm1.weight": "model-00003-of-00011.safetensors",
|
| 822 |
+
"vision_model.encoder.layers.40.norm2.weight": "model-00003-of-00011.safetensors",
|
| 823 |
+
"vision_model.encoder.layers.41.attn.k_norm.weight": "model-00003-of-00011.safetensors",
|
| 824 |
+
"vision_model.encoder.layers.41.attn.proj.bias": "model-00003-of-00011.safetensors",
|
| 825 |
+
"vision_model.encoder.layers.41.attn.proj.weight": "model-00003-of-00011.safetensors",
|
| 826 |
+
"vision_model.encoder.layers.41.attn.q_norm.weight": "model-00003-of-00011.safetensors",
|
| 827 |
+
"vision_model.encoder.layers.41.attn.qkv.weight": "model-00003-of-00011.safetensors",
|
| 828 |
+
"vision_model.encoder.layers.41.ls1": "model-00003-of-00011.safetensors",
|
| 829 |
+
"vision_model.encoder.layers.41.ls2": "model-00003-of-00011.safetensors",
|
| 830 |
+
"vision_model.encoder.layers.41.mlp.fc1.bias": "model-00003-of-00011.safetensors",
|
| 831 |
+
"vision_model.encoder.layers.41.mlp.fc1.weight": "model-00003-of-00011.safetensors",
|
| 832 |
+
"vision_model.encoder.layers.41.mlp.fc2.bias": "model-00003-of-00011.safetensors",
|
| 833 |
+
"vision_model.encoder.layers.41.mlp.fc2.weight": "model-00003-of-00011.safetensors",
|
| 834 |
+
"vision_model.encoder.layers.41.norm1.weight": "model-00003-of-00011.safetensors",
|
| 835 |
+
"vision_model.encoder.layers.41.norm2.weight": "model-00003-of-00011.safetensors",
|
| 836 |
+
"vision_model.encoder.layers.42.attn.k_norm.weight": "model-00003-of-00011.safetensors",
|
| 837 |
+
"vision_model.encoder.layers.42.attn.proj.bias": "model-00003-of-00011.safetensors",
|
| 838 |
+
"vision_model.encoder.layers.42.attn.proj.weight": "model-00003-of-00011.safetensors",
|
| 839 |
+
"vision_model.encoder.layers.42.attn.q_norm.weight": "model-00003-of-00011.safetensors",
|
| 840 |
+
"vision_model.encoder.layers.42.attn.qkv.weight": "model-00003-of-00011.safetensors",
|
| 841 |
+
"vision_model.encoder.layers.42.ls1": "model-00003-of-00011.safetensors",
|
| 842 |
+
"vision_model.encoder.layers.42.ls2": "model-00003-of-00011.safetensors",
|
| 843 |
+
"vision_model.encoder.layers.42.mlp.fc1.bias": "model-00003-of-00011.safetensors",
|
| 844 |
+
"vision_model.encoder.layers.42.mlp.fc1.weight": "model-00003-of-00011.safetensors",
|
| 845 |
+
"vision_model.encoder.layers.42.mlp.fc2.bias": "model-00003-of-00011.safetensors",
|
| 846 |
+
"vision_model.encoder.layers.42.mlp.fc2.weight": "model-00003-of-00011.safetensors",
|
| 847 |
+
"vision_model.encoder.layers.42.norm1.weight": "model-00003-of-00011.safetensors",
|
| 848 |
+
"vision_model.encoder.layers.42.norm2.weight": "model-00003-of-00011.safetensors",
|
| 849 |
+
"vision_model.encoder.layers.43.attn.k_norm.weight": "model-00003-of-00011.safetensors",
|
| 850 |
+
"vision_model.encoder.layers.43.attn.proj.bias": "model-00003-of-00011.safetensors",
|
| 851 |
+
"vision_model.encoder.layers.43.attn.proj.weight": "model-00003-of-00011.safetensors",
|
| 852 |
+
"vision_model.encoder.layers.43.attn.q_norm.weight": "model-00003-of-00011.safetensors",
|
| 853 |
+
"vision_model.encoder.layers.43.attn.qkv.weight": "model-00003-of-00011.safetensors",
|
| 854 |
+
"vision_model.encoder.layers.43.ls1": "model-00003-of-00011.safetensors",
|
| 855 |
+
"vision_model.encoder.layers.43.ls2": "model-00003-of-00011.safetensors",
|
| 856 |
+
"vision_model.encoder.layers.43.mlp.fc1.bias": "model-00003-of-00011.safetensors",
|
| 857 |
+
"vision_model.encoder.layers.43.mlp.fc1.weight": "model-00003-of-00011.safetensors",
|
| 858 |
+
"vision_model.encoder.layers.43.mlp.fc2.bias": "model-00003-of-00011.safetensors",
|
| 859 |
+
"vision_model.encoder.layers.43.mlp.fc2.weight": "model-00003-of-00011.safetensors",
|
| 860 |
+
"vision_model.encoder.layers.43.norm1.weight": "model-00003-of-00011.safetensors",
|
| 861 |
+
"vision_model.encoder.layers.43.norm2.weight": "model-00003-of-00011.safetensors",
|
| 862 |
+
"vision_model.encoder.layers.44.attn.k_norm.weight": "model-00003-of-00011.safetensors",
|
| 863 |
+
"vision_model.encoder.layers.44.attn.proj.bias": "model-00003-of-00011.safetensors",
|
| 864 |
+
"vision_model.encoder.layers.44.attn.proj.weight": "model-00003-of-00011.safetensors",
|
| 865 |
+
"vision_model.encoder.layers.44.attn.q_norm.weight": "model-00003-of-00011.safetensors",
|
| 866 |
+
"vision_model.encoder.layers.44.attn.qkv.weight": "model-00003-of-00011.safetensors",
|
| 867 |
+
"vision_model.encoder.layers.44.ls1": "model-00003-of-00011.safetensors",
|
| 868 |
+
"vision_model.encoder.layers.44.ls2": "model-00003-of-00011.safetensors",
|
| 869 |
+
"vision_model.encoder.layers.44.mlp.fc1.bias": "model-00003-of-00011.safetensors",
|
| 870 |
+
"vision_model.encoder.layers.44.mlp.fc1.weight": "model-00003-of-00011.safetensors",
|
| 871 |
+
"vision_model.encoder.layers.44.mlp.fc2.bias": "model-00003-of-00011.safetensors",
|
| 872 |
+
"vision_model.encoder.layers.44.mlp.fc2.weight": "model-00003-of-00011.safetensors",
|
| 873 |
+
"vision_model.encoder.layers.44.norm1.weight": "model-00003-of-00011.safetensors",
|
| 874 |
+
"vision_model.encoder.layers.44.norm2.weight": "model-00003-of-00011.safetensors",
|
| 875 |
+
"vision_model.encoder.layers.5.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 876 |
+
"vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 877 |
+
"vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 878 |
+
"vision_model.encoder.layers.5.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 879 |
+
"vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 880 |
+
"vision_model.encoder.layers.5.ls1": "model-00001-of-00011.safetensors",
|
| 881 |
+
"vision_model.encoder.layers.5.ls2": "model-00001-of-00011.safetensors",
|
| 882 |
+
"vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 883 |
+
"vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 884 |
+
"vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 885 |
+
"vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 886 |
+
"vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00011.safetensors",
|
| 887 |
+
"vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00011.safetensors",
|
| 888 |
+
"vision_model.encoder.layers.6.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 889 |
+
"vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 890 |
+
"vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 891 |
+
"vision_model.encoder.layers.6.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 892 |
+
"vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 893 |
+
"vision_model.encoder.layers.6.ls1": "model-00001-of-00011.safetensors",
|
| 894 |
+
"vision_model.encoder.layers.6.ls2": "model-00001-of-00011.safetensors",
|
| 895 |
+
"vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 896 |
+
"vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 897 |
+
"vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 898 |
+
"vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 899 |
+
"vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00011.safetensors",
|
| 900 |
+
"vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00011.safetensors",
|
| 901 |
+
"vision_model.encoder.layers.7.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 902 |
+
"vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 903 |
+
"vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 904 |
+
"vision_model.encoder.layers.7.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 905 |
+
"vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 906 |
+
"vision_model.encoder.layers.7.ls1": "model-00001-of-00011.safetensors",
|
| 907 |
+
"vision_model.encoder.layers.7.ls2": "model-00001-of-00011.safetensors",
|
| 908 |
+
"vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 909 |
+
"vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 910 |
+
"vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 911 |
+
"vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 912 |
+
"vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00011.safetensors",
|
| 913 |
+
"vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00011.safetensors",
|
| 914 |
+
"vision_model.encoder.layers.8.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 915 |
+
"vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 916 |
+
"vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 917 |
+
"vision_model.encoder.layers.8.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 918 |
+
"vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 919 |
+
"vision_model.encoder.layers.8.ls1": "model-00001-of-00011.safetensors",
|
| 920 |
+
"vision_model.encoder.layers.8.ls2": "model-00001-of-00011.safetensors",
|
| 921 |
+
"vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 922 |
+
"vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 923 |
+
"vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 924 |
+
"vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 925 |
+
"vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00011.safetensors",
|
| 926 |
+
"vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00011.safetensors",
|
| 927 |
+
"vision_model.encoder.layers.9.attn.k_norm.weight": "model-00001-of-00011.safetensors",
|
| 928 |
+
"vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00011.safetensors",
|
| 929 |
+
"vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00011.safetensors",
|
| 930 |
+
"vision_model.encoder.layers.9.attn.q_norm.weight": "model-00001-of-00011.safetensors",
|
| 931 |
+
"vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00011.safetensors",
|
| 932 |
+
"vision_model.encoder.layers.9.ls1": "model-00001-of-00011.safetensors",
|
| 933 |
+
"vision_model.encoder.layers.9.ls2": "model-00001-of-00011.safetensors",
|
| 934 |
+
"vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00011.safetensors",
|
| 935 |
+
"vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00011.safetensors",
|
| 936 |
+
"vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00011.safetensors",
|
| 937 |
+
"vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00011.safetensors",
|
| 938 |
+
"vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00011.safetensors",
|
| 939 |
+
"vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00011.safetensors"
|
| 940 |
+
}
|
| 941 |
+
}
|
modeling_intern_vit.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
from typing import Optional, Tuple, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from timm.models.layers import DropPath
|
| 13 |
+
from torch import nn
|
| 14 |
+
from transformers.activations import ACT2FN
|
| 15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 16 |
+
BaseModelOutputWithPooling)
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
try: # v1
|
| 24 |
+
from flash_attn.flash_attn_interface import \
|
| 25 |
+
flash_attn_unpadded_qkvpacked_func
|
| 26 |
+
except: # v2
|
| 27 |
+
from flash_attn.flash_attn_interface import \
|
| 28 |
+
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
| 29 |
+
|
| 30 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 31 |
+
|
| 32 |
+
has_flash_attn = True
|
| 33 |
+
except:
|
| 34 |
+
print('FlashAttention is not installed.')
|
| 35 |
+
has_flash_attn = False
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class FlashAttention(nn.Module):
|
| 41 |
+
"""Implement the scaled dot product attention with softmax.
|
| 42 |
+
Arguments
|
| 43 |
+
---------
|
| 44 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 45 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 46 |
+
runtime)
|
| 47 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 48 |
+
(default: 0.0)
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.softmax_scale = softmax_scale
|
| 54 |
+
self.dropout_p = attention_dropout
|
| 55 |
+
|
| 56 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
| 57 |
+
max_s=None, need_weights=False):
|
| 58 |
+
"""Implements the multihead softmax attention.
|
| 59 |
+
Arguments
|
| 60 |
+
---------
|
| 61 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
| 62 |
+
if unpadded: (nnz, 3, h, d)
|
| 63 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
| 64 |
+
"""
|
| 65 |
+
assert not need_weights
|
| 66 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
| 67 |
+
assert qkv.is_cuda
|
| 68 |
+
|
| 69 |
+
if cu_seqlens is None:
|
| 70 |
+
batch_size = qkv.shape[0]
|
| 71 |
+
seqlen = qkv.shape[1]
|
| 72 |
+
if key_padding_mask is None:
|
| 73 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
| 74 |
+
max_s = seqlen
|
| 75 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 76 |
+
device=qkv.device)
|
| 77 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 78 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 79 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 80 |
+
)
|
| 81 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
| 82 |
+
else:
|
| 83 |
+
nheads = qkv.shape[-2]
|
| 84 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 85 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 86 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 87 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
| 88 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 89 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 90 |
+
)
|
| 91 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
| 92 |
+
indices, batch_size, seqlen),
|
| 93 |
+
'b s (h d) -> b s h d', h=nheads)
|
| 94 |
+
else:
|
| 95 |
+
assert max_s is not None
|
| 96 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 97 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 98 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
return output, None
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class InternRMSNorm(nn.Module):
|
| 105 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 108 |
+
self.variance_epsilon = eps
|
| 109 |
+
|
| 110 |
+
def forward(self, hidden_states):
|
| 111 |
+
input_dtype = hidden_states.dtype
|
| 112 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 113 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 114 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 115 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
try:
|
| 119 |
+
from apex.normalization import FusedRMSNorm
|
| 120 |
+
|
| 121 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
| 122 |
+
|
| 123 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
| 124 |
+
except ImportError:
|
| 125 |
+
# using the normal InternRMSNorm
|
| 126 |
+
pass
|
| 127 |
+
except Exception:
|
| 128 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
| 129 |
+
pass
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
NORM2FN = {
|
| 133 |
+
'rms_norm': InternRMSNorm,
|
| 134 |
+
'layer_norm': nn.LayerNorm,
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class InternVisionEmbeddings(nn.Module):
|
| 139 |
+
def __init__(self, config: InternVisionConfig):
|
| 140 |
+
super().__init__()
|
| 141 |
+
self.config = config
|
| 142 |
+
self.embed_dim = config.hidden_size
|
| 143 |
+
self.image_size = config.image_size
|
| 144 |
+
self.patch_size = config.patch_size
|
| 145 |
+
|
| 146 |
+
self.class_embedding = nn.Parameter(
|
| 147 |
+
torch.randn(1, 1, self.embed_dim),
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
self.patch_embedding = nn.Conv2d(
|
| 151 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 155 |
+
self.num_positions = self.num_patches + 1
|
| 156 |
+
|
| 157 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
| 158 |
+
|
| 159 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
| 160 |
+
target_dtype = pos_embed.dtype
|
| 161 |
+
pos_embed = pos_embed.float().reshape(
|
| 162 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
| 163 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
| 164 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
| 165 |
+
return pos_embed
|
| 166 |
+
|
| 167 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 168 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 169 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 170 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 171 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 172 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
| 173 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 174 |
+
position_embedding = torch.cat([
|
| 175 |
+
self.position_embedding[:, :1, :],
|
| 176 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
| 177 |
+
], dim=1)
|
| 178 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
| 179 |
+
return embeddings
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class InternAttention(nn.Module):
|
| 183 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 184 |
+
|
| 185 |
+
def __init__(self, config: InternVisionConfig):
|
| 186 |
+
super().__init__()
|
| 187 |
+
self.config = config
|
| 188 |
+
self.embed_dim = config.hidden_size
|
| 189 |
+
self.num_heads = config.num_attention_heads
|
| 190 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 191 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 192 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 193 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 194 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 195 |
+
raise ValueError(
|
| 196 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 197 |
+
f' {self.num_heads}).'
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
self.scale = self.head_dim ** -0.5
|
| 201 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 202 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 203 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 204 |
+
|
| 205 |
+
self.qk_normalization = config.qk_normalization
|
| 206 |
+
|
| 207 |
+
if self.qk_normalization:
|
| 208 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 209 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 210 |
+
|
| 211 |
+
if self.use_flash_attn:
|
| 212 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 213 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 214 |
+
|
| 215 |
+
def _naive_attn(self, x):
|
| 216 |
+
B, N, C = x.shape
|
| 217 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 218 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 219 |
+
|
| 220 |
+
if self.qk_normalization:
|
| 221 |
+
B_, H_, N_, D_ = q.shape
|
| 222 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 223 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 224 |
+
|
| 225 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 226 |
+
attn = attn.softmax(dim=-1)
|
| 227 |
+
attn = self.attn_drop(attn)
|
| 228 |
+
|
| 229 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 230 |
+
x = self.proj(x)
|
| 231 |
+
x = self.proj_drop(x)
|
| 232 |
+
return x
|
| 233 |
+
|
| 234 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 235 |
+
qkv = self.qkv(x)
|
| 236 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 237 |
+
|
| 238 |
+
if self.qk_normalization:
|
| 239 |
+
q, k, v = qkv.unbind(2)
|
| 240 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 241 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 242 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 243 |
+
|
| 244 |
+
context, _ = self.inner_attn(
|
| 245 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 246 |
+
)
|
| 247 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 248 |
+
outs = self.proj_drop(outs)
|
| 249 |
+
return outs
|
| 250 |
+
|
| 251 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 252 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 253 |
+
return x
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class InternMLP(nn.Module):
|
| 257 |
+
def __init__(self, config: InternVisionConfig):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.config = config
|
| 260 |
+
self.act = ACT2FN[config.hidden_act]
|
| 261 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 262 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 263 |
+
|
| 264 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 265 |
+
hidden_states = self.fc1(hidden_states)
|
| 266 |
+
hidden_states = self.act(hidden_states)
|
| 267 |
+
hidden_states = self.fc2(hidden_states)
|
| 268 |
+
return hidden_states
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class InternVisionEncoderLayer(nn.Module):
|
| 272 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
| 273 |
+
super().__init__()
|
| 274 |
+
self.embed_dim = config.hidden_size
|
| 275 |
+
self.intermediate_size = config.intermediate_size
|
| 276 |
+
self.norm_type = config.norm_type
|
| 277 |
+
|
| 278 |
+
self.attn = InternAttention(config)
|
| 279 |
+
self.mlp = InternMLP(config)
|
| 280 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 281 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 282 |
+
|
| 283 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 284 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 285 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 286 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 287 |
+
|
| 288 |
+
def forward(
|
| 289 |
+
self,
|
| 290 |
+
hidden_states: torch.Tensor,
|
| 291 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 292 |
+
"""
|
| 293 |
+
Args:
|
| 294 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 295 |
+
"""
|
| 296 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
| 297 |
+
|
| 298 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
| 299 |
+
|
| 300 |
+
return hidden_states
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class InternVisionEncoder(nn.Module):
|
| 304 |
+
"""
|
| 305 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 306 |
+
[`InternEncoderLayer`].
|
| 307 |
+
|
| 308 |
+
Args:
|
| 309 |
+
config (`InternConfig`):
|
| 310 |
+
The corresponding vision configuration for the `InternEncoder`.
|
| 311 |
+
"""
|
| 312 |
+
|
| 313 |
+
def __init__(self, config: InternVisionConfig):
|
| 314 |
+
super().__init__()
|
| 315 |
+
self.config = config
|
| 316 |
+
# stochastic depth decay rule
|
| 317 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 318 |
+
self.layers = nn.ModuleList([
|
| 319 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 320 |
+
self.gradient_checkpointing = True
|
| 321 |
+
|
| 322 |
+
def forward(
|
| 323 |
+
self,
|
| 324 |
+
inputs_embeds,
|
| 325 |
+
output_hidden_states: Optional[bool] = None,
|
| 326 |
+
return_dict: Optional[bool] = None,
|
| 327 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 328 |
+
r"""
|
| 329 |
+
Args:
|
| 330 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 331 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 332 |
+
output_hidden_states (`bool`, *optional*):
|
| 333 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 334 |
+
for more detail.
|
| 335 |
+
return_dict (`bool`, *optional*):
|
| 336 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 337 |
+
"""
|
| 338 |
+
output_hidden_states = (
|
| 339 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 340 |
+
)
|
| 341 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 342 |
+
|
| 343 |
+
encoder_states = () if output_hidden_states else None
|
| 344 |
+
hidden_states = inputs_embeds
|
| 345 |
+
|
| 346 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 347 |
+
if output_hidden_states:
|
| 348 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 349 |
+
if self.gradient_checkpointing and self.training:
|
| 350 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 351 |
+
encoder_layer,
|
| 352 |
+
hidden_states)
|
| 353 |
+
else:
|
| 354 |
+
layer_outputs = encoder_layer(
|
| 355 |
+
hidden_states,
|
| 356 |
+
)
|
| 357 |
+
hidden_states = layer_outputs
|
| 358 |
+
|
| 359 |
+
if output_hidden_states:
|
| 360 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 361 |
+
|
| 362 |
+
if not return_dict:
|
| 363 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 364 |
+
return BaseModelOutput(
|
| 365 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class InternVisionModel(PreTrainedModel):
|
| 370 |
+
main_input_name = 'pixel_values'
|
| 371 |
+
_supports_flash_attn_2 = True
|
| 372 |
+
config_class = InternVisionConfig
|
| 373 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
| 374 |
+
|
| 375 |
+
def __init__(self, config: InternVisionConfig):
|
| 376 |
+
super().__init__(config)
|
| 377 |
+
self.config = config
|
| 378 |
+
|
| 379 |
+
self.embeddings = InternVisionEmbeddings(config)
|
| 380 |
+
self.encoder = InternVisionEncoder(config)
|
| 381 |
+
|
| 382 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
| 383 |
+
pos_emb = self.embeddings.position_embedding
|
| 384 |
+
_, num_positions, embed_dim = pos_emb.shape
|
| 385 |
+
cls_emb = pos_emb[:, :1, :]
|
| 386 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
| 387 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
| 388 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
| 389 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
| 390 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
| 391 |
+
self.embeddings.image_size = new_size
|
| 392 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
| 393 |
+
|
| 394 |
+
def get_input_embeddings(self):
|
| 395 |
+
return self.embeddings
|
| 396 |
+
|
| 397 |
+
def forward(
|
| 398 |
+
self,
|
| 399 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 400 |
+
output_hidden_states: Optional[bool] = None,
|
| 401 |
+
return_dict: Optional[bool] = None,
|
| 402 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 403 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 404 |
+
output_hidden_states = (
|
| 405 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 406 |
+
)
|
| 407 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 408 |
+
|
| 409 |
+
if pixel_values is None and pixel_embeds is None:
|
| 410 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 411 |
+
|
| 412 |
+
if pixel_embeds is not None:
|
| 413 |
+
hidden_states = pixel_embeds
|
| 414 |
+
else:
|
| 415 |
+
if len(pixel_values.shape) == 4:
|
| 416 |
+
hidden_states = self.embeddings(pixel_values)
|
| 417 |
+
else:
|
| 418 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 419 |
+
encoder_outputs = self.encoder(
|
| 420 |
+
inputs_embeds=hidden_states,
|
| 421 |
+
output_hidden_states=output_hidden_states,
|
| 422 |
+
return_dict=return_dict,
|
| 423 |
+
)
|
| 424 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 425 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 426 |
+
|
| 427 |
+
if not return_dict:
|
| 428 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 429 |
+
|
| 430 |
+
return BaseModelOutputWithPooling(
|
| 431 |
+
last_hidden_state=last_hidden_state,
|
| 432 |
+
pooler_output=pooled_output,
|
| 433 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 434 |
+
attentions=encoder_outputs.attentions,
|
| 435 |
+
)
|
modeling_internlm2.py
ADDED
|
@@ -0,0 +1,1415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" PyTorch InternLM2 model."""
|
| 17 |
+
import math
|
| 18 |
+
import queue
|
| 19 |
+
import threading
|
| 20 |
+
import warnings
|
| 21 |
+
from typing import List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
from torch import nn
|
| 28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 31 |
+
CausalLMOutputWithPast,
|
| 32 |
+
SequenceClassifierOutputWithPast)
|
| 33 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
+
from transformers.utils import (add_start_docstrings,
|
| 35 |
+
add_start_docstrings_to_model_forward, logging,
|
| 36 |
+
replace_return_docstrings)
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
from transformers.generation.streamers import BaseStreamer
|
| 40 |
+
except: # noqa # pylint: disable=bare-except
|
| 41 |
+
BaseStreamer = None
|
| 42 |
+
|
| 43 |
+
from .configuration_internlm2 import InternLM2Config
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
| 48 |
+
|
| 49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
| 50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
| 51 |
+
try:
|
| 52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
| 54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
| 55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 57 |
+
|
| 58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 60 |
+
has_flash_attn = True
|
| 61 |
+
except:
|
| 62 |
+
has_flash_attn = False
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _import_flash_attn():
|
| 66 |
+
global flash_attn_func, flash_attn_varlen_func
|
| 67 |
+
global pad_input, index_first_axis, unpad_input
|
| 68 |
+
try:
|
| 69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 70 |
+
from flash_attn import \
|
| 71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
| 72 |
+
from flash_attn.bert_padding import \
|
| 73 |
+
index_first_axis as _index_first_axis
|
| 74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 78 |
+
except ImportError:
|
| 79 |
+
raise ImportError('flash_attn is not installed.')
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 83 |
+
def _get_unpad_data(attention_mask):
|
| 84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 88 |
+
return (
|
| 89 |
+
indices,
|
| 90 |
+
cu_seqlens,
|
| 91 |
+
max_seqlen_in_batch,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 96 |
+
def _make_causal_mask(
|
| 97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 98 |
+
):
|
| 99 |
+
"""
|
| 100 |
+
Make causal mask used for bi-directional self-attention.
|
| 101 |
+
"""
|
| 102 |
+
bsz, tgt_len = input_ids_shape
|
| 103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
| 104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 106 |
+
mask = mask.to(dtype)
|
| 107 |
+
|
| 108 |
+
if past_key_values_length > 0:
|
| 109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 115 |
+
"""
|
| 116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 117 |
+
"""
|
| 118 |
+
bsz, src_len = mask.size()
|
| 119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 120 |
+
|
| 121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 122 |
+
|
| 123 |
+
inverted_mask = 1.0 - expanded_mask
|
| 124 |
+
|
| 125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
| 129 |
+
class InternLM2RMSNorm(nn.Module):
|
| 130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 131 |
+
"""
|
| 132 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
| 133 |
+
"""
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 136 |
+
self.variance_epsilon = eps
|
| 137 |
+
|
| 138 |
+
def forward(self, hidden_states):
|
| 139 |
+
input_dtype = hidden_states.dtype
|
| 140 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 143 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
| 147 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
| 148 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 149 |
+
super().__init__()
|
| 150 |
+
|
| 151 |
+
self.dim = dim
|
| 152 |
+
self.max_position_embeddings = max_position_embeddings
|
| 153 |
+
self.base = base
|
| 154 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 155 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 156 |
+
|
| 157 |
+
# Build here to make `torch.jit.trace` work.
|
| 158 |
+
self._set_cos_sin_cache(
|
| 159 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 163 |
+
self.max_seq_len_cached = seq_len
|
| 164 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 165 |
+
|
| 166 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 167 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 168 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 169 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 170 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 171 |
+
|
| 172 |
+
def forward(self, x, seq_len=None):
|
| 173 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 174 |
+
if seq_len > self.max_seq_len_cached:
|
| 175 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
| 176 |
+
|
| 177 |
+
return (
|
| 178 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 179 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
| 184 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 185 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 186 |
+
|
| 187 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 188 |
+
self.scaling_factor = scaling_factor
|
| 189 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 190 |
+
|
| 191 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 192 |
+
self.max_seq_len_cached = seq_len
|
| 193 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 194 |
+
t = t / self.scaling_factor
|
| 195 |
+
|
| 196 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 197 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 198 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 199 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 200 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
| 204 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 205 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
| 206 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 210 |
+
self.scaling_factor = scaling_factor
|
| 211 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 212 |
+
|
| 213 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 214 |
+
self.max_seq_len_cached = seq_len
|
| 215 |
+
|
| 216 |
+
if seq_len > self.max_position_embeddings:
|
| 217 |
+
base = self.base * (
|
| 218 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 219 |
+
) ** (self.dim / (self.dim - 2))
|
| 220 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 221 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 222 |
+
|
| 223 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 224 |
+
|
| 225 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 226 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 227 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 228 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 229 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
| 233 |
+
def rotate_half(x):
|
| 234 |
+
"""Rotates half the hidden dims of the input."""
|
| 235 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 236 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 237 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
| 241 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
| 242 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
| 243 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
| 244 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
| 245 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 246 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 247 |
+
return q_embed, k_embed
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class InternLM2MLP(nn.Module):
|
| 251 |
+
def __init__(self, config):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.config = config
|
| 254 |
+
self.hidden_size = config.hidden_size
|
| 255 |
+
self.intermediate_size = config.intermediate_size
|
| 256 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 257 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 258 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 259 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 260 |
+
|
| 261 |
+
def forward(self, x):
|
| 262 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
| 263 |
+
|
| 264 |
+
return down_proj
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
| 268 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 269 |
+
"""
|
| 270 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 271 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 272 |
+
"""
|
| 273 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 274 |
+
if n_rep == 1:
|
| 275 |
+
return hidden_states
|
| 276 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 277 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
| 281 |
+
class InternLM2Attention(nn.Module):
|
| 282 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 283 |
+
|
| 284 |
+
def __init__(self, config: InternLM2Config):
|
| 285 |
+
super().__init__()
|
| 286 |
+
self.config = config
|
| 287 |
+
self.hidden_size = config.hidden_size
|
| 288 |
+
self.num_heads = config.num_attention_heads
|
| 289 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 290 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 291 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 292 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 293 |
+
self.is_causal = True
|
| 294 |
+
|
| 295 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 296 |
+
raise ValueError(
|
| 297 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
| 298 |
+
f' and `num_heads`: {self.num_heads}).'
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
self.wqkv = nn.Linear(
|
| 302 |
+
self.hidden_size,
|
| 303 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 304 |
+
bias=config.bias,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
| 308 |
+
self._init_rope()
|
| 309 |
+
|
| 310 |
+
def _init_rope(self):
|
| 311 |
+
if self.config.rope_scaling is None:
|
| 312 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
| 313 |
+
self.head_dim,
|
| 314 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 315 |
+
base=self.config.rope_theta,
|
| 316 |
+
)
|
| 317 |
+
else:
|
| 318 |
+
scaling_type = self.config.rope_scaling['type']
|
| 319 |
+
scaling_factor = self.config.rope_scaling['factor']
|
| 320 |
+
if scaling_type == 'dynamic':
|
| 321 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
| 322 |
+
self.head_dim,
|
| 323 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 324 |
+
base=self.config.rope_theta,
|
| 325 |
+
scaling_factor=scaling_factor,
|
| 326 |
+
)
|
| 327 |
+
elif scaling_type == 'linear':
|
| 328 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
| 329 |
+
self.head_dim,
|
| 330 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 331 |
+
base=self.config.rope_theta,
|
| 332 |
+
scaling_factor=scaling_factor,
|
| 333 |
+
)
|
| 334 |
+
else:
|
| 335 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
| 336 |
+
return self.rotary_emb
|
| 337 |
+
|
| 338 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 339 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 340 |
+
|
| 341 |
+
def forward(
|
| 342 |
+
self,
|
| 343 |
+
hidden_states: torch.Tensor,
|
| 344 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 345 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 346 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 347 |
+
output_attentions: bool = False,
|
| 348 |
+
use_cache: bool = False,
|
| 349 |
+
**kwargs,
|
| 350 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 351 |
+
if 'padding_mask' in kwargs:
|
| 352 |
+
warnings.warn(
|
| 353 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 354 |
+
'Please make sure use `attention_mask` instead.`'
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
bsz, q_len, _ = hidden_states.size()
|
| 358 |
+
|
| 359 |
+
qkv_states = self.wqkv(hidden_states)
|
| 360 |
+
|
| 361 |
+
qkv_states = rearrange(
|
| 362 |
+
qkv_states,
|
| 363 |
+
'b q (h gs d) -> b q h gs d',
|
| 364 |
+
gs=2 + self.num_key_value_groups,
|
| 365 |
+
d=self.head_dim,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 369 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 370 |
+
key_states = qkv_states[..., -2, :]
|
| 371 |
+
value_states = qkv_states[..., -1, :]
|
| 372 |
+
|
| 373 |
+
query_states = query_states.transpose(1, 2)
|
| 374 |
+
key_states = key_states.transpose(1, 2)
|
| 375 |
+
value_states = value_states.transpose(1, 2)
|
| 376 |
+
|
| 377 |
+
kv_seq_len = key_states.shape[-2]
|
| 378 |
+
if past_key_value is not None:
|
| 379 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 380 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 381 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 382 |
+
|
| 383 |
+
if past_key_value is not None:
|
| 384 |
+
# reuse k, v, self_attention
|
| 385 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 386 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 387 |
+
|
| 388 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 389 |
+
|
| 390 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 391 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 392 |
+
|
| 393 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 394 |
+
|
| 395 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 396 |
+
raise ValueError(
|
| 397 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
| 398 |
+
f' {attn_weights.size()}'
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
if attention_mask is not None:
|
| 402 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 403 |
+
raise ValueError(
|
| 404 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
| 405 |
+
)
|
| 406 |
+
attn_weights = attn_weights + attention_mask
|
| 407 |
+
|
| 408 |
+
# upcast attention to fp32
|
| 409 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 410 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 411 |
+
|
| 412 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 413 |
+
raise ValueError(
|
| 414 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
| 415 |
+
f' {attn_output.size()}'
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 419 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 420 |
+
|
| 421 |
+
attn_output = self.wo(attn_output)
|
| 422 |
+
|
| 423 |
+
if not output_attentions:
|
| 424 |
+
attn_weights = None
|
| 425 |
+
|
| 426 |
+
return attn_output, attn_weights, past_key_value
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
| 430 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
| 431 |
+
"""
|
| 432 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
| 433 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 434 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 435 |
+
"""
|
| 436 |
+
|
| 437 |
+
def forward(
|
| 438 |
+
self,
|
| 439 |
+
hidden_states: torch.Tensor,
|
| 440 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 441 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 442 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 443 |
+
output_attentions: bool = False,
|
| 444 |
+
use_cache: bool = False,
|
| 445 |
+
**kwargs,
|
| 446 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 447 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
| 448 |
+
if 'padding_mask' in kwargs:
|
| 449 |
+
warnings.warn(
|
| 450 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 451 |
+
'Please make sure use `attention_mask` instead.`'
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
# overwrite attention_mask with padding_mask
|
| 455 |
+
attention_mask = kwargs.pop('padding_mask')
|
| 456 |
+
|
| 457 |
+
output_attentions = False
|
| 458 |
+
|
| 459 |
+
bsz, q_len, _ = hidden_states.size()
|
| 460 |
+
|
| 461 |
+
qkv_states = self.wqkv(hidden_states)
|
| 462 |
+
|
| 463 |
+
qkv_states = rearrange(
|
| 464 |
+
qkv_states,
|
| 465 |
+
'b q (h gs d) -> b q h gs d',
|
| 466 |
+
gs=2 + self.num_key_value_groups,
|
| 467 |
+
d=self.head_dim,
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 471 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 472 |
+
key_states = qkv_states[..., -2, :]
|
| 473 |
+
value_states = qkv_states[..., -1, :]
|
| 474 |
+
|
| 475 |
+
query_states = query_states.transpose(1, 2)
|
| 476 |
+
key_states = key_states.transpose(1, 2)
|
| 477 |
+
value_states = value_states.transpose(1, 2)
|
| 478 |
+
|
| 479 |
+
kv_seq_len = key_states.shape[-2]
|
| 480 |
+
if past_key_value is not None:
|
| 481 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 482 |
+
|
| 483 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 484 |
+
|
| 485 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 486 |
+
|
| 487 |
+
if past_key_value is not None:
|
| 488 |
+
# reuse k, v, self_attention
|
| 489 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 490 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 491 |
+
|
| 492 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 493 |
+
|
| 494 |
+
query_states = query_states.transpose(1, 2)
|
| 495 |
+
key_states = key_states.transpose(1, 2)
|
| 496 |
+
value_states = value_states.transpose(1, 2)
|
| 497 |
+
|
| 498 |
+
attn_output = self._flash_attention_forward(
|
| 499 |
+
query_states, key_states, value_states, attention_mask, q_len
|
| 500 |
+
)
|
| 501 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 502 |
+
attn_output = self.wo(attn_output)
|
| 503 |
+
|
| 504 |
+
if not output_attentions:
|
| 505 |
+
attn_weights = None
|
| 506 |
+
|
| 507 |
+
return attn_output, attn_weights, past_key_value
|
| 508 |
+
|
| 509 |
+
def _flash_attention_forward(
|
| 510 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 511 |
+
):
|
| 512 |
+
"""
|
| 513 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 514 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 515 |
+
|
| 516 |
+
Args:
|
| 517 |
+
query_states (`torch.Tensor`):
|
| 518 |
+
Input query states to be passed to Flash Attention API
|
| 519 |
+
key_states (`torch.Tensor`):
|
| 520 |
+
Input key states to be passed to Flash Attention API
|
| 521 |
+
value_states (`torch.Tensor`):
|
| 522 |
+
Input value states to be passed to Flash Attention API
|
| 523 |
+
attention_mask (`torch.Tensor`):
|
| 524 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 525 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 526 |
+
dropout (`int`, *optional*):
|
| 527 |
+
Attention dropout
|
| 528 |
+
softmax_scale (`float`, *optional*):
|
| 529 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 530 |
+
"""
|
| 531 |
+
# Contains at least one padding token in the sequence
|
| 532 |
+
causal = self.is_causal and query_length != 1
|
| 533 |
+
if attention_mask is not None:
|
| 534 |
+
batch_size = query_states.shape[0]
|
| 535 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
| 536 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 540 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 541 |
+
|
| 542 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 543 |
+
query_states,
|
| 544 |
+
key_states,
|
| 545 |
+
value_states,
|
| 546 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 547 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 548 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 549 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 550 |
+
dropout_p=dropout,
|
| 551 |
+
softmax_scale=softmax_scale,
|
| 552 |
+
causal=causal,
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 556 |
+
else:
|
| 557 |
+
attn_output = flash_attn_func(
|
| 558 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
return attn_output
|
| 562 |
+
|
| 563 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 564 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 565 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 566 |
+
|
| 567 |
+
key_layer = index_first_axis(
|
| 568 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 569 |
+
)
|
| 570 |
+
value_layer = index_first_axis(
|
| 571 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
if query_length == kv_seq_len:
|
| 575 |
+
query_layer = index_first_axis(
|
| 576 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 577 |
+
)
|
| 578 |
+
cu_seqlens_q = cu_seqlens_k
|
| 579 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 580 |
+
indices_q = indices_k
|
| 581 |
+
elif query_length == 1:
|
| 582 |
+
max_seqlen_in_batch_q = 1
|
| 583 |
+
cu_seqlens_q = torch.arange(
|
| 584 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 585 |
+
) # There is a memcpy here, that is very bad.
|
| 586 |
+
indices_q = cu_seqlens_q[:-1]
|
| 587 |
+
query_layer = query_layer.squeeze(1)
|
| 588 |
+
else:
|
| 589 |
+
# The -q_len: slice assumes left padding.
|
| 590 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 591 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 592 |
+
|
| 593 |
+
return (
|
| 594 |
+
query_layer,
|
| 595 |
+
key_layer,
|
| 596 |
+
value_layer,
|
| 597 |
+
indices_q.to(torch.int64),
|
| 598 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 599 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
| 604 |
+
'eager': InternLM2Attention,
|
| 605 |
+
'flash_attention_2': InternLM2FlashAttention2,
|
| 606 |
+
}
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
| 610 |
+
class InternLM2DecoderLayer(nn.Module):
|
| 611 |
+
def __init__(self, config: InternLM2Config):
|
| 612 |
+
super().__init__()
|
| 613 |
+
self.hidden_size = config.hidden_size
|
| 614 |
+
|
| 615 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
| 616 |
+
|
| 617 |
+
self.feed_forward = InternLM2MLP(config)
|
| 618 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 619 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 620 |
+
|
| 621 |
+
def forward(
|
| 622 |
+
self,
|
| 623 |
+
hidden_states: torch.Tensor,
|
| 624 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 625 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 626 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 627 |
+
output_attentions: Optional[bool] = False,
|
| 628 |
+
use_cache: Optional[bool] = False,
|
| 629 |
+
**kwargs,
|
| 630 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 631 |
+
"""
|
| 632 |
+
Args:
|
| 633 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 634 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 635 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 636 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 637 |
+
output_attentions (`bool`, *optional*):
|
| 638 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 639 |
+
returned tensors for more detail.
|
| 640 |
+
use_cache (`bool`, *optional*):
|
| 641 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 642 |
+
(see `past_key_values`).
|
| 643 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 644 |
+
"""
|
| 645 |
+
if 'padding_mask' in kwargs:
|
| 646 |
+
warnings.warn(
|
| 647 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 648 |
+
'Please make sure use `attention_mask` instead.`'
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
residual = hidden_states
|
| 652 |
+
|
| 653 |
+
hidden_states = self.attention_norm(hidden_states)
|
| 654 |
+
|
| 655 |
+
# Self Attention
|
| 656 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 657 |
+
hidden_states=hidden_states,
|
| 658 |
+
attention_mask=attention_mask,
|
| 659 |
+
position_ids=position_ids,
|
| 660 |
+
past_key_value=past_key_value,
|
| 661 |
+
output_attentions=output_attentions,
|
| 662 |
+
use_cache=use_cache,
|
| 663 |
+
**kwargs,
|
| 664 |
+
)
|
| 665 |
+
hidden_states = residual + hidden_states
|
| 666 |
+
|
| 667 |
+
# Fully Connected
|
| 668 |
+
residual = hidden_states
|
| 669 |
+
hidden_states = self.ffn_norm(hidden_states)
|
| 670 |
+
hidden_states = self.feed_forward(hidden_states)
|
| 671 |
+
hidden_states = residual + hidden_states
|
| 672 |
+
|
| 673 |
+
outputs = (hidden_states,)
|
| 674 |
+
|
| 675 |
+
if output_attentions:
|
| 676 |
+
outputs += (self_attn_weights,)
|
| 677 |
+
|
| 678 |
+
if use_cache:
|
| 679 |
+
outputs += (present_key_value,)
|
| 680 |
+
|
| 681 |
+
return outputs
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
InternLM2_START_DOCSTRING = r"""
|
| 685 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 686 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 687 |
+
etc.)
|
| 688 |
+
|
| 689 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 690 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 691 |
+
and behavior.
|
| 692 |
+
|
| 693 |
+
Parameters:
|
| 694 |
+
config ([`InternLM2Config`]):
|
| 695 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 696 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 697 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 698 |
+
"""
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
| 702 |
+
@add_start_docstrings(
|
| 703 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 704 |
+
InternLM2_START_DOCSTRING,
|
| 705 |
+
)
|
| 706 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
| 707 |
+
config_class = InternLM2Config
|
| 708 |
+
base_model_prefix = 'model'
|
| 709 |
+
supports_gradient_checkpointing = True
|
| 710 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
| 711 |
+
_skip_keys_device_placement = 'past_key_values'
|
| 712 |
+
_supports_flash_attn_2 = True
|
| 713 |
+
|
| 714 |
+
def _init_weights(self, module):
|
| 715 |
+
std = self.config.initializer_range
|
| 716 |
+
if isinstance(module, nn.Linear):
|
| 717 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 718 |
+
if module.bias is not None:
|
| 719 |
+
module.bias.data.zero_()
|
| 720 |
+
elif isinstance(module, nn.Embedding):
|
| 721 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 722 |
+
if module.padding_idx is not None:
|
| 723 |
+
module.weight.data[module.padding_idx].zero_()
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
| 727 |
+
Args:
|
| 728 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 729 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 730 |
+
it.
|
| 731 |
+
|
| 732 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 733 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 734 |
+
|
| 735 |
+
[What are input IDs?](../glossary#input-ids)
|
| 736 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 737 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 738 |
+
|
| 739 |
+
- 1 for tokens that are **not masked**,
|
| 740 |
+
- 0 for tokens that are **masked**.
|
| 741 |
+
|
| 742 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 743 |
+
|
| 744 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 745 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 746 |
+
|
| 747 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 748 |
+
`past_key_values`).
|
| 749 |
+
|
| 750 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 751 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 752 |
+
information on the default strategy.
|
| 753 |
+
|
| 754 |
+
- 1 indicates the head is **not masked**,
|
| 755 |
+
- 0 indicates the head is **masked**.
|
| 756 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 757 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 758 |
+
config.n_positions - 1]`.
|
| 759 |
+
|
| 760 |
+
[What are position IDs?](../glossary#position-ids)
|
| 761 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
| 762 |
+
when `config.use_cache=True`):
|
| 763 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 764 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 765 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
| 766 |
+
|
| 767 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 768 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 769 |
+
|
| 770 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 771 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 772 |
+
of shape `(batch_size, sequence_length)`.
|
| 773 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 774 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 775 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 776 |
+
model's internal embedding lookup matrix.
|
| 777 |
+
use_cache (`bool`, *optional*):
|
| 778 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 779 |
+
`past_key_values`).
|
| 780 |
+
output_attentions (`bool`, *optional*):
|
| 781 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 782 |
+
tensors for more detail.
|
| 783 |
+
output_hidden_states (`bool`, *optional*):
|
| 784 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 785 |
+
more detail.
|
| 786 |
+
return_dict (`bool`, *optional*):
|
| 787 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 788 |
+
"""
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
| 792 |
+
@add_start_docstrings(
|
| 793 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 794 |
+
InternLM2_START_DOCSTRING,
|
| 795 |
+
)
|
| 796 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
| 797 |
+
"""
|
| 798 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
| 799 |
+
|
| 800 |
+
Args:
|
| 801 |
+
config: InternLM2Config
|
| 802 |
+
"""
|
| 803 |
+
|
| 804 |
+
_auto_class = 'AutoModel'
|
| 805 |
+
|
| 806 |
+
def __init__(self, config: InternLM2Config):
|
| 807 |
+
super().__init__(config)
|
| 808 |
+
self.padding_idx = config.pad_token_id
|
| 809 |
+
self.vocab_size = config.vocab_size
|
| 810 |
+
self.config = config
|
| 811 |
+
if not has_flash_attn:
|
| 812 |
+
self.config.attn_implementation = 'eager'
|
| 813 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
| 814 |
+
|
| 815 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 816 |
+
|
| 817 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 818 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 819 |
+
|
| 820 |
+
self.gradient_checkpointing = False
|
| 821 |
+
# Initialize weights and apply final processing
|
| 822 |
+
self.post_init()
|
| 823 |
+
|
| 824 |
+
def get_input_embeddings(self):
|
| 825 |
+
return self.tok_embeddings
|
| 826 |
+
|
| 827 |
+
def set_input_embeddings(self, value):
|
| 828 |
+
self.tok_embeddings = value
|
| 829 |
+
|
| 830 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 831 |
+
# create causal mask
|
| 832 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 833 |
+
combined_attention_mask = None
|
| 834 |
+
if input_shape[-1] > 1:
|
| 835 |
+
combined_attention_mask = _make_causal_mask(
|
| 836 |
+
input_shape,
|
| 837 |
+
inputs_embeds.dtype,
|
| 838 |
+
device=inputs_embeds.device,
|
| 839 |
+
past_key_values_length=past_key_values_length,
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
if attention_mask is not None:
|
| 843 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 844 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 845 |
+
inputs_embeds.device
|
| 846 |
+
)
|
| 847 |
+
combined_attention_mask = (
|
| 848 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
return combined_attention_mask
|
| 852 |
+
|
| 853 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 854 |
+
def forward(
|
| 855 |
+
self,
|
| 856 |
+
input_ids: torch.LongTensor = None,
|
| 857 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 858 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 859 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 860 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 861 |
+
use_cache: Optional[bool] = None,
|
| 862 |
+
output_attentions: Optional[bool] = None,
|
| 863 |
+
output_hidden_states: Optional[bool] = None,
|
| 864 |
+
return_dict: Optional[bool] = None,
|
| 865 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 866 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 867 |
+
output_hidden_states = (
|
| 868 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 869 |
+
)
|
| 870 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 871 |
+
|
| 872 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 873 |
+
|
| 874 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 875 |
+
_import_flash_attn()
|
| 876 |
+
|
| 877 |
+
# retrieve input_ids and inputs_embeds
|
| 878 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 879 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
| 880 |
+
elif input_ids is not None:
|
| 881 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 882 |
+
elif inputs_embeds is not None:
|
| 883 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 884 |
+
else:
|
| 885 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
| 886 |
+
|
| 887 |
+
seq_length_with_past = seq_length
|
| 888 |
+
past_key_values_length = 0
|
| 889 |
+
if past_key_values is not None:
|
| 890 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 891 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 892 |
+
|
| 893 |
+
if position_ids is None:
|
| 894 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 895 |
+
position_ids = torch.arange(
|
| 896 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 897 |
+
)
|
| 898 |
+
position_ids = position_ids.unsqueeze(0)
|
| 899 |
+
|
| 900 |
+
if inputs_embeds is None:
|
| 901 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
| 902 |
+
|
| 903 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 904 |
+
# 2d mask is passed through the layers
|
| 905 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 906 |
+
else:
|
| 907 |
+
if attention_mask is None:
|
| 908 |
+
attention_mask = torch.ones(
|
| 909 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 910 |
+
)
|
| 911 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 912 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
# embed positions
|
| 916 |
+
hidden_states = inputs_embeds
|
| 917 |
+
|
| 918 |
+
if self.gradient_checkpointing and self.training:
|
| 919 |
+
if use_cache:
|
| 920 |
+
logger.warning_once(
|
| 921 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
| 922 |
+
)
|
| 923 |
+
use_cache = False
|
| 924 |
+
|
| 925 |
+
# decoder layers
|
| 926 |
+
all_hidden_states = () if output_hidden_states else None
|
| 927 |
+
all_self_attns = () if output_attentions else None
|
| 928 |
+
next_decoder_cache = () if use_cache else None
|
| 929 |
+
|
| 930 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 931 |
+
if output_hidden_states:
|
| 932 |
+
all_hidden_states += (hidden_states,)
|
| 933 |
+
|
| 934 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 935 |
+
|
| 936 |
+
if self.gradient_checkpointing and self.training:
|
| 937 |
+
|
| 938 |
+
def create_custom_forward(module):
|
| 939 |
+
def custom_forward(*inputs):
|
| 940 |
+
# None for past_key_value
|
| 941 |
+
return module(*inputs, output_attentions, None)
|
| 942 |
+
|
| 943 |
+
return custom_forward
|
| 944 |
+
|
| 945 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 946 |
+
create_custom_forward(decoder_layer),
|
| 947 |
+
hidden_states,
|
| 948 |
+
attention_mask,
|
| 949 |
+
position_ids,
|
| 950 |
+
None,
|
| 951 |
+
)
|
| 952 |
+
else:
|
| 953 |
+
layer_outputs = decoder_layer(
|
| 954 |
+
hidden_states,
|
| 955 |
+
attention_mask=attention_mask,
|
| 956 |
+
position_ids=position_ids,
|
| 957 |
+
past_key_value=past_key_value,
|
| 958 |
+
output_attentions=output_attentions,
|
| 959 |
+
use_cache=use_cache,
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
hidden_states = layer_outputs[0]
|
| 963 |
+
|
| 964 |
+
if use_cache:
|
| 965 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 966 |
+
|
| 967 |
+
if output_attentions:
|
| 968 |
+
all_self_attns += (layer_outputs[1],)
|
| 969 |
+
|
| 970 |
+
hidden_states = self.norm(hidden_states)
|
| 971 |
+
|
| 972 |
+
# add hidden states from the last decoder layer
|
| 973 |
+
if output_hidden_states:
|
| 974 |
+
all_hidden_states += (hidden_states,)
|
| 975 |
+
|
| 976 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 977 |
+
if not return_dict:
|
| 978 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 979 |
+
return BaseModelOutputWithPast(
|
| 980 |
+
last_hidden_state=hidden_states,
|
| 981 |
+
past_key_values=next_cache,
|
| 982 |
+
hidden_states=all_hidden_states,
|
| 983 |
+
attentions=all_self_attns,
|
| 984 |
+
)
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
| 988 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
| 989 |
+
_auto_class = 'AutoModelForCausalLM'
|
| 990 |
+
|
| 991 |
+
_tied_weights_keys = ['output.weight']
|
| 992 |
+
|
| 993 |
+
def __init__(self, config):
|
| 994 |
+
super().__init__(config)
|
| 995 |
+
self.model = InternLM2Model(config)
|
| 996 |
+
self.vocab_size = config.vocab_size
|
| 997 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 998 |
+
|
| 999 |
+
# Initialize weights and apply final processing
|
| 1000 |
+
self.post_init()
|
| 1001 |
+
|
| 1002 |
+
def get_input_embeddings(self):
|
| 1003 |
+
return self.model.tok_embeddings
|
| 1004 |
+
|
| 1005 |
+
def set_input_embeddings(self, value):
|
| 1006 |
+
self.model.tok_embeddings = value
|
| 1007 |
+
|
| 1008 |
+
def get_output_embeddings(self):
|
| 1009 |
+
return self.output
|
| 1010 |
+
|
| 1011 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1012 |
+
self.output = new_embeddings
|
| 1013 |
+
|
| 1014 |
+
def set_decoder(self, decoder):
|
| 1015 |
+
self.model = decoder
|
| 1016 |
+
|
| 1017 |
+
def get_decoder(self):
|
| 1018 |
+
return self.model
|
| 1019 |
+
|
| 1020 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1021 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1022 |
+
def forward(
|
| 1023 |
+
self,
|
| 1024 |
+
input_ids: torch.LongTensor = None,
|
| 1025 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1026 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1027 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1028 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1029 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1030 |
+
use_cache: Optional[bool] = None,
|
| 1031 |
+
output_attentions: Optional[bool] = None,
|
| 1032 |
+
output_hidden_states: Optional[bool] = None,
|
| 1033 |
+
return_dict: Optional[bool] = None,
|
| 1034 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1035 |
+
r"""
|
| 1036 |
+
Args:
|
| 1037 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1038 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1039 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1040 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1041 |
+
|
| 1042 |
+
Returns:
|
| 1043 |
+
|
| 1044 |
+
Example:
|
| 1045 |
+
|
| 1046 |
+
```python
|
| 1047 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
| 1048 |
+
|
| 1049 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1050 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1051 |
+
|
| 1052 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1053 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1054 |
+
|
| 1055 |
+
>>> # Generate
|
| 1056 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1057 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1058 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1059 |
+
```"""
|
| 1060 |
+
|
| 1061 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1062 |
+
output_hidden_states = (
|
| 1063 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1064 |
+
)
|
| 1065 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1066 |
+
|
| 1067 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1068 |
+
outputs = self.model(
|
| 1069 |
+
input_ids=input_ids,
|
| 1070 |
+
attention_mask=attention_mask,
|
| 1071 |
+
position_ids=position_ids,
|
| 1072 |
+
past_key_values=past_key_values,
|
| 1073 |
+
inputs_embeds=inputs_embeds,
|
| 1074 |
+
use_cache=use_cache,
|
| 1075 |
+
output_attentions=output_attentions,
|
| 1076 |
+
output_hidden_states=output_hidden_states,
|
| 1077 |
+
return_dict=return_dict,
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
hidden_states = outputs[0]
|
| 1081 |
+
logits = self.output(hidden_states)
|
| 1082 |
+
logits = logits.float()
|
| 1083 |
+
|
| 1084 |
+
loss = None
|
| 1085 |
+
if labels is not None:
|
| 1086 |
+
# Shift so that tokens < n predict n
|
| 1087 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1088 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1089 |
+
# Flatten the tokens
|
| 1090 |
+
loss_fct = CrossEntropyLoss()
|
| 1091 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1092 |
+
shift_labels = shift_labels.view(-1)
|
| 1093 |
+
# Enable model parallelism
|
| 1094 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1095 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1096 |
+
|
| 1097 |
+
if not return_dict:
|
| 1098 |
+
output = (logits,) + outputs[1:]
|
| 1099 |
+
return (loss,) + output if loss is not None else output
|
| 1100 |
+
|
| 1101 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1102 |
+
output = CausalLMOutputWithPast(
|
| 1103 |
+
loss=loss,
|
| 1104 |
+
logits=logits,
|
| 1105 |
+
past_key_values=outputs.past_key_values,
|
| 1106 |
+
hidden_states=outputs.hidden_states,
|
| 1107 |
+
attentions=outputs.attentions,
|
| 1108 |
+
)
|
| 1109 |
+
output['logits'] = output['logits'].to(device)
|
| 1110 |
+
return output
|
| 1111 |
+
|
| 1112 |
+
def prepare_inputs_for_generation(
|
| 1113 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1114 |
+
):
|
| 1115 |
+
if past_key_values is not None:
|
| 1116 |
+
past_length = past_key_values[0][0].shape[2]
|
| 1117 |
+
|
| 1118 |
+
# Some generation methods already pass only the last input ID
|
| 1119 |
+
if input_ids.shape[1] > past_length:
|
| 1120 |
+
remove_prefix_length = past_length
|
| 1121 |
+
else:
|
| 1122 |
+
# Default to old behavior: keep only final ID
|
| 1123 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 1124 |
+
|
| 1125 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 1126 |
+
|
| 1127 |
+
position_ids = kwargs.get('position_ids', None)
|
| 1128 |
+
if attention_mask is not None and position_ids is None:
|
| 1129 |
+
# create position_ids on the fly for batch generation
|
| 1130 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1131 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1132 |
+
if past_key_values:
|
| 1133 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1134 |
+
|
| 1135 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1136 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1137 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 1138 |
+
else:
|
| 1139 |
+
model_inputs = {'input_ids': input_ids}
|
| 1140 |
+
|
| 1141 |
+
model_inputs.update(
|
| 1142 |
+
{
|
| 1143 |
+
'position_ids': position_ids,
|
| 1144 |
+
'past_key_values': past_key_values,
|
| 1145 |
+
'use_cache': kwargs.get('use_cache'),
|
| 1146 |
+
'attention_mask': attention_mask,
|
| 1147 |
+
}
|
| 1148 |
+
)
|
| 1149 |
+
return model_inputs
|
| 1150 |
+
|
| 1151 |
+
@staticmethod
|
| 1152 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1153 |
+
reordered_past = ()
|
| 1154 |
+
for layer_past in past_key_values:
|
| 1155 |
+
reordered_past += (
|
| 1156 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1157 |
+
)
|
| 1158 |
+
return reordered_past
|
| 1159 |
+
|
| 1160 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
|
| 1161 |
+
if tokenizer.add_bos_token:
|
| 1162 |
+
prompt = ''
|
| 1163 |
+
else:
|
| 1164 |
+
prompt = tokenizer.bos_token
|
| 1165 |
+
if meta_instruction:
|
| 1166 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
| 1167 |
+
for record in history:
|
| 1168 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
| 1169 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
| 1170 |
+
return tokenizer([prompt], return_tensors='pt')
|
| 1171 |
+
|
| 1172 |
+
@torch.no_grad()
|
| 1173 |
+
def chat(
|
| 1174 |
+
self,
|
| 1175 |
+
tokenizer,
|
| 1176 |
+
query: str,
|
| 1177 |
+
history: List[Tuple[str, str]] = [],
|
| 1178 |
+
streamer: Optional[BaseStreamer] = None,
|
| 1179 |
+
max_new_tokens: int = 1024,
|
| 1180 |
+
do_sample: bool = True,
|
| 1181 |
+
temperature: float = 0.8,
|
| 1182 |
+
top_p: float = 0.8,
|
| 1183 |
+
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
|
| 1184 |
+
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
| 1185 |
+
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
|
| 1186 |
+
**kwargs,
|
| 1187 |
+
):
|
| 1188 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
| 1189 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
| 1190 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
| 1191 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
|
| 1192 |
+
outputs = self.generate(
|
| 1193 |
+
**inputs,
|
| 1194 |
+
streamer=streamer,
|
| 1195 |
+
max_new_tokens=max_new_tokens,
|
| 1196 |
+
do_sample=do_sample,
|
| 1197 |
+
temperature=temperature,
|
| 1198 |
+
top_p=top_p,
|
| 1199 |
+
eos_token_id=eos_token_id,
|
| 1200 |
+
**kwargs,
|
| 1201 |
+
)
|
| 1202 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
|
| 1203 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
| 1204 |
+
response = response.split('<|im_end|>')[0]
|
| 1205 |
+
history = history + [(query, response)]
|
| 1206 |
+
return response, history
|
| 1207 |
+
|
| 1208 |
+
@torch.no_grad()
|
| 1209 |
+
def stream_chat(
|
| 1210 |
+
self,
|
| 1211 |
+
tokenizer,
|
| 1212 |
+
query: str,
|
| 1213 |
+
history: List[Tuple[str, str]] = [],
|
| 1214 |
+
max_new_tokens: int = 1024,
|
| 1215 |
+
do_sample: bool = True,
|
| 1216 |
+
temperature: float = 0.8,
|
| 1217 |
+
top_p: float = 0.8,
|
| 1218 |
+
**kwargs,
|
| 1219 |
+
):
|
| 1220 |
+
"""
|
| 1221 |
+
Return a generator in format: (response, history)
|
| 1222 |
+
Eg.
|
| 1223 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
| 1224 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
| 1225 |
+
"""
|
| 1226 |
+
if BaseStreamer is None:
|
| 1227 |
+
raise ModuleNotFoundError(
|
| 1228 |
+
'The version of `transformers` is too low. Please make sure '
|
| 1229 |
+
'that you have installed `transformers>=4.28.0`.'
|
| 1230 |
+
)
|
| 1231 |
+
|
| 1232 |
+
response_queue = queue.Queue(maxsize=20)
|
| 1233 |
+
|
| 1234 |
+
class ChatStreamer(BaseStreamer):
|
| 1235 |
+
def __init__(self, tokenizer) -> None:
|
| 1236 |
+
super().__init__()
|
| 1237 |
+
self.tokenizer = tokenizer
|
| 1238 |
+
self.queue = response_queue
|
| 1239 |
+
self.query = query
|
| 1240 |
+
self.history = history
|
| 1241 |
+
self.response = ''
|
| 1242 |
+
self.cache = []
|
| 1243 |
+
self.received_inputs = False
|
| 1244 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
| 1245 |
+
|
| 1246 |
+
def put(self, value):
|
| 1247 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
| 1248 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
| 1249 |
+
elif len(value.shape) > 1:
|
| 1250 |
+
value = value[0]
|
| 1251 |
+
|
| 1252 |
+
if not self.received_inputs:
|
| 1253 |
+
# The first received value is input_ids, ignore here
|
| 1254 |
+
self.received_inputs = True
|
| 1255 |
+
return
|
| 1256 |
+
|
| 1257 |
+
self.cache.extend(value.tolist())
|
| 1258 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
| 1259 |
+
if token.strip() != '<|im_end|>':
|
| 1260 |
+
self.response = self.response + token
|
| 1261 |
+
history = self.history + [(self.query, self.response)]
|
| 1262 |
+
self.queue.put((self.response, history))
|
| 1263 |
+
self.cache = []
|
| 1264 |
+
else:
|
| 1265 |
+
self.end()
|
| 1266 |
+
|
| 1267 |
+
def end(self):
|
| 1268 |
+
self.queue.put(None)
|
| 1269 |
+
|
| 1270 |
+
def stream_producer():
|
| 1271 |
+
return self.chat(
|
| 1272 |
+
tokenizer=tokenizer,
|
| 1273 |
+
query=query,
|
| 1274 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
| 1275 |
+
history=history,
|
| 1276 |
+
max_new_tokens=max_new_tokens,
|
| 1277 |
+
do_sample=do_sample,
|
| 1278 |
+
temperature=temperature,
|
| 1279 |
+
top_p=top_p,
|
| 1280 |
+
**kwargs,
|
| 1281 |
+
)
|
| 1282 |
+
|
| 1283 |
+
def consumer():
|
| 1284 |
+
producer = threading.Thread(target=stream_producer)
|
| 1285 |
+
producer.start()
|
| 1286 |
+
while True:
|
| 1287 |
+
res = response_queue.get()
|
| 1288 |
+
if res is None:
|
| 1289 |
+
return
|
| 1290 |
+
yield res
|
| 1291 |
+
|
| 1292 |
+
return consumer()
|
| 1293 |
+
|
| 1294 |
+
|
| 1295 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
| 1296 |
+
@add_start_docstrings(
|
| 1297 |
+
"""
|
| 1298 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
| 1299 |
+
|
| 1300 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
| 1301 |
+
as other causal models (e.g. GPT-2) do.
|
| 1302 |
+
|
| 1303 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1304 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1305 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1306 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1307 |
+
each row of the batch).
|
| 1308 |
+
""",
|
| 1309 |
+
InternLM2_START_DOCSTRING,
|
| 1310 |
+
)
|
| 1311 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
| 1312 |
+
def __init__(self, config):
|
| 1313 |
+
super().__init__(config)
|
| 1314 |
+
self.num_labels = config.num_labels
|
| 1315 |
+
self.model = InternLM2Model(config)
|
| 1316 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1317 |
+
|
| 1318 |
+
# Initialize weights and apply final processing
|
| 1319 |
+
self.post_init()
|
| 1320 |
+
|
| 1321 |
+
def get_input_embeddings(self):
|
| 1322 |
+
return self.model.tok_embeddings
|
| 1323 |
+
|
| 1324 |
+
def set_input_embeddings(self, value):
|
| 1325 |
+
self.model.tok_embeddings = value
|
| 1326 |
+
|
| 1327 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1328 |
+
def forward(
|
| 1329 |
+
self,
|
| 1330 |
+
input_ids: torch.LongTensor = None,
|
| 1331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1332 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1333 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1334 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1335 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1336 |
+
use_cache: Optional[bool] = None,
|
| 1337 |
+
output_attentions: Optional[bool] = None,
|
| 1338 |
+
output_hidden_states: Optional[bool] = None,
|
| 1339 |
+
return_dict: Optional[bool] = None,
|
| 1340 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1341 |
+
r"""
|
| 1342 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1343 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1344 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1345 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1346 |
+
"""
|
| 1347 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1348 |
+
|
| 1349 |
+
transformer_outputs = self.model(
|
| 1350 |
+
input_ids,
|
| 1351 |
+
attention_mask=attention_mask,
|
| 1352 |
+
position_ids=position_ids,
|
| 1353 |
+
past_key_values=past_key_values,
|
| 1354 |
+
inputs_embeds=inputs_embeds,
|
| 1355 |
+
use_cache=use_cache,
|
| 1356 |
+
output_attentions=output_attentions,
|
| 1357 |
+
output_hidden_states=output_hidden_states,
|
| 1358 |
+
return_dict=return_dict,
|
| 1359 |
+
)
|
| 1360 |
+
hidden_states = transformer_outputs[0]
|
| 1361 |
+
logits = self.score(hidden_states)
|
| 1362 |
+
|
| 1363 |
+
if input_ids is not None:
|
| 1364 |
+
batch_size = input_ids.shape[0]
|
| 1365 |
+
else:
|
| 1366 |
+
batch_size = inputs_embeds.shape[0]
|
| 1367 |
+
|
| 1368 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1369 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
| 1370 |
+
if self.config.pad_token_id is None:
|
| 1371 |
+
sequence_lengths = -1
|
| 1372 |
+
else:
|
| 1373 |
+
if input_ids is not None:
|
| 1374 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
| 1375 |
+
logits.device
|
| 1376 |
+
)
|
| 1377 |
+
else:
|
| 1378 |
+
sequence_lengths = -1
|
| 1379 |
+
|
| 1380 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1381 |
+
|
| 1382 |
+
loss = None
|
| 1383 |
+
if labels is not None:
|
| 1384 |
+
labels = labels.to(logits.device)
|
| 1385 |
+
if self.config.problem_type is None:
|
| 1386 |
+
if self.num_labels == 1:
|
| 1387 |
+
self.config.problem_type = 'regression'
|
| 1388 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1389 |
+
self.config.problem_type = 'single_label_classification'
|
| 1390 |
+
else:
|
| 1391 |
+
self.config.problem_type = 'multi_label_classification'
|
| 1392 |
+
|
| 1393 |
+
if self.config.problem_type == 'regression':
|
| 1394 |
+
loss_fct = MSELoss()
|
| 1395 |
+
if self.num_labels == 1:
|
| 1396 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1397 |
+
else:
|
| 1398 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1399 |
+
elif self.config.problem_type == 'single_label_classification':
|
| 1400 |
+
loss_fct = CrossEntropyLoss()
|
| 1401 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1402 |
+
elif self.config.problem_type == 'multi_label_classification':
|
| 1403 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1404 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1405 |
+
if not return_dict:
|
| 1406 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1407 |
+
return ((loss,) + output) if loss is not None else output
|
| 1408 |
+
|
| 1409 |
+
return SequenceClassifierOutputWithPast(
|
| 1410 |
+
loss=loss,
|
| 1411 |
+
logits=pooled_logits,
|
| 1412 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1413 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1414 |
+
attentions=transformer_outputs.attentions,
|
| 1415 |
+
)
|
modeling_internvl_chat.py
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import Any, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch.utils.checkpoint
|
| 10 |
+
import transformers
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import CrossEntropyLoss
|
| 13 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
| 14 |
+
LlamaTokenizer)
|
| 15 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 16 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
from transformers.utils import ModelOutput, logging
|
| 18 |
+
|
| 19 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
| 20 |
+
from .conversation import get_conv_template
|
| 21 |
+
from .modeling_intern_vit import InternVisionModel
|
| 22 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def version_cmp(v1, v2, op='eq'):
|
| 28 |
+
import operator
|
| 29 |
+
|
| 30 |
+
from packaging import version
|
| 31 |
+
op_func = getattr(operator, op)
|
| 32 |
+
return op_func(version.parse(v1), version.parse(v2))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class InternVLChatModel(PreTrainedModel):
|
| 36 |
+
config_class = InternVLChatConfig
|
| 37 |
+
main_input_name = 'pixel_values'
|
| 38 |
+
_supports_flash_attn_2 = True
|
| 39 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
|
| 40 |
+
|
| 41 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
| 42 |
+
super().__init__(config)
|
| 43 |
+
|
| 44 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
| 45 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
| 46 |
+
patch_size = config.vision_config.patch_size
|
| 47 |
+
self.patch_size = patch_size
|
| 48 |
+
self.select_layer = config.select_layer
|
| 49 |
+
self.template = config.template
|
| 50 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 51 |
+
self.downsample_ratio = config.downsample_ratio
|
| 52 |
+
self.ps_version = config.ps_version
|
| 53 |
+
|
| 54 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
| 55 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 56 |
+
if vision_model is not None:
|
| 57 |
+
self.vision_model = vision_model
|
| 58 |
+
else:
|
| 59 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
| 60 |
+
if language_model is not None:
|
| 61 |
+
self.language_model = language_model
|
| 62 |
+
else:
|
| 63 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
| 64 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
| 65 |
+
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
| 66 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
| 67 |
+
else:
|
| 68 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
| 69 |
+
|
| 70 |
+
vit_hidden_size = config.vision_config.hidden_size
|
| 71 |
+
llm_hidden_size = config.llm_config.hidden_size
|
| 72 |
+
|
| 73 |
+
self.mlp1 = nn.Sequential(
|
| 74 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
| 75 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
| 76 |
+
nn.GELU(),
|
| 77 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
self.img_context_token_id = None
|
| 81 |
+
self.conv_template = get_conv_template(self.template)
|
| 82 |
+
self.system_message = self.conv_template.system_message
|
| 83 |
+
|
| 84 |
+
def forward(
|
| 85 |
+
self,
|
| 86 |
+
pixel_values: torch.FloatTensor,
|
| 87 |
+
input_ids: torch.LongTensor = None,
|
| 88 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 89 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 90 |
+
image_flags: Optional[torch.LongTensor] = None,
|
| 91 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 92 |
+
labels: Optional[torch.LongTensor] = None,
|
| 93 |
+
use_cache: Optional[bool] = None,
|
| 94 |
+
output_attentions: Optional[bool] = None,
|
| 95 |
+
output_hidden_states: Optional[bool] = None,
|
| 96 |
+
return_dict: Optional[bool] = None,
|
| 97 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 98 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 99 |
+
|
| 100 |
+
image_flags = image_flags.squeeze(-1)
|
| 101 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 102 |
+
|
| 103 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 104 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
| 105 |
+
vit_batch_size = pixel_values.shape[0]
|
| 106 |
+
|
| 107 |
+
B, N, C = input_embeds.shape
|
| 108 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 109 |
+
|
| 110 |
+
if torch.distributed.get_rank() == 0:
|
| 111 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
| 112 |
+
|
| 113 |
+
input_ids = input_ids.reshape(B * N)
|
| 114 |
+
selected = (input_ids == self.img_context_token_id)
|
| 115 |
+
try:
|
| 116 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
| 117 |
+
except Exception as e:
|
| 118 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
| 119 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
| 120 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
| 121 |
+
n_token = selected.sum()
|
| 122 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
| 123 |
+
|
| 124 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 125 |
+
|
| 126 |
+
outputs = self.language_model(
|
| 127 |
+
inputs_embeds=input_embeds,
|
| 128 |
+
attention_mask=attention_mask,
|
| 129 |
+
position_ids=position_ids,
|
| 130 |
+
past_key_values=past_key_values,
|
| 131 |
+
use_cache=use_cache,
|
| 132 |
+
output_attentions=output_attentions,
|
| 133 |
+
output_hidden_states=output_hidden_states,
|
| 134 |
+
return_dict=return_dict,
|
| 135 |
+
)
|
| 136 |
+
logits = outputs.logits
|
| 137 |
+
|
| 138 |
+
loss = None
|
| 139 |
+
if labels is not None:
|
| 140 |
+
# Shift so that tokens < n predict n
|
| 141 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 142 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 143 |
+
# Flatten the tokens
|
| 144 |
+
loss_fct = CrossEntropyLoss()
|
| 145 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
| 146 |
+
shift_labels = shift_labels.view(-1)
|
| 147 |
+
# Enable model parallelism
|
| 148 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 149 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 150 |
+
|
| 151 |
+
if not return_dict:
|
| 152 |
+
output = (logits,) + outputs[1:]
|
| 153 |
+
return (loss,) + output if loss is not None else output
|
| 154 |
+
|
| 155 |
+
return CausalLMOutputWithPast(
|
| 156 |
+
loss=loss,
|
| 157 |
+
logits=logits,
|
| 158 |
+
past_key_values=outputs.past_key_values,
|
| 159 |
+
hidden_states=outputs.hidden_states,
|
| 160 |
+
attentions=outputs.attentions,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
| 164 |
+
n, w, h, c = x.size()
|
| 165 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
| 166 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
| 167 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
| 168 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 169 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
| 170 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
| 171 |
+
int(c / (scale_factor * scale_factor)))
|
| 172 |
+
if self.ps_version == 'v1':
|
| 173 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
| 174 |
+
'which results in a transposed image.')
|
| 175 |
+
else:
|
| 176 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 177 |
+
return x
|
| 178 |
+
|
| 179 |
+
def extract_feature(self, pixel_values):
|
| 180 |
+
if self.select_layer == -1:
|
| 181 |
+
vit_embeds = self.vision_model(
|
| 182 |
+
pixel_values=pixel_values,
|
| 183 |
+
output_hidden_states=False,
|
| 184 |
+
return_dict=True).last_hidden_state
|
| 185 |
+
else:
|
| 186 |
+
vit_embeds = self.vision_model(
|
| 187 |
+
pixel_values=pixel_values,
|
| 188 |
+
output_hidden_states=True,
|
| 189 |
+
return_dict=True).hidden_states[self.select_layer]
|
| 190 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
| 191 |
+
|
| 192 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
| 193 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
| 194 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
| 195 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
| 196 |
+
vit_embeds = self.mlp1(vit_embeds)
|
| 197 |
+
return vit_embeds
|
| 198 |
+
|
| 199 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
| 200 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
| 201 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
| 202 |
+
if history is not None or return_history:
|
| 203 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
| 204 |
+
raise NotImplementedError
|
| 205 |
+
|
| 206 |
+
if image_counts is not None:
|
| 207 |
+
num_patches_list = image_counts
|
| 208 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
| 209 |
+
|
| 210 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 211 |
+
self.img_context_token_id = img_context_token_id
|
| 212 |
+
|
| 213 |
+
if verbose and pixel_values is not None:
|
| 214 |
+
image_bs = pixel_values.shape[0]
|
| 215 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 216 |
+
|
| 217 |
+
queries = []
|
| 218 |
+
for idx, num_patches in enumerate(num_patches_list):
|
| 219 |
+
question = questions[idx]
|
| 220 |
+
if pixel_values is not None and '<image>' not in question:
|
| 221 |
+
question = '<image>\n' + question
|
| 222 |
+
template = get_conv_template(self.template)
|
| 223 |
+
template.append_message(template.roles[0], question)
|
| 224 |
+
template.append_message(template.roles[1], None)
|
| 225 |
+
query = template.get_prompt()
|
| 226 |
+
|
| 227 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 228 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 229 |
+
queries.append(query)
|
| 230 |
+
|
| 231 |
+
tokenizer.padding_side = 'left'
|
| 232 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
| 233 |
+
input_ids = model_inputs['input_ids'].cuda()
|
| 234 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
| 235 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
| 236 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 237 |
+
generation_output = self.generate(
|
| 238 |
+
pixel_values=pixel_values,
|
| 239 |
+
input_ids=input_ids,
|
| 240 |
+
attention_mask=attention_mask,
|
| 241 |
+
**generation_config
|
| 242 |
+
)
|
| 243 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
| 244 |
+
responses = [response.split(template.sep)[0].strip() for response in responses]
|
| 245 |
+
return responses
|
| 246 |
+
|
| 247 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
| 248 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
| 249 |
+
verbose=False):
|
| 250 |
+
|
| 251 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
| 252 |
+
question = '<image>\n' + question
|
| 253 |
+
|
| 254 |
+
if num_patches_list is None:
|
| 255 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
| 256 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
| 257 |
+
|
| 258 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 259 |
+
self.img_context_token_id = img_context_token_id
|
| 260 |
+
|
| 261 |
+
template = get_conv_template(self.template)
|
| 262 |
+
template.system_message = self.system_message
|
| 263 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
| 264 |
+
|
| 265 |
+
history = [] if history is None else history
|
| 266 |
+
for (old_question, old_answer) in history:
|
| 267 |
+
template.append_message(template.roles[0], old_question)
|
| 268 |
+
template.append_message(template.roles[1], old_answer)
|
| 269 |
+
template.append_message(template.roles[0], question)
|
| 270 |
+
template.append_message(template.roles[1], None)
|
| 271 |
+
query = template.get_prompt()
|
| 272 |
+
|
| 273 |
+
if verbose and pixel_values is not None:
|
| 274 |
+
image_bs = pixel_values.shape[0]
|
| 275 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 276 |
+
|
| 277 |
+
for num_patches in num_patches_list:
|
| 278 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 279 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 280 |
+
|
| 281 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
| 282 |
+
input_ids = model_inputs['input_ids'].cuda()
|
| 283 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
| 284 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 285 |
+
generation_output = self.generate(
|
| 286 |
+
pixel_values=pixel_values,
|
| 287 |
+
input_ids=input_ids,
|
| 288 |
+
attention_mask=attention_mask,
|
| 289 |
+
**generation_config
|
| 290 |
+
)
|
| 291 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
| 292 |
+
response = response.split(template.sep)[0].strip()
|
| 293 |
+
history.append((question, response))
|
| 294 |
+
if return_history:
|
| 295 |
+
return response, history
|
| 296 |
+
else:
|
| 297 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
| 298 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
| 299 |
+
if verbose:
|
| 300 |
+
print(query_to_print, response)
|
| 301 |
+
return response
|
| 302 |
+
|
| 303 |
+
@torch.no_grad()
|
| 304 |
+
def generate(
|
| 305 |
+
self,
|
| 306 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 307 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
| 308 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 309 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
| 310 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 311 |
+
output_hidden_states: Optional[bool] = None,
|
| 312 |
+
return_dict: Optional[bool] = None,
|
| 313 |
+
**generate_kwargs,
|
| 314 |
+
) -> torch.LongTensor:
|
| 315 |
+
|
| 316 |
+
assert self.img_context_token_id is not None
|
| 317 |
+
if pixel_values is not None:
|
| 318 |
+
if visual_features is not None:
|
| 319 |
+
vit_embeds = visual_features
|
| 320 |
+
else:
|
| 321 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 322 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 323 |
+
B, N, C = input_embeds.shape
|
| 324 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 325 |
+
|
| 326 |
+
input_ids = input_ids.reshape(B * N)
|
| 327 |
+
selected = (input_ids == self.img_context_token_id)
|
| 328 |
+
assert selected.sum() != 0
|
| 329 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
| 330 |
+
|
| 331 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 332 |
+
else:
|
| 333 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 334 |
+
|
| 335 |
+
outputs = self.language_model.generate(
|
| 336 |
+
inputs_embeds=input_embeds,
|
| 337 |
+
attention_mask=attention_mask,
|
| 338 |
+
generation_config=generation_config,
|
| 339 |
+
output_hidden_states=output_hidden_states,
|
| 340 |
+
return_dict=return_dict,
|
| 341 |
+
use_cache=True,
|
| 342 |
+
**generate_kwargs,
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
return outputs
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<img>",
|
| 4 |
+
"</img>",
|
| 5 |
+
"<IMG_CONTEXT>",
|
| 6 |
+
"<quad>",
|
| 7 |
+
"</quad>",
|
| 8 |
+
"<ref>",
|
| 9 |
+
"</ref>",
|
| 10 |
+
"<box>",
|
| 11 |
+
"</box>"
|
| 12 |
+
],
|
| 13 |
+
"bos_token": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"eos_token": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"pad_token": {
|
| 28 |
+
"content": "</s>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
},
|
| 34 |
+
"unk_token": {
|
| 35 |
+
"content": "<unk>",
|
| 36 |
+
"lstrip": false,
|
| 37 |
+
"normalized": false,
|
| 38 |
+
"rstrip": false,
|
| 39 |
+
"single_word": false
|
| 40 |
+
}
|
| 41 |
+
}
|
tokenization_internlm2.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Tokenization classes for InternLM."""
|
| 18 |
+
import os
|
| 19 |
+
from shutil import copyfile
|
| 20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 21 |
+
|
| 22 |
+
import sentencepiece as spm
|
| 23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 24 |
+
from transformers.utils import logging
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
| 29 |
+
|
| 30 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
| 34 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
| 35 |
+
"""
|
| 36 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
vocab_file (`str`):
|
| 40 |
+
Path to the vocabulary file.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 44 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 45 |
+
model_input_names = ['input_ids', 'attention_mask']
|
| 46 |
+
_auto_class = 'AutoTokenizer'
|
| 47 |
+
|
| 48 |
+
def __init__(
|
| 49 |
+
self,
|
| 50 |
+
vocab_file,
|
| 51 |
+
unk_token='<unk>',
|
| 52 |
+
bos_token='<s>',
|
| 53 |
+
eos_token='</s>',
|
| 54 |
+
pad_token='</s>',
|
| 55 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 56 |
+
add_bos_token=True,
|
| 57 |
+
add_eos_token=False,
|
| 58 |
+
decode_with_prefix_space=False,
|
| 59 |
+
clean_up_tokenization_spaces=False,
|
| 60 |
+
**kwargs,
|
| 61 |
+
):
|
| 62 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 63 |
+
self.vocab_file = vocab_file
|
| 64 |
+
self.add_bos_token = add_bos_token
|
| 65 |
+
self.add_eos_token = add_eos_token
|
| 66 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
| 67 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 68 |
+
self.sp_model.Load(vocab_file)
|
| 69 |
+
self._no_prefix_space_tokens = None
|
| 70 |
+
super().__init__(
|
| 71 |
+
bos_token=bos_token,
|
| 72 |
+
eos_token=eos_token,
|
| 73 |
+
unk_token=unk_token,
|
| 74 |
+
pad_token=pad_token,
|
| 75 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 76 |
+
**kwargs,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def no_prefix_space_tokens(self):
|
| 81 |
+
if self._no_prefix_space_tokens is None:
|
| 82 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
| 83 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
|
| 84 |
+
return self._no_prefix_space_tokens
|
| 85 |
+
|
| 86 |
+
@property
|
| 87 |
+
def vocab_size(self):
|
| 88 |
+
"""Returns vocab size"""
|
| 89 |
+
return self.sp_model.get_piece_size()
|
| 90 |
+
|
| 91 |
+
@property
|
| 92 |
+
def bos_token_id(self) -> Optional[int]:
|
| 93 |
+
return self.sp_model.bos_id()
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def eos_token_id(self) -> Optional[int]:
|
| 97 |
+
return self.sp_model.eos_id()
|
| 98 |
+
|
| 99 |
+
def get_vocab(self):
|
| 100 |
+
"""Returns vocab as a dict"""
|
| 101 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 102 |
+
vocab.update(self.added_tokens_encoder)
|
| 103 |
+
return vocab
|
| 104 |
+
|
| 105 |
+
def _tokenize(self, text):
|
| 106 |
+
"""Returns a tokenized string."""
|
| 107 |
+
return self.sp_model.encode(text, out_type=str)
|
| 108 |
+
|
| 109 |
+
def _convert_token_to_id(self, token):
|
| 110 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 111 |
+
return self.sp_model.piece_to_id(token)
|
| 112 |
+
|
| 113 |
+
def _convert_id_to_token(self, index):
|
| 114 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 115 |
+
token = self.sp_model.IdToPiece(index)
|
| 116 |
+
return token
|
| 117 |
+
|
| 118 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
| 119 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
| 120 |
+
return ' ' + decoded
|
| 121 |
+
else:
|
| 122 |
+
return decoded
|
| 123 |
+
|
| 124 |
+
def convert_tokens_to_string(self, tokens):
|
| 125 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 126 |
+
current_sub_tokens = []
|
| 127 |
+
out_string = ''
|
| 128 |
+
prev_is_special = False
|
| 129 |
+
for token in tokens:
|
| 130 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 131 |
+
if token in self.all_special_tokens:
|
| 132 |
+
if not prev_is_special:
|
| 133 |
+
out_string += ' '
|
| 134 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 135 |
+
prev_is_special = True
|
| 136 |
+
current_sub_tokens = []
|
| 137 |
+
else:
|
| 138 |
+
current_sub_tokens.append(token)
|
| 139 |
+
prev_is_special = False
|
| 140 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 141 |
+
out_string = self.clean_up_tokenization(out_string)
|
| 142 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
| 143 |
+
return out_string[1:]
|
| 144 |
+
|
| 145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 146 |
+
"""
|
| 147 |
+
Save the vocabulary and special tokens file to a directory.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
save_directory (`str`):
|
| 151 |
+
The directory in which to save the vocabulary.
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
`Tuple(str)`: Paths to the files saved.
|
| 155 |
+
"""
|
| 156 |
+
if not os.path.isdir(save_directory):
|
| 157 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
| 158 |
+
return
|
| 159 |
+
out_vocab_file = os.path.join(
|
| 160 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 165 |
+
elif not os.path.isfile(self.vocab_file):
|
| 166 |
+
with open(out_vocab_file, 'wb') as fi:
|
| 167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 168 |
+
fi.write(content_spiece_model)
|
| 169 |
+
|
| 170 |
+
return (out_vocab_file,)
|
| 171 |
+
|
| 172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 173 |
+
if self.add_bos_token:
|
| 174 |
+
bos_token_ids = [self.bos_token_id]
|
| 175 |
+
else:
|
| 176 |
+
bos_token_ids = []
|
| 177 |
+
|
| 178 |
+
output = bos_token_ids + token_ids_0
|
| 179 |
+
|
| 180 |
+
if token_ids_1 is not None:
|
| 181 |
+
output = output + token_ids_1
|
| 182 |
+
|
| 183 |
+
if self.add_eos_token:
|
| 184 |
+
output = output + [self.eos_token_id]
|
| 185 |
+
|
| 186 |
+
return output
|
| 187 |
+
|
| 188 |
+
def get_special_tokens_mask(
|
| 189 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 190 |
+
) -> List[int]:
|
| 191 |
+
"""
|
| 192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
token_ids_0 (`List[int]`):
|
| 197 |
+
List of IDs.
|
| 198 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 199 |
+
Optional second list of IDs for sequence pairs.
|
| 200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 202 |
+
|
| 203 |
+
Returns:
|
| 204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 205 |
+
"""
|
| 206 |
+
if already_has_special_tokens:
|
| 207 |
+
return super().get_special_tokens_mask(
|
| 208 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if token_ids_1 is None:
|
| 212 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
| 213 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
| 214 |
+
|
| 215 |
+
def create_token_type_ids_from_sequences(
|
| 216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 217 |
+
) -> List[int]:
|
| 218 |
+
"""
|
| 219 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
| 220 |
+
use of token type ids, therefore a list of zeros is returned.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
token_ids_0 (`List[int]`):
|
| 224 |
+
List of IDs.
|
| 225 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 226 |
+
Optional second list of IDs for sequence pairs.
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
`List[int]`: List of zeros.
|
| 230 |
+
"""
|
| 231 |
+
eos = [self.eos_token_id]
|
| 232 |
+
|
| 233 |
+
if token_ids_1 is None:
|
| 234 |
+
return len(token_ids_0 + eos) * [0]
|
| 235 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
| 3 |
+
size 1477754
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<unk>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<s>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"92538": {
|
| 28 |
+
"content": "<|plugin|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"92539": {
|
| 36 |
+
"content": "<|interpreter|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"92540": {
|
| 44 |
+
"content": "<|action_end|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"92541": {
|
| 52 |
+
"content": "<|action_start|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"92542": {
|
| 60 |
+
"content": "<|im_end|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"92543": {
|
| 68 |
+
"content": "<|im_start|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"92544": {
|
| 76 |
+
"content": "<img>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"92545": {
|
| 84 |
+
"content": "</img>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"92546": {
|
| 92 |
+
"content": "<IMG_CONTEXT>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"92547": {
|
| 100 |
+
"content": "<quad>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"92548": {
|
| 108 |
+
"content": "</quad>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"92549": {
|
| 116 |
+
"content": "<ref>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"92550": {
|
| 124 |
+
"content": "</ref>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"92551": {
|
| 132 |
+
"content": "<box>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"92552": {
|
| 140 |
+
"content": "</box>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
}
|
| 147 |
+
},
|
| 148 |
+
"additional_special_tokens": [
|
| 149 |
+
"<img>",
|
| 150 |
+
"</img>",
|
| 151 |
+
"<IMG_CONTEXT>",
|
| 152 |
+
"<quad>",
|
| 153 |
+
"</quad>",
|
| 154 |
+
"<ref>",
|
| 155 |
+
"</ref>",
|
| 156 |
+
"<box>",
|
| 157 |
+
"</box>"
|
| 158 |
+
],
|
| 159 |
+
"auto_map": {
|
| 160 |
+
"AutoTokenizer": [
|
| 161 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
| 162 |
+
null
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
"bos_token": "<s>",
|
| 166 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 167 |
+
"clean_up_tokenization_spaces": false,
|
| 168 |
+
"eos_token": "</s>",
|
| 169 |
+
"model_max_length": 4096,
|
| 170 |
+
"pad_token": "</s>",
|
| 171 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
| 172 |
+
"unk_token": "<unk>"
|
| 173 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"train_loss": 1.1755684873563876,
|
| 4 |
+
"train_runtime": 47161.9361,
|
| 5 |
+
"train_samples": 85997,
|
| 6 |
+
"train_samples_per_second": 1.823,
|
| 7 |
+
"train_steps_per_second": 0.014
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,4056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.9986976744186047,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 671,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0,
|
| 13 |
+
"learning_rate": 0.0,
|
| 14 |
+
"loss": 1.4084,
|
| 15 |
+
"step": 1
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.0,
|
| 19 |
+
"learning_rate": 9.523809523809525e-07,
|
| 20 |
+
"loss": 1.3285,
|
| 21 |
+
"step": 2
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0.0,
|
| 25 |
+
"learning_rate": 1.904761904761905e-06,
|
| 26 |
+
"loss": 1.3301,
|
| 27 |
+
"step": 3
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.01,
|
| 31 |
+
"learning_rate": 2.8571428571428573e-06,
|
| 32 |
+
"loss": 1.3048,
|
| 33 |
+
"step": 4
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.01,
|
| 37 |
+
"learning_rate": 3.80952380952381e-06,
|
| 38 |
+
"loss": 1.2844,
|
| 39 |
+
"step": 5
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.01,
|
| 43 |
+
"learning_rate": 4.761904761904762e-06,
|
| 44 |
+
"loss": 1.2776,
|
| 45 |
+
"step": 6
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.01,
|
| 49 |
+
"learning_rate": 5.7142857142857145e-06,
|
| 50 |
+
"loss": 1.2673,
|
| 51 |
+
"step": 7
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.01,
|
| 55 |
+
"learning_rate": 6.666666666666667e-06,
|
| 56 |
+
"loss": 1.2424,
|
| 57 |
+
"step": 8
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.01,
|
| 61 |
+
"learning_rate": 7.61904761904762e-06,
|
| 62 |
+
"loss": 1.2499,
|
| 63 |
+
"step": 9
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.01,
|
| 67 |
+
"learning_rate": 8.571428571428571e-06,
|
| 68 |
+
"loss": 1.2529,
|
| 69 |
+
"step": 10
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.02,
|
| 73 |
+
"learning_rate": 9.523809523809525e-06,
|
| 74 |
+
"loss": 1.279,
|
| 75 |
+
"step": 11
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"epoch": 0.02,
|
| 79 |
+
"learning_rate": 1.0476190476190477e-05,
|
| 80 |
+
"loss": 1.271,
|
| 81 |
+
"step": 12
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.02,
|
| 85 |
+
"learning_rate": 1.1428571428571429e-05,
|
| 86 |
+
"loss": 1.1913,
|
| 87 |
+
"step": 13
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.02,
|
| 91 |
+
"learning_rate": 1.2380952380952383e-05,
|
| 92 |
+
"loss": 1.2517,
|
| 93 |
+
"step": 14
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.02,
|
| 97 |
+
"learning_rate": 1.3333333333333333e-05,
|
| 98 |
+
"loss": 1.2676,
|
| 99 |
+
"step": 15
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"epoch": 0.02,
|
| 103 |
+
"learning_rate": 1.4285714285714287e-05,
|
| 104 |
+
"loss": 1.2522,
|
| 105 |
+
"step": 16
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.03,
|
| 109 |
+
"learning_rate": 1.523809523809524e-05,
|
| 110 |
+
"loss": 1.2597,
|
| 111 |
+
"step": 17
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"epoch": 0.03,
|
| 115 |
+
"learning_rate": 1.6190476190476193e-05,
|
| 116 |
+
"loss": 1.2833,
|
| 117 |
+
"step": 18
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"epoch": 0.03,
|
| 121 |
+
"learning_rate": 1.7142857142857142e-05,
|
| 122 |
+
"loss": 1.2838,
|
| 123 |
+
"step": 19
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.03,
|
| 127 |
+
"learning_rate": 1.8095238095238097e-05,
|
| 128 |
+
"loss": 1.2724,
|
| 129 |
+
"step": 20
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.03,
|
| 133 |
+
"learning_rate": 1.904761904761905e-05,
|
| 134 |
+
"loss": 1.2284,
|
| 135 |
+
"step": 21
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.03,
|
| 139 |
+
"learning_rate": 1.9999883200175286e-05,
|
| 140 |
+
"loss": 1.2327,
|
| 141 |
+
"step": 22
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"epoch": 0.03,
|
| 145 |
+
"learning_rate": 1.999953280342959e-05,
|
| 146 |
+
"loss": 1.2544,
|
| 147 |
+
"step": 23
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"epoch": 0.04,
|
| 151 |
+
"learning_rate": 1.9998948817948157e-05,
|
| 152 |
+
"loss": 1.2326,
|
| 153 |
+
"step": 24
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.04,
|
| 157 |
+
"learning_rate": 1.9998131257372878e-05,
|
| 158 |
+
"loss": 1.2025,
|
| 159 |
+
"step": 25
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"epoch": 0.04,
|
| 163 |
+
"learning_rate": 1.9997080140801932e-05,
|
| 164 |
+
"loss": 1.259,
|
| 165 |
+
"step": 26
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.04,
|
| 169 |
+
"learning_rate": 1.9995795492789368e-05,
|
| 170 |
+
"loss": 1.2632,
|
| 171 |
+
"step": 27
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.04,
|
| 175 |
+
"learning_rate": 1.999427734334452e-05,
|
| 176 |
+
"loss": 1.2132,
|
| 177 |
+
"step": 28
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.04,
|
| 181 |
+
"learning_rate": 1.9992525727931303e-05,
|
| 182 |
+
"loss": 1.2555,
|
| 183 |
+
"step": 29
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"epoch": 0.04,
|
| 187 |
+
"learning_rate": 1.9990540687467394e-05,
|
| 188 |
+
"loss": 1.2657,
|
| 189 |
+
"step": 30
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 0.05,
|
| 193 |
+
"learning_rate": 1.998832226832327e-05,
|
| 194 |
+
"loss": 1.2168,
|
| 195 |
+
"step": 31
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"epoch": 0.05,
|
| 199 |
+
"learning_rate": 1.9985870522321118e-05,
|
| 200 |
+
"loss": 1.2495,
|
| 201 |
+
"step": 32
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.05,
|
| 205 |
+
"learning_rate": 1.9983185506733643e-05,
|
| 206 |
+
"loss": 1.2284,
|
| 207 |
+
"step": 33
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.05,
|
| 211 |
+
"learning_rate": 1.9980267284282718e-05,
|
| 212 |
+
"loss": 1.2396,
|
| 213 |
+
"step": 34
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.05,
|
| 217 |
+
"learning_rate": 1.9977115923137912e-05,
|
| 218 |
+
"loss": 1.212,
|
| 219 |
+
"step": 35
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.05,
|
| 223 |
+
"learning_rate": 1.9973731496914914e-05,
|
| 224 |
+
"loss": 1.2334,
|
| 225 |
+
"step": 36
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"epoch": 0.06,
|
| 229 |
+
"learning_rate": 1.9970114084673796e-05,
|
| 230 |
+
"loss": 1.2277,
|
| 231 |
+
"step": 37
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"epoch": 0.06,
|
| 235 |
+
"learning_rate": 1.9966263770917192e-05,
|
| 236 |
+
"loss": 1.2427,
|
| 237 |
+
"step": 38
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.06,
|
| 241 |
+
"learning_rate": 1.996218064558829e-05,
|
| 242 |
+
"loss": 1.27,
|
| 243 |
+
"step": 39
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"epoch": 0.06,
|
| 247 |
+
"learning_rate": 1.9957864804068752e-05,
|
| 248 |
+
"loss": 1.2774,
|
| 249 |
+
"step": 40
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.06,
|
| 253 |
+
"learning_rate": 1.995331634717649e-05,
|
| 254 |
+
"loss": 1.2491,
|
| 255 |
+
"step": 41
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.06,
|
| 259 |
+
"learning_rate": 1.994853538116329e-05,
|
| 260 |
+
"loss": 1.2824,
|
| 261 |
+
"step": 42
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.06,
|
| 265 |
+
"learning_rate": 1.994352201771236e-05,
|
| 266 |
+
"loss": 1.2848,
|
| 267 |
+
"step": 43
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"epoch": 0.07,
|
| 271 |
+
"learning_rate": 1.9938276373935688e-05,
|
| 272 |
+
"loss": 1.2225,
|
| 273 |
+
"step": 44
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"epoch": 0.07,
|
| 277 |
+
"learning_rate": 1.993279857237133e-05,
|
| 278 |
+
"loss": 1.2455,
|
| 279 |
+
"step": 45
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"epoch": 0.07,
|
| 283 |
+
"learning_rate": 1.992708874098054e-05,
|
| 284 |
+
"loss": 1.2611,
|
| 285 |
+
"step": 46
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"epoch": 0.07,
|
| 289 |
+
"learning_rate": 1.9921147013144782e-05,
|
| 290 |
+
"loss": 1.2313,
|
| 291 |
+
"step": 47
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"epoch": 0.07,
|
| 295 |
+
"learning_rate": 1.99149735276626e-05,
|
| 296 |
+
"loss": 1.2363,
|
| 297 |
+
"step": 48
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.07,
|
| 301 |
+
"learning_rate": 1.9908568428746408e-05,
|
| 302 |
+
"loss": 1.2269,
|
| 303 |
+
"step": 49
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.07,
|
| 307 |
+
"learning_rate": 1.9901931866019087e-05,
|
| 308 |
+
"loss": 1.2967,
|
| 309 |
+
"step": 50
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"epoch": 0.08,
|
| 313 |
+
"learning_rate": 1.9895063994510512e-05,
|
| 314 |
+
"loss": 1.2253,
|
| 315 |
+
"step": 51
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"epoch": 0.08,
|
| 319 |
+
"learning_rate": 1.988796497465392e-05,
|
| 320 |
+
"loss": 1.2445,
|
| 321 |
+
"step": 52
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"epoch": 0.08,
|
| 325 |
+
"learning_rate": 1.9880634972282168e-05,
|
| 326 |
+
"loss": 1.2534,
|
| 327 |
+
"step": 53
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"epoch": 0.08,
|
| 331 |
+
"learning_rate": 1.987307415862385e-05,
|
| 332 |
+
"loss": 1.2541,
|
| 333 |
+
"step": 54
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"epoch": 0.08,
|
| 337 |
+
"learning_rate": 1.986528271029931e-05,
|
| 338 |
+
"loss": 1.1781,
|
| 339 |
+
"step": 55
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.08,
|
| 343 |
+
"learning_rate": 1.985726080931651e-05,
|
| 344 |
+
"loss": 1.2588,
|
| 345 |
+
"step": 56
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.08,
|
| 349 |
+
"learning_rate": 1.9849008643066774e-05,
|
| 350 |
+
"loss": 1.2065,
|
| 351 |
+
"step": 57
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"epoch": 0.09,
|
| 355 |
+
"learning_rate": 1.9840526404320415e-05,
|
| 356 |
+
"loss": 1.1835,
|
| 357 |
+
"step": 58
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"epoch": 0.09,
|
| 361 |
+
"learning_rate": 1.9831814291222233e-05,
|
| 362 |
+
"loss": 1.2175,
|
| 363 |
+
"step": 59
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"epoch": 0.09,
|
| 367 |
+
"learning_rate": 1.982287250728689e-05,
|
| 368 |
+
"loss": 1.284,
|
| 369 |
+
"step": 60
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"epoch": 0.09,
|
| 373 |
+
"learning_rate": 1.9813701261394136e-05,
|
| 374 |
+
"loss": 1.2142,
|
| 375 |
+
"step": 61
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"epoch": 0.09,
|
| 379 |
+
"learning_rate": 1.9804300767783958e-05,
|
| 380 |
+
"loss": 1.1987,
|
| 381 |
+
"step": 62
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.09,
|
| 385 |
+
"learning_rate": 1.979467124605156e-05,
|
| 386 |
+
"loss": 1.2183,
|
| 387 |
+
"step": 63
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.1,
|
| 391 |
+
"learning_rate": 1.9784812921142232e-05,
|
| 392 |
+
"loss": 1.2228,
|
| 393 |
+
"step": 64
|
| 394 |
+
},
|
| 395 |
+
{
|
| 396 |
+
"epoch": 0.1,
|
| 397 |
+
"learning_rate": 1.977472602334609e-05,
|
| 398 |
+
"loss": 1.2348,
|
| 399 |
+
"step": 65
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"epoch": 0.1,
|
| 403 |
+
"learning_rate": 1.9764410788292724e-05,
|
| 404 |
+
"loss": 1.2709,
|
| 405 |
+
"step": 66
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"epoch": 0.1,
|
| 409 |
+
"learning_rate": 1.9753867456945653e-05,
|
| 410 |
+
"loss": 1.2204,
|
| 411 |
+
"step": 67
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"epoch": 0.1,
|
| 415 |
+
"learning_rate": 1.9743096275596735e-05,
|
| 416 |
+
"loss": 1.2384,
|
| 417 |
+
"step": 68
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"epoch": 0.1,
|
| 421 |
+
"learning_rate": 1.9732097495860388e-05,
|
| 422 |
+
"loss": 1.2821,
|
| 423 |
+
"step": 69
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.1,
|
| 427 |
+
"learning_rate": 1.9720871374667714e-05,
|
| 428 |
+
"loss": 1.2486,
|
| 429 |
+
"step": 70
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.11,
|
| 433 |
+
"learning_rate": 1.9709418174260523e-05,
|
| 434 |
+
"loss": 1.2789,
|
| 435 |
+
"step": 71
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"epoch": 0.11,
|
| 439 |
+
"learning_rate": 1.9697738162185163e-05,
|
| 440 |
+
"loss": 1.2097,
|
| 441 |
+
"step": 72
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"epoch": 0.11,
|
| 445 |
+
"learning_rate": 1.9685831611286312e-05,
|
| 446 |
+
"loss": 1.2084,
|
| 447 |
+
"step": 73
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"epoch": 0.11,
|
| 451 |
+
"learning_rate": 1.9673698799700582e-05,
|
| 452 |
+
"loss": 1.2385,
|
| 453 |
+
"step": 74
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"epoch": 0.11,
|
| 457 |
+
"learning_rate": 1.9661340010850025e-05,
|
| 458 |
+
"loss": 1.255,
|
| 459 |
+
"step": 75
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"epoch": 0.11,
|
| 463 |
+
"learning_rate": 1.9648755533435517e-05,
|
| 464 |
+
"loss": 1.1625,
|
| 465 |
+
"step": 76
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.11,
|
| 469 |
+
"learning_rate": 1.9635945661430006e-05,
|
| 470 |
+
"loss": 1.2474,
|
| 471 |
+
"step": 77
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.12,
|
| 475 |
+
"learning_rate": 1.9622910694071654e-05,
|
| 476 |
+
"loss": 1.2155,
|
| 477 |
+
"step": 78
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"epoch": 0.12,
|
| 481 |
+
"learning_rate": 1.9609650935856847e-05,
|
| 482 |
+
"loss": 1.2247,
|
| 483 |
+
"step": 79
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"epoch": 0.12,
|
| 487 |
+
"learning_rate": 1.9596166696533062e-05,
|
| 488 |
+
"loss": 1.2019,
|
| 489 |
+
"step": 80
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"epoch": 0.12,
|
| 493 |
+
"learning_rate": 1.9582458291091664e-05,
|
| 494 |
+
"loss": 1.201,
|
| 495 |
+
"step": 81
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"epoch": 0.12,
|
| 499 |
+
"learning_rate": 1.956852603976052e-05,
|
| 500 |
+
"loss": 1.1818,
|
| 501 |
+
"step": 82
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"epoch": 0.12,
|
| 505 |
+
"learning_rate": 1.9554370267996537e-05,
|
| 506 |
+
"loss": 1.2636,
|
| 507 |
+
"step": 83
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.13,
|
| 511 |
+
"learning_rate": 1.9539991306478046e-05,
|
| 512 |
+
"loss": 1.2019,
|
| 513 |
+
"step": 84
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.13,
|
| 517 |
+
"learning_rate": 1.952538949109708e-05,
|
| 518 |
+
"loss": 1.2112,
|
| 519 |
+
"step": 85
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"epoch": 0.13,
|
| 523 |
+
"learning_rate": 1.9510565162951538e-05,
|
| 524 |
+
"loss": 1.2328,
|
| 525 |
+
"step": 86
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 0.13,
|
| 529 |
+
"learning_rate": 1.9495518668337204e-05,
|
| 530 |
+
"loss": 1.187,
|
| 531 |
+
"step": 87
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"epoch": 0.13,
|
| 535 |
+
"learning_rate": 1.9480250358739667e-05,
|
| 536 |
+
"loss": 1.2198,
|
| 537 |
+
"step": 88
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"epoch": 0.13,
|
| 541 |
+
"learning_rate": 1.94647605908261e-05,
|
| 542 |
+
"loss": 1.2043,
|
| 543 |
+
"step": 89
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"epoch": 0.13,
|
| 547 |
+
"learning_rate": 1.944904972643694e-05,
|
| 548 |
+
"loss": 1.2699,
|
| 549 |
+
"step": 90
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.14,
|
| 553 |
+
"learning_rate": 1.9433118132577432e-05,
|
| 554 |
+
"loss": 1.2724,
|
| 555 |
+
"step": 91
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.14,
|
| 559 |
+
"learning_rate": 1.9416966181409047e-05,
|
| 560 |
+
"loss": 1.29,
|
| 561 |
+
"step": 92
|
| 562 |
+
},
|
| 563 |
+
{
|
| 564 |
+
"epoch": 0.14,
|
| 565 |
+
"learning_rate": 1.94005942502408e-05,
|
| 566 |
+
"loss": 1.2716,
|
| 567 |
+
"step": 93
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"epoch": 0.14,
|
| 571 |
+
"learning_rate": 1.9384002721520423e-05,
|
| 572 |
+
"loss": 1.2757,
|
| 573 |
+
"step": 94
|
| 574 |
+
},
|
| 575 |
+
{
|
| 576 |
+
"epoch": 0.14,
|
| 577 |
+
"learning_rate": 1.936719198282545e-05,
|
| 578 |
+
"loss": 1.208,
|
| 579 |
+
"step": 95
|
| 580 |
+
},
|
| 581 |
+
{
|
| 582 |
+
"epoch": 0.14,
|
| 583 |
+
"learning_rate": 1.9350162426854152e-05,
|
| 584 |
+
"loss": 1.2125,
|
| 585 |
+
"step": 96
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"epoch": 0.14,
|
| 589 |
+
"learning_rate": 1.933291445141635e-05,
|
| 590 |
+
"loss": 1.2842,
|
| 591 |
+
"step": 97
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.15,
|
| 595 |
+
"learning_rate": 1.931544845942415e-05,
|
| 596 |
+
"loss": 1.1984,
|
| 597 |
+
"step": 98
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.15,
|
| 601 |
+
"learning_rate": 1.9297764858882516e-05,
|
| 602 |
+
"loss": 1.2639,
|
| 603 |
+
"step": 99
|
| 604 |
+
},
|
| 605 |
+
{
|
| 606 |
+
"epoch": 0.15,
|
| 607 |
+
"learning_rate": 1.927986406287973e-05,
|
| 608 |
+
"loss": 1.232,
|
| 609 |
+
"step": 100
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
"epoch": 0.15,
|
| 613 |
+
"learning_rate": 1.9261746489577767e-05,
|
| 614 |
+
"loss": 1.2204,
|
| 615 |
+
"step": 101
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"epoch": 0.15,
|
| 619 |
+
"learning_rate": 1.92434125622025e-05,
|
| 620 |
+
"loss": 1.1784,
|
| 621 |
+
"step": 102
|
| 622 |
+
},
|
| 623 |
+
{
|
| 624 |
+
"epoch": 0.15,
|
| 625 |
+
"learning_rate": 1.9224862709033823e-05,
|
| 626 |
+
"loss": 1.2618,
|
| 627 |
+
"step": 103
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"epoch": 0.15,
|
| 631 |
+
"learning_rate": 1.9206097363395668e-05,
|
| 632 |
+
"loss": 1.1905,
|
| 633 |
+
"step": 104
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.16,
|
| 637 |
+
"learning_rate": 1.9187116963645845e-05,
|
| 638 |
+
"loss": 1.2221,
|
| 639 |
+
"step": 105
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.16,
|
| 643 |
+
"learning_rate": 1.9167921953165827e-05,
|
| 644 |
+
"loss": 1.123,
|
| 645 |
+
"step": 106
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"epoch": 0.16,
|
| 649 |
+
"learning_rate": 1.9148512780350384e-05,
|
| 650 |
+
"loss": 1.2856,
|
| 651 |
+
"step": 107
|
| 652 |
+
},
|
| 653 |
+
{
|
| 654 |
+
"epoch": 0.16,
|
| 655 |
+
"learning_rate": 1.9128889898597117e-05,
|
| 656 |
+
"loss": 1.2297,
|
| 657 |
+
"step": 108
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"epoch": 0.16,
|
| 661 |
+
"learning_rate": 1.910905376629585e-05,
|
| 662 |
+
"loss": 1.2103,
|
| 663 |
+
"step": 109
|
| 664 |
+
},
|
| 665 |
+
{
|
| 666 |
+
"epoch": 0.16,
|
| 667 |
+
"learning_rate": 1.9089004846817947e-05,
|
| 668 |
+
"loss": 1.2346,
|
| 669 |
+
"step": 110
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 0.17,
|
| 673 |
+
"learning_rate": 1.9068743608505454e-05,
|
| 674 |
+
"loss": 1.2455,
|
| 675 |
+
"step": 111
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.17,
|
| 679 |
+
"learning_rate": 1.9048270524660197e-05,
|
| 680 |
+
"loss": 1.2047,
|
| 681 |
+
"step": 112
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.17,
|
| 685 |
+
"learning_rate": 1.902758607353269e-05,
|
| 686 |
+
"loss": 1.2628,
|
| 687 |
+
"step": 113
|
| 688 |
+
},
|
| 689 |
+
{
|
| 690 |
+
"epoch": 0.17,
|
| 691 |
+
"learning_rate": 1.9006690738310988e-05,
|
| 692 |
+
"loss": 1.2368,
|
| 693 |
+
"step": 114
|
| 694 |
+
},
|
| 695 |
+
{
|
| 696 |
+
"epoch": 0.17,
|
| 697 |
+
"learning_rate": 1.898558500710939e-05,
|
| 698 |
+
"loss": 1.2111,
|
| 699 |
+
"step": 115
|
| 700 |
+
},
|
| 701 |
+
{
|
| 702 |
+
"epoch": 0.17,
|
| 703 |
+
"learning_rate": 1.896426937295704e-05,
|
| 704 |
+
"loss": 1.217,
|
| 705 |
+
"step": 116
|
| 706 |
+
},
|
| 707 |
+
{
|
| 708 |
+
"epoch": 0.17,
|
| 709 |
+
"learning_rate": 1.89427443337864e-05,
|
| 710 |
+
"loss": 1.2152,
|
| 711 |
+
"step": 117
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.18,
|
| 715 |
+
"learning_rate": 1.8921010392421628e-05,
|
| 716 |
+
"loss": 1.2946,
|
| 717 |
+
"step": 118
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.18,
|
| 721 |
+
"learning_rate": 1.889906805656684e-05,
|
| 722 |
+
"loss": 1.1985,
|
| 723 |
+
"step": 119
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.18,
|
| 727 |
+
"learning_rate": 1.8876917838794226e-05,
|
| 728 |
+
"loss": 1.2813,
|
| 729 |
+
"step": 120
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"epoch": 0.18,
|
| 733 |
+
"learning_rate": 1.8854560256532098e-05,
|
| 734 |
+
"loss": 1.2304,
|
| 735 |
+
"step": 121
|
| 736 |
+
},
|
| 737 |
+
{
|
| 738 |
+
"epoch": 0.18,
|
| 739 |
+
"learning_rate": 1.8831995832052802e-05,
|
| 740 |
+
"loss": 1.2149,
|
| 741 |
+
"step": 122
|
| 742 |
+
},
|
| 743 |
+
{
|
| 744 |
+
"epoch": 0.18,
|
| 745 |
+
"learning_rate": 1.8809225092460488e-05,
|
| 746 |
+
"loss": 1.2348,
|
| 747 |
+
"step": 123
|
| 748 |
+
},
|
| 749 |
+
{
|
| 750 |
+
"epoch": 0.18,
|
| 751 |
+
"learning_rate": 1.8786248569678847e-05,
|
| 752 |
+
"loss": 1.2094,
|
| 753 |
+
"step": 124
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 0.19,
|
| 757 |
+
"learning_rate": 1.8763066800438638e-05,
|
| 758 |
+
"loss": 1.2816,
|
| 759 |
+
"step": 125
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.19,
|
| 763 |
+
"learning_rate": 1.873968032626518e-05,
|
| 764 |
+
"loss": 1.2087,
|
| 765 |
+
"step": 126
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.19,
|
| 769 |
+
"learning_rate": 1.8716089693465693e-05,
|
| 770 |
+
"loss": 1.2106,
|
| 771 |
+
"step": 127
|
| 772 |
+
},
|
| 773 |
+
{
|
| 774 |
+
"epoch": 0.19,
|
| 775 |
+
"learning_rate": 1.869229545311653e-05,
|
| 776 |
+
"loss": 1.2248,
|
| 777 |
+
"step": 128
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"epoch": 0.19,
|
| 781 |
+
"learning_rate": 1.8668298161050308e-05,
|
| 782 |
+
"loss": 1.2067,
|
| 783 |
+
"step": 129
|
| 784 |
+
},
|
| 785 |
+
{
|
| 786 |
+
"epoch": 0.19,
|
| 787 |
+
"learning_rate": 1.8644098377842934e-05,
|
| 788 |
+
"loss": 1.2321,
|
| 789 |
+
"step": 130
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"epoch": 0.19,
|
| 793 |
+
"learning_rate": 1.8619696668800494e-05,
|
| 794 |
+
"loss": 1.2214,
|
| 795 |
+
"step": 131
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 0.2,
|
| 799 |
+
"learning_rate": 1.8595093603946053e-05,
|
| 800 |
+
"loss": 1.2007,
|
| 801 |
+
"step": 132
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.2,
|
| 805 |
+
"learning_rate": 1.8570289758006346e-05,
|
| 806 |
+
"loss": 1.2108,
|
| 807 |
+
"step": 133
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.2,
|
| 811 |
+
"learning_rate": 1.8545285710398343e-05,
|
| 812 |
+
"loss": 1.255,
|
| 813 |
+
"step": 134
|
| 814 |
+
},
|
| 815 |
+
{
|
| 816 |
+
"epoch": 0.2,
|
| 817 |
+
"learning_rate": 1.852008204521572e-05,
|
| 818 |
+
"loss": 1.1655,
|
| 819 |
+
"step": 135
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"epoch": 0.2,
|
| 823 |
+
"learning_rate": 1.8494679351215212e-05,
|
| 824 |
+
"loss": 1.1728,
|
| 825 |
+
"step": 136
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"epoch": 0.2,
|
| 829 |
+
"learning_rate": 1.846907822180286e-05,
|
| 830 |
+
"loss": 1.2236,
|
| 831 |
+
"step": 137
|
| 832 |
+
},
|
| 833 |
+
{
|
| 834 |
+
"epoch": 0.21,
|
| 835 |
+
"learning_rate": 1.8443279255020153e-05,
|
| 836 |
+
"loss": 1.1678,
|
| 837 |
+
"step": 138
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 0.21,
|
| 841 |
+
"learning_rate": 1.8417283053530047e-05,
|
| 842 |
+
"loss": 1.2252,
|
| 843 |
+
"step": 139
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.21,
|
| 847 |
+
"learning_rate": 1.8391090224602895e-05,
|
| 848 |
+
"loss": 1.2186,
|
| 849 |
+
"step": 140
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.21,
|
| 853 |
+
"learning_rate": 1.8364701380102267e-05,
|
| 854 |
+
"loss": 1.1997,
|
| 855 |
+
"step": 141
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"epoch": 0.21,
|
| 859 |
+
"learning_rate": 1.8338117136470645e-05,
|
| 860 |
+
"loss": 1.2197,
|
| 861 |
+
"step": 142
|
| 862 |
+
},
|
| 863 |
+
{
|
| 864 |
+
"epoch": 0.21,
|
| 865 |
+
"learning_rate": 1.831133811471503e-05,
|
| 866 |
+
"loss": 1.2612,
|
| 867 |
+
"step": 143
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"epoch": 0.21,
|
| 871 |
+
"learning_rate": 1.8284364940392426e-05,
|
| 872 |
+
"loss": 1.1799,
|
| 873 |
+
"step": 144
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"epoch": 0.22,
|
| 877 |
+
"learning_rate": 1.825719824359524e-05,
|
| 878 |
+
"loss": 1.2105,
|
| 879 |
+
"step": 145
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 0.22,
|
| 883 |
+
"learning_rate": 1.8229838658936566e-05,
|
| 884 |
+
"loss": 1.2328,
|
| 885 |
+
"step": 146
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.22,
|
| 889 |
+
"learning_rate": 1.820228682553533e-05,
|
| 890 |
+
"loss": 1.2605,
|
| 891 |
+
"step": 147
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.22,
|
| 895 |
+
"learning_rate": 1.8174543387001403e-05,
|
| 896 |
+
"loss": 1.1525,
|
| 897 |
+
"step": 148
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"epoch": 0.22,
|
| 901 |
+
"learning_rate": 1.8146608991420533e-05,
|
| 902 |
+
"loss": 1.1731,
|
| 903 |
+
"step": 149
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"epoch": 0.22,
|
| 907 |
+
"learning_rate": 1.811848429133922e-05,
|
| 908 |
+
"loss": 1.2118,
|
| 909 |
+
"step": 150
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"epoch": 0.22,
|
| 913 |
+
"learning_rate": 1.8090169943749477e-05,
|
| 914 |
+
"loss": 1.1936,
|
| 915 |
+
"step": 151
|
| 916 |
+
},
|
| 917 |
+
{
|
| 918 |
+
"epoch": 0.23,
|
| 919 |
+
"learning_rate": 1.8061666610073465e-05,
|
| 920 |
+
"loss": 1.13,
|
| 921 |
+
"step": 152
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 0.23,
|
| 925 |
+
"learning_rate": 1.8032974956148064e-05,
|
| 926 |
+
"loss": 1.1965,
|
| 927 |
+
"step": 153
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.23,
|
| 931 |
+
"learning_rate": 1.8004095652209304e-05,
|
| 932 |
+
"loss": 1.221,
|
| 933 |
+
"step": 154
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.23,
|
| 937 |
+
"learning_rate": 1.7975029372876706e-05,
|
| 938 |
+
"loss": 1.1929,
|
| 939 |
+
"step": 155
|
| 940 |
+
},
|
| 941 |
+
{
|
| 942 |
+
"epoch": 0.23,
|
| 943 |
+
"learning_rate": 1.7945776797137544e-05,
|
| 944 |
+
"loss": 1.1709,
|
| 945 |
+
"step": 156
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"epoch": 0.23,
|
| 949 |
+
"learning_rate": 1.791633860833096e-05,
|
| 950 |
+
"loss": 1.2288,
|
| 951 |
+
"step": 157
|
| 952 |
+
},
|
| 953 |
+
{
|
| 954 |
+
"epoch": 0.24,
|
| 955 |
+
"learning_rate": 1.7886715494132008e-05,
|
| 956 |
+
"loss": 1.266,
|
| 957 |
+
"step": 158
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"epoch": 0.24,
|
| 961 |
+
"learning_rate": 1.7856908146535602e-05,
|
| 962 |
+
"loss": 1.1853,
|
| 963 |
+
"step": 159
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 0.24,
|
| 967 |
+
"learning_rate": 1.7826917261840337e-05,
|
| 968 |
+
"loss": 1.1828,
|
| 969 |
+
"step": 160
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.24,
|
| 973 |
+
"learning_rate": 1.7796743540632226e-05,
|
| 974 |
+
"loss": 1.1766,
|
| 975 |
+
"step": 161
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.24,
|
| 979 |
+
"learning_rate": 1.7766387687768338e-05,
|
| 980 |
+
"loss": 1.2138,
|
| 981 |
+
"step": 162
|
| 982 |
+
},
|
| 983 |
+
{
|
| 984 |
+
"epoch": 0.24,
|
| 985 |
+
"learning_rate": 1.7735850412360332e-05,
|
| 986 |
+
"loss": 1.1841,
|
| 987 |
+
"step": 163
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"epoch": 0.24,
|
| 991 |
+
"learning_rate": 1.7705132427757895e-05,
|
| 992 |
+
"loss": 1.2339,
|
| 993 |
+
"step": 164
|
| 994 |
+
},
|
| 995 |
+
{
|
| 996 |
+
"epoch": 0.25,
|
| 997 |
+
"learning_rate": 1.7674234451532065e-05,
|
| 998 |
+
"loss": 1.2144,
|
| 999 |
+
"step": 165
|
| 1000 |
+
},
|
| 1001 |
+
{
|
| 1002 |
+
"epoch": 0.25,
|
| 1003 |
+
"learning_rate": 1.7643157205458483e-05,
|
| 1004 |
+
"loss": 1.2213,
|
| 1005 |
+
"step": 166
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 0.25,
|
| 1009 |
+
"learning_rate": 1.7611901415500536e-05,
|
| 1010 |
+
"loss": 1.218,
|
| 1011 |
+
"step": 167
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.25,
|
| 1015 |
+
"learning_rate": 1.7580467811792374e-05,
|
| 1016 |
+
"loss": 1.205,
|
| 1017 |
+
"step": 168
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.25,
|
| 1021 |
+
"learning_rate": 1.7548857128621878e-05,
|
| 1022 |
+
"loss": 1.191,
|
| 1023 |
+
"step": 169
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"epoch": 0.25,
|
| 1027 |
+
"learning_rate": 1.7517070104413497e-05,
|
| 1028 |
+
"loss": 1.2311,
|
| 1029 |
+
"step": 170
|
| 1030 |
+
},
|
| 1031 |
+
{
|
| 1032 |
+
"epoch": 0.25,
|
| 1033 |
+
"learning_rate": 1.7485107481711014e-05,
|
| 1034 |
+
"loss": 1.2155,
|
| 1035 |
+
"step": 171
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"epoch": 0.26,
|
| 1039 |
+
"learning_rate": 1.745297000716016e-05,
|
| 1040 |
+
"loss": 1.1845,
|
| 1041 |
+
"step": 172
|
| 1042 |
+
},
|
| 1043 |
+
{
|
| 1044 |
+
"epoch": 0.26,
|
| 1045 |
+
"learning_rate": 1.7420658431491224e-05,
|
| 1046 |
+
"loss": 1.1699,
|
| 1047 |
+
"step": 173
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 0.26,
|
| 1051 |
+
"learning_rate": 1.7388173509501475e-05,
|
| 1052 |
+
"loss": 1.2239,
|
| 1053 |
+
"step": 174
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.26,
|
| 1057 |
+
"learning_rate": 1.7355516000037555e-05,
|
| 1058 |
+
"loss": 1.179,
|
| 1059 |
+
"step": 175
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.26,
|
| 1063 |
+
"learning_rate": 1.7322686665977738e-05,
|
| 1064 |
+
"loss": 1.2051,
|
| 1065 |
+
"step": 176
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"epoch": 0.26,
|
| 1069 |
+
"learning_rate": 1.7289686274214116e-05,
|
| 1070 |
+
"loss": 1.1782,
|
| 1071 |
+
"step": 177
|
| 1072 |
+
},
|
| 1073 |
+
{
|
| 1074 |
+
"epoch": 0.26,
|
| 1075 |
+
"learning_rate": 1.7256515595634688e-05,
|
| 1076 |
+
"loss": 1.2368,
|
| 1077 |
+
"step": 178
|
| 1078 |
+
},
|
| 1079 |
+
{
|
| 1080 |
+
"epoch": 0.27,
|
| 1081 |
+
"learning_rate": 1.722317540510534e-05,
|
| 1082 |
+
"loss": 1.2095,
|
| 1083 |
+
"step": 179
|
| 1084 |
+
},
|
| 1085 |
+
{
|
| 1086 |
+
"epoch": 0.27,
|
| 1087 |
+
"learning_rate": 1.7189666481451755e-05,
|
| 1088 |
+
"loss": 1.2139,
|
| 1089 |
+
"step": 180
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"epoch": 0.27,
|
| 1093 |
+
"learning_rate": 1.715598960744121e-05,
|
| 1094 |
+
"loss": 1.1589,
|
| 1095 |
+
"step": 181
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.27,
|
| 1099 |
+
"learning_rate": 1.712214556976431e-05,
|
| 1100 |
+
"loss": 1.1475,
|
| 1101 |
+
"step": 182
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.27,
|
| 1105 |
+
"learning_rate": 1.7088135159016584e-05,
|
| 1106 |
+
"loss": 1.1527,
|
| 1107 |
+
"step": 183
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"epoch": 0.27,
|
| 1111 |
+
"learning_rate": 1.7053959169680033e-05,
|
| 1112 |
+
"loss": 1.1701,
|
| 1113 |
+
"step": 184
|
| 1114 |
+
},
|
| 1115 |
+
{
|
| 1116 |
+
"epoch": 0.28,
|
| 1117 |
+
"learning_rate": 1.7019618400104572e-05,
|
| 1118 |
+
"loss": 1.2017,
|
| 1119 |
+
"step": 185
|
| 1120 |
+
},
|
| 1121 |
+
{
|
| 1122 |
+
"epoch": 0.28,
|
| 1123 |
+
"learning_rate": 1.6985113652489374e-05,
|
| 1124 |
+
"loss": 1.2087,
|
| 1125 |
+
"step": 186
|
| 1126 |
+
},
|
| 1127 |
+
{
|
| 1128 |
+
"epoch": 0.28,
|
| 1129 |
+
"learning_rate": 1.695044573286413e-05,
|
| 1130 |
+
"loss": 1.249,
|
| 1131 |
+
"step": 187
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"epoch": 0.28,
|
| 1135 |
+
"learning_rate": 1.6915615451070234e-05,
|
| 1136 |
+
"loss": 1.1857,
|
| 1137 |
+
"step": 188
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.28,
|
| 1141 |
+
"learning_rate": 1.688062362074184e-05,
|
| 1142 |
+
"loss": 1.2133,
|
| 1143 |
+
"step": 189
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.28,
|
| 1147 |
+
"learning_rate": 1.684547105928689e-05,
|
| 1148 |
+
"loss": 1.2234,
|
| 1149 |
+
"step": 190
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"epoch": 0.28,
|
| 1153 |
+
"learning_rate": 1.6810158587867973e-05,
|
| 1154 |
+
"loss": 1.1919,
|
| 1155 |
+
"step": 191
|
| 1156 |
+
},
|
| 1157 |
+
{
|
| 1158 |
+
"epoch": 0.29,
|
| 1159 |
+
"learning_rate": 1.677468703138319e-05,
|
| 1160 |
+
"loss": 1.2703,
|
| 1161 |
+
"step": 192
|
| 1162 |
+
},
|
| 1163 |
+
{
|
| 1164 |
+
"epoch": 0.29,
|
| 1165 |
+
"learning_rate": 1.673905721844686e-05,
|
| 1166 |
+
"loss": 1.1511,
|
| 1167 |
+
"step": 193
|
| 1168 |
+
},
|
| 1169 |
+
{
|
| 1170 |
+
"epoch": 0.29,
|
| 1171 |
+
"learning_rate": 1.670326998137016e-05,
|
| 1172 |
+
"loss": 1.1969,
|
| 1173 |
+
"step": 194
|
| 1174 |
+
},
|
| 1175 |
+
{
|
| 1176 |
+
"epoch": 0.29,
|
| 1177 |
+
"learning_rate": 1.666732615614169e-05,
|
| 1178 |
+
"loss": 1.1847,
|
| 1179 |
+
"step": 195
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.29,
|
| 1183 |
+
"learning_rate": 1.6631226582407954e-05,
|
| 1184 |
+
"loss": 1.2302,
|
| 1185 |
+
"step": 196
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.29,
|
| 1189 |
+
"learning_rate": 1.6594972103453727e-05,
|
| 1190 |
+
"loss": 1.2383,
|
| 1191 |
+
"step": 197
|
| 1192 |
+
},
|
| 1193 |
+
{
|
| 1194 |
+
"epoch": 0.29,
|
| 1195 |
+
"learning_rate": 1.6558563566182365e-05,
|
| 1196 |
+
"loss": 1.2046,
|
| 1197 |
+
"step": 198
|
| 1198 |
+
},
|
| 1199 |
+
{
|
| 1200 |
+
"epoch": 0.3,
|
| 1201 |
+
"learning_rate": 1.652200182109602e-05,
|
| 1202 |
+
"loss": 1.173,
|
| 1203 |
+
"step": 199
|
| 1204 |
+
},
|
| 1205 |
+
{
|
| 1206 |
+
"epoch": 0.3,
|
| 1207 |
+
"learning_rate": 1.6485287722275783e-05,
|
| 1208 |
+
"loss": 1.1651,
|
| 1209 |
+
"step": 200
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"epoch": 0.3,
|
| 1213 |
+
"learning_rate": 1.6448422127361707e-05,
|
| 1214 |
+
"loss": 1.1685,
|
| 1215 |
+
"step": 201
|
| 1216 |
+
},
|
| 1217 |
+
{
|
| 1218 |
+
"epoch": 0.3,
|
| 1219 |
+
"learning_rate": 1.64114058975328e-05,
|
| 1220 |
+
"loss": 1.2085,
|
| 1221 |
+
"step": 202
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.3,
|
| 1225 |
+
"learning_rate": 1.63742398974869e-05,
|
| 1226 |
+
"loss": 1.2296,
|
| 1227 |
+
"step": 203
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.3,
|
| 1231 |
+
"learning_rate": 1.6336924995420453e-05,
|
| 1232 |
+
"loss": 1.1602,
|
| 1233 |
+
"step": 204
|
| 1234 |
+
},
|
| 1235 |
+
{
|
| 1236 |
+
"epoch": 0.31,
|
| 1237 |
+
"learning_rate": 1.6299462063008272e-05,
|
| 1238 |
+
"loss": 1.26,
|
| 1239 |
+
"step": 205
|
| 1240 |
+
},
|
| 1241 |
+
{
|
| 1242 |
+
"epoch": 0.31,
|
| 1243 |
+
"learning_rate": 1.626185197538314e-05,
|
| 1244 |
+
"loss": 1.1697,
|
| 1245 |
+
"step": 206
|
| 1246 |
+
},
|
| 1247 |
+
{
|
| 1248 |
+
"epoch": 0.31,
|
| 1249 |
+
"learning_rate": 1.6224095611115385e-05,
|
| 1250 |
+
"loss": 1.2056,
|
| 1251 |
+
"step": 207
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 0.31,
|
| 1255 |
+
"learning_rate": 1.6186193852192356e-05,
|
| 1256 |
+
"loss": 1.205,
|
| 1257 |
+
"step": 208
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"epoch": 0.31,
|
| 1261 |
+
"learning_rate": 1.6148147583997813e-05,
|
| 1262 |
+
"loss": 1.1565,
|
| 1263 |
+
"step": 209
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.31,
|
| 1267 |
+
"learning_rate": 1.6109957695291246e-05,
|
| 1268 |
+
"loss": 1.1724,
|
| 1269 |
+
"step": 210
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.31,
|
| 1273 |
+
"learning_rate": 1.6071625078187113e-05,
|
| 1274 |
+
"loss": 1.1426,
|
| 1275 |
+
"step": 211
|
| 1276 |
+
},
|
| 1277 |
+
{
|
| 1278 |
+
"epoch": 0.32,
|
| 1279 |
+
"learning_rate": 1.603315062813401e-05,
|
| 1280 |
+
"loss": 1.2175,
|
| 1281 |
+
"step": 212
|
| 1282 |
+
},
|
| 1283 |
+
{
|
| 1284 |
+
"epoch": 0.32,
|
| 1285 |
+
"learning_rate": 1.5994535243893742e-05,
|
| 1286 |
+
"loss": 1.205,
|
| 1287 |
+
"step": 213
|
| 1288 |
+
},
|
| 1289 |
+
{
|
| 1290 |
+
"epoch": 0.32,
|
| 1291 |
+
"learning_rate": 1.5955779827520327e-05,
|
| 1292 |
+
"loss": 1.2054,
|
| 1293 |
+
"step": 214
|
| 1294 |
+
},
|
| 1295 |
+
{
|
| 1296 |
+
"epoch": 0.32,
|
| 1297 |
+
"learning_rate": 1.5916885284338937e-05,
|
| 1298 |
+
"loss": 1.2056,
|
| 1299 |
+
"step": 215
|
| 1300 |
+
},
|
| 1301 |
+
{
|
| 1302 |
+
"epoch": 0.32,
|
| 1303 |
+
"learning_rate": 1.5877852522924733e-05,
|
| 1304 |
+
"loss": 1.1235,
|
| 1305 |
+
"step": 216
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.32,
|
| 1309 |
+
"learning_rate": 1.5838682455081657e-05,
|
| 1310 |
+
"loss": 1.189,
|
| 1311 |
+
"step": 217
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.32,
|
| 1315 |
+
"learning_rate": 1.5799375995821116e-05,
|
| 1316 |
+
"loss": 1.2081,
|
| 1317 |
+
"step": 218
|
| 1318 |
+
},
|
| 1319 |
+
{
|
| 1320 |
+
"epoch": 0.33,
|
| 1321 |
+
"learning_rate": 1.5759934063340627e-05,
|
| 1322 |
+
"loss": 1.2584,
|
| 1323 |
+
"step": 219
|
| 1324 |
+
},
|
| 1325 |
+
{
|
| 1326 |
+
"epoch": 0.33,
|
| 1327 |
+
"learning_rate": 1.5720357579002346e-05,
|
| 1328 |
+
"loss": 1.2219,
|
| 1329 |
+
"step": 220
|
| 1330 |
+
},
|
| 1331 |
+
{
|
| 1332 |
+
"epoch": 0.33,
|
| 1333 |
+
"learning_rate": 1.568064746731156e-05,
|
| 1334 |
+
"loss": 1.1252,
|
| 1335 |
+
"step": 221
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 0.33,
|
| 1339 |
+
"learning_rate": 1.5640804655895086e-05,
|
| 1340 |
+
"loss": 1.2149,
|
| 1341 |
+
"step": 222
|
| 1342 |
+
},
|
| 1343 |
+
{
|
| 1344 |
+
"epoch": 0.33,
|
| 1345 |
+
"learning_rate": 1.5600830075479604e-05,
|
| 1346 |
+
"loss": 1.144,
|
| 1347 |
+
"step": 223
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.33,
|
| 1351 |
+
"learning_rate": 1.5560724659869905e-05,
|
| 1352 |
+
"loss": 1.1205,
|
| 1353 |
+
"step": 224
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.33,
|
| 1357 |
+
"learning_rate": 1.5520489345927095e-05,
|
| 1358 |
+
"loss": 1.2103,
|
| 1359 |
+
"step": 225
|
| 1360 |
+
},
|
| 1361 |
+
{
|
| 1362 |
+
"epoch": 0.34,
|
| 1363 |
+
"learning_rate": 1.5480125073546705e-05,
|
| 1364 |
+
"loss": 1.1597,
|
| 1365 |
+
"step": 226
|
| 1366 |
+
},
|
| 1367 |
+
{
|
| 1368 |
+
"epoch": 0.34,
|
| 1369 |
+
"learning_rate": 1.5439632785636707e-05,
|
| 1370 |
+
"loss": 1.217,
|
| 1371 |
+
"step": 227
|
| 1372 |
+
},
|
| 1373 |
+
{
|
| 1374 |
+
"epoch": 0.34,
|
| 1375 |
+
"learning_rate": 1.539901342809554e-05,
|
| 1376 |
+
"loss": 1.148,
|
| 1377 |
+
"step": 228
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"epoch": 0.34,
|
| 1381 |
+
"learning_rate": 1.5358267949789968e-05,
|
| 1382 |
+
"loss": 1.2158,
|
| 1383 |
+
"step": 229
|
| 1384 |
+
},
|
| 1385 |
+
{
|
| 1386 |
+
"epoch": 0.34,
|
| 1387 |
+
"learning_rate": 1.5317397302532933e-05,
|
| 1388 |
+
"loss": 1.2159,
|
| 1389 |
+
"step": 230
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.34,
|
| 1393 |
+
"learning_rate": 1.527640244106133e-05,
|
| 1394 |
+
"loss": 1.1752,
|
| 1395 |
+
"step": 231
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.35,
|
| 1399 |
+
"learning_rate": 1.5235284323013674e-05,
|
| 1400 |
+
"loss": 1.2458,
|
| 1401 |
+
"step": 232
|
| 1402 |
+
},
|
| 1403 |
+
{
|
| 1404 |
+
"epoch": 0.35,
|
| 1405 |
+
"learning_rate": 1.5194043908907774e-05,
|
| 1406 |
+
"loss": 1.1763,
|
| 1407 |
+
"step": 233
|
| 1408 |
+
},
|
| 1409 |
+
{
|
| 1410 |
+
"epoch": 0.35,
|
| 1411 |
+
"learning_rate": 1.515268216211825e-05,
|
| 1412 |
+
"loss": 1.1833,
|
| 1413 |
+
"step": 234
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"epoch": 0.35,
|
| 1417 |
+
"learning_rate": 1.5111200048854055e-05,
|
| 1418 |
+
"loss": 1.1247,
|
| 1419 |
+
"step": 235
|
| 1420 |
+
},
|
| 1421 |
+
{
|
| 1422 |
+
"epoch": 0.35,
|
| 1423 |
+
"learning_rate": 1.5069598538135905e-05,
|
| 1424 |
+
"loss": 1.1844,
|
| 1425 |
+
"step": 236
|
| 1426 |
+
},
|
| 1427 |
+
{
|
| 1428 |
+
"epoch": 0.35,
|
| 1429 |
+
"learning_rate": 1.5027878601773633e-05,
|
| 1430 |
+
"loss": 1.234,
|
| 1431 |
+
"step": 237
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.35,
|
| 1435 |
+
"learning_rate": 1.4986041214343487e-05,
|
| 1436 |
+
"loss": 1.1977,
|
| 1437 |
+
"step": 238
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 0.36,
|
| 1441 |
+
"learning_rate": 1.494408735316537e-05,
|
| 1442 |
+
"loss": 1.1907,
|
| 1443 |
+
"step": 239
|
| 1444 |
+
},
|
| 1445 |
+
{
|
| 1446 |
+
"epoch": 0.36,
|
| 1447 |
+
"learning_rate": 1.490201799828001e-05,
|
| 1448 |
+
"loss": 1.1919,
|
| 1449 |
+
"step": 240
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"epoch": 0.36,
|
| 1453 |
+
"learning_rate": 1.485983413242606e-05,
|
| 1454 |
+
"loss": 1.2155,
|
| 1455 |
+
"step": 241
|
| 1456 |
+
},
|
| 1457 |
+
{
|
| 1458 |
+
"epoch": 0.36,
|
| 1459 |
+
"learning_rate": 1.4817536741017153e-05,
|
| 1460 |
+
"loss": 1.1924,
|
| 1461 |
+
"step": 242
|
| 1462 |
+
},
|
| 1463 |
+
{
|
| 1464 |
+
"epoch": 0.36,
|
| 1465 |
+
"learning_rate": 1.4775126812118865e-05,
|
| 1466 |
+
"loss": 1.1404,
|
| 1467 |
+
"step": 243
|
| 1468 |
+
},
|
| 1469 |
+
{
|
| 1470 |
+
"epoch": 0.36,
|
| 1471 |
+
"learning_rate": 1.473260533642565e-05,
|
| 1472 |
+
"loss": 1.1864,
|
| 1473 |
+
"step": 244
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.36,
|
| 1477 |
+
"learning_rate": 1.4689973307237687e-05,
|
| 1478 |
+
"loss": 1.1742,
|
| 1479 |
+
"step": 245
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 0.37,
|
| 1483 |
+
"learning_rate": 1.4647231720437687e-05,
|
| 1484 |
+
"loss": 1.1345,
|
| 1485 |
+
"step": 246
|
| 1486 |
+
},
|
| 1487 |
+
{
|
| 1488 |
+
"epoch": 0.37,
|
| 1489 |
+
"learning_rate": 1.4604381574467616e-05,
|
| 1490 |
+
"loss": 1.1472,
|
| 1491 |
+
"step": 247
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"epoch": 0.37,
|
| 1495 |
+
"learning_rate": 1.4561423870305385e-05,
|
| 1496 |
+
"loss": 1.2398,
|
| 1497 |
+
"step": 248
|
| 1498 |
+
},
|
| 1499 |
+
{
|
| 1500 |
+
"epoch": 0.37,
|
| 1501 |
+
"learning_rate": 1.4518359611441452e-05,
|
| 1502 |
+
"loss": 1.1712,
|
| 1503 |
+
"step": 249
|
| 1504 |
+
},
|
| 1505 |
+
{
|
| 1506 |
+
"epoch": 0.37,
|
| 1507 |
+
"learning_rate": 1.4475189803855399e-05,
|
| 1508 |
+
"loss": 1.1982,
|
| 1509 |
+
"step": 250
|
| 1510 |
+
},
|
| 1511 |
+
{
|
| 1512 |
+
"epoch": 0.37,
|
| 1513 |
+
"learning_rate": 1.4431915455992416e-05,
|
| 1514 |
+
"loss": 1.1724,
|
| 1515 |
+
"step": 251
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.38,
|
| 1519 |
+
"learning_rate": 1.438853757873975e-05,
|
| 1520 |
+
"loss": 1.1742,
|
| 1521 |
+
"step": 252
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 0.38,
|
| 1525 |
+
"learning_rate": 1.4345057185403098e-05,
|
| 1526 |
+
"loss": 1.199,
|
| 1527 |
+
"step": 253
|
| 1528 |
+
},
|
| 1529 |
+
{
|
| 1530 |
+
"epoch": 0.38,
|
| 1531 |
+
"learning_rate": 1.430147529168292e-05,
|
| 1532 |
+
"loss": 1.1732,
|
| 1533 |
+
"step": 254
|
| 1534 |
+
},
|
| 1535 |
+
{
|
| 1536 |
+
"epoch": 0.38,
|
| 1537 |
+
"learning_rate": 1.4257792915650728e-05,
|
| 1538 |
+
"loss": 1.2167,
|
| 1539 |
+
"step": 255
|
| 1540 |
+
},
|
| 1541 |
+
{
|
| 1542 |
+
"epoch": 0.38,
|
| 1543 |
+
"learning_rate": 1.4214011077725291e-05,
|
| 1544 |
+
"loss": 1.1388,
|
| 1545 |
+
"step": 256
|
| 1546 |
+
},
|
| 1547 |
+
{
|
| 1548 |
+
"epoch": 0.38,
|
| 1549 |
+
"learning_rate": 1.4170130800648814e-05,
|
| 1550 |
+
"loss": 1.2166,
|
| 1551 |
+
"step": 257
|
| 1552 |
+
},
|
| 1553 |
+
{
|
| 1554 |
+
"epoch": 0.38,
|
| 1555 |
+
"learning_rate": 1.4126153109463025e-05,
|
| 1556 |
+
"loss": 1.1451,
|
| 1557 |
+
"step": 258
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.39,
|
| 1561 |
+
"learning_rate": 1.4082079031485253e-05,
|
| 1562 |
+
"loss": 1.1513,
|
| 1563 |
+
"step": 259
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 0.39,
|
| 1567 |
+
"learning_rate": 1.4037909596284411e-05,
|
| 1568 |
+
"loss": 1.1704,
|
| 1569 |
+
"step": 260
|
| 1570 |
+
},
|
| 1571 |
+
{
|
| 1572 |
+
"epoch": 0.39,
|
| 1573 |
+
"learning_rate": 1.3993645835656957e-05,
|
| 1574 |
+
"loss": 1.1971,
|
| 1575 |
+
"step": 261
|
| 1576 |
+
},
|
| 1577 |
+
{
|
| 1578 |
+
"epoch": 0.39,
|
| 1579 |
+
"learning_rate": 1.394928878360279e-05,
|
| 1580 |
+
"loss": 1.2009,
|
| 1581 |
+
"step": 262
|
| 1582 |
+
},
|
| 1583 |
+
{
|
| 1584 |
+
"epoch": 0.39,
|
| 1585 |
+
"learning_rate": 1.3904839476301088e-05,
|
| 1586 |
+
"loss": 1.2543,
|
| 1587 |
+
"step": 263
|
| 1588 |
+
},
|
| 1589 |
+
{
|
| 1590 |
+
"epoch": 0.39,
|
| 1591 |
+
"learning_rate": 1.3860298952086115e-05,
|
| 1592 |
+
"loss": 1.1814,
|
| 1593 |
+
"step": 264
|
| 1594 |
+
},
|
| 1595 |
+
{
|
| 1596 |
+
"epoch": 0.39,
|
| 1597 |
+
"learning_rate": 1.3815668251422953e-05,
|
| 1598 |
+
"loss": 1.1364,
|
| 1599 |
+
"step": 265
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.4,
|
| 1603 |
+
"learning_rate": 1.3770948416883205e-05,
|
| 1604 |
+
"loss": 1.194,
|
| 1605 |
+
"step": 266
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 0.4,
|
| 1609 |
+
"learning_rate": 1.3726140493120639e-05,
|
| 1610 |
+
"loss": 1.1886,
|
| 1611 |
+
"step": 267
|
| 1612 |
+
},
|
| 1613 |
+
{
|
| 1614 |
+
"epoch": 0.4,
|
| 1615 |
+
"learning_rate": 1.3681245526846782e-05,
|
| 1616 |
+
"loss": 1.1643,
|
| 1617 |
+
"step": 268
|
| 1618 |
+
},
|
| 1619 |
+
{
|
| 1620 |
+
"epoch": 0.4,
|
| 1621 |
+
"learning_rate": 1.3636264566806473e-05,
|
| 1622 |
+
"loss": 1.1556,
|
| 1623 |
+
"step": 269
|
| 1624 |
+
},
|
| 1625 |
+
{
|
| 1626 |
+
"epoch": 0.4,
|
| 1627 |
+
"learning_rate": 1.3591198663753358e-05,
|
| 1628 |
+
"loss": 1.1988,
|
| 1629 |
+
"step": 270
|
| 1630 |
+
},
|
| 1631 |
+
{
|
| 1632 |
+
"epoch": 0.4,
|
| 1633 |
+
"learning_rate": 1.354604887042536e-05,
|
| 1634 |
+
"loss": 1.1777,
|
| 1635 |
+
"step": 271
|
| 1636 |
+
},
|
| 1637 |
+
{
|
| 1638 |
+
"epoch": 0.4,
|
| 1639 |
+
"learning_rate": 1.3500816241520059e-05,
|
| 1640 |
+
"loss": 1.1831,
|
| 1641 |
+
"step": 272
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.41,
|
| 1645 |
+
"learning_rate": 1.3455501833670089e-05,
|
| 1646 |
+
"loss": 1.1756,
|
| 1647 |
+
"step": 273
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 0.41,
|
| 1651 |
+
"learning_rate": 1.3410106705418424e-05,
|
| 1652 |
+
"loss": 1.1909,
|
| 1653 |
+
"step": 274
|
| 1654 |
+
},
|
| 1655 |
+
{
|
| 1656 |
+
"epoch": 0.41,
|
| 1657 |
+
"learning_rate": 1.336463191719367e-05,
|
| 1658 |
+
"loss": 1.1974,
|
| 1659 |
+
"step": 275
|
| 1660 |
+
},
|
| 1661 |
+
{
|
| 1662 |
+
"epoch": 0.41,
|
| 1663 |
+
"learning_rate": 1.3319078531285286e-05,
|
| 1664 |
+
"loss": 1.1798,
|
| 1665 |
+
"step": 276
|
| 1666 |
+
},
|
| 1667 |
+
{
|
| 1668 |
+
"epoch": 0.41,
|
| 1669 |
+
"learning_rate": 1.3273447611818768e-05,
|
| 1670 |
+
"loss": 1.1379,
|
| 1671 |
+
"step": 277
|
| 1672 |
+
},
|
| 1673 |
+
{
|
| 1674 |
+
"epoch": 0.41,
|
| 1675 |
+
"learning_rate": 1.3227740224730799e-05,
|
| 1676 |
+
"loss": 1.1749,
|
| 1677 |
+
"step": 278
|
| 1678 |
+
},
|
| 1679 |
+
{
|
| 1680 |
+
"epoch": 0.42,
|
| 1681 |
+
"learning_rate": 1.3181957437744334e-05,
|
| 1682 |
+
"loss": 1.1885,
|
| 1683 |
+
"step": 279
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.42,
|
| 1687 |
+
"learning_rate": 1.3136100320343674e-05,
|
| 1688 |
+
"loss": 1.1213,
|
| 1689 |
+
"step": 280
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 0.42,
|
| 1693 |
+
"learning_rate": 1.3090169943749475e-05,
|
| 1694 |
+
"loss": 1.1782,
|
| 1695 |
+
"step": 281
|
| 1696 |
+
},
|
| 1697 |
+
{
|
| 1698 |
+
"epoch": 0.42,
|
| 1699 |
+
"learning_rate": 1.3044167380893726e-05,
|
| 1700 |
+
"loss": 1.2075,
|
| 1701 |
+
"step": 282
|
| 1702 |
+
},
|
| 1703 |
+
{
|
| 1704 |
+
"epoch": 0.42,
|
| 1705 |
+
"learning_rate": 1.2998093706394674e-05,
|
| 1706 |
+
"loss": 1.1648,
|
| 1707 |
+
"step": 283
|
| 1708 |
+
},
|
| 1709 |
+
{
|
| 1710 |
+
"epoch": 0.42,
|
| 1711 |
+
"learning_rate": 1.295194999653175e-05,
|
| 1712 |
+
"loss": 1.1872,
|
| 1713 |
+
"step": 284
|
| 1714 |
+
},
|
| 1715 |
+
{
|
| 1716 |
+
"epoch": 0.42,
|
| 1717 |
+
"learning_rate": 1.2905737329220394e-05,
|
| 1718 |
+
"loss": 1.2484,
|
| 1719 |
+
"step": 285
|
| 1720 |
+
},
|
| 1721 |
+
{
|
| 1722 |
+
"epoch": 0.43,
|
| 1723 |
+
"learning_rate": 1.2859456783986892e-05,
|
| 1724 |
+
"loss": 1.1544,
|
| 1725 |
+
"step": 286
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.43,
|
| 1729 |
+
"learning_rate": 1.2813109441943166e-05,
|
| 1730 |
+
"loss": 1.2163,
|
| 1731 |
+
"step": 287
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 0.43,
|
| 1735 |
+
"learning_rate": 1.2766696385761494e-05,
|
| 1736 |
+
"loss": 1.1837,
|
| 1737 |
+
"step": 288
|
| 1738 |
+
},
|
| 1739 |
+
{
|
| 1740 |
+
"epoch": 0.43,
|
| 1741 |
+
"learning_rate": 1.2720218699649243e-05,
|
| 1742 |
+
"loss": 1.153,
|
| 1743 |
+
"step": 289
|
| 1744 |
+
},
|
| 1745 |
+
{
|
| 1746 |
+
"epoch": 0.43,
|
| 1747 |
+
"learning_rate": 1.2673677469323535e-05,
|
| 1748 |
+
"loss": 1.2074,
|
| 1749 |
+
"step": 290
|
| 1750 |
+
},
|
| 1751 |
+
{
|
| 1752 |
+
"epoch": 0.43,
|
| 1753 |
+
"learning_rate": 1.2627073781985873e-05,
|
| 1754 |
+
"loss": 1.1652,
|
| 1755 |
+
"step": 291
|
| 1756 |
+
},
|
| 1757 |
+
{
|
| 1758 |
+
"epoch": 0.43,
|
| 1759 |
+
"learning_rate": 1.258040872629676e-05,
|
| 1760 |
+
"loss": 1.2019,
|
| 1761 |
+
"step": 292
|
| 1762 |
+
},
|
| 1763 |
+
{
|
| 1764 |
+
"epoch": 0.44,
|
| 1765 |
+
"learning_rate": 1.2533683392350264e-05,
|
| 1766 |
+
"loss": 1.1428,
|
| 1767 |
+
"step": 293
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.44,
|
| 1771 |
+
"learning_rate": 1.2486898871648547e-05,
|
| 1772 |
+
"loss": 1.1073,
|
| 1773 |
+
"step": 294
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 0.44,
|
| 1777 |
+
"learning_rate": 1.2440056257076374e-05,
|
| 1778 |
+
"loss": 1.2043,
|
| 1779 |
+
"step": 295
|
| 1780 |
+
},
|
| 1781 |
+
{
|
| 1782 |
+
"epoch": 0.44,
|
| 1783 |
+
"learning_rate": 1.2393156642875579e-05,
|
| 1784 |
+
"loss": 1.1542,
|
| 1785 |
+
"step": 296
|
| 1786 |
+
},
|
| 1787 |
+
{
|
| 1788 |
+
"epoch": 0.44,
|
| 1789 |
+
"learning_rate": 1.2346201124619502e-05,
|
| 1790 |
+
"loss": 1.1572,
|
| 1791 |
+
"step": 297
|
| 1792 |
+
},
|
| 1793 |
+
{
|
| 1794 |
+
"epoch": 0.44,
|
| 1795 |
+
"learning_rate": 1.2299190799187405e-05,
|
| 1796 |
+
"loss": 1.1742,
|
| 1797 |
+
"step": 298
|
| 1798 |
+
},
|
| 1799 |
+
{
|
| 1800 |
+
"epoch": 0.45,
|
| 1801 |
+
"learning_rate": 1.2252126764738845e-05,
|
| 1802 |
+
"loss": 1.2058,
|
| 1803 |
+
"step": 299
|
| 1804 |
+
},
|
| 1805 |
+
{
|
| 1806 |
+
"epoch": 0.45,
|
| 1807 |
+
"learning_rate": 1.2205010120688012e-05,
|
| 1808 |
+
"loss": 1.1983,
|
| 1809 |
+
"step": 300
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.45,
|
| 1813 |
+
"learning_rate": 1.2157841967678064e-05,
|
| 1814 |
+
"loss": 1.171,
|
| 1815 |
+
"step": 301
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 0.45,
|
| 1819 |
+
"learning_rate": 1.2110623407555398e-05,
|
| 1820 |
+
"loss": 1.1433,
|
| 1821 |
+
"step": 302
|
| 1822 |
+
},
|
| 1823 |
+
{
|
| 1824 |
+
"epoch": 0.45,
|
| 1825 |
+
"learning_rate": 1.2063355543343925e-05,
|
| 1826 |
+
"loss": 1.2067,
|
| 1827 |
+
"step": 303
|
| 1828 |
+
},
|
| 1829 |
+
{
|
| 1830 |
+
"epoch": 0.45,
|
| 1831 |
+
"learning_rate": 1.2016039479219293e-05,
|
| 1832 |
+
"loss": 1.18,
|
| 1833 |
+
"step": 304
|
| 1834 |
+
},
|
| 1835 |
+
{
|
| 1836 |
+
"epoch": 0.45,
|
| 1837 |
+
"learning_rate": 1.1968676320483103e-05,
|
| 1838 |
+
"loss": 1.145,
|
| 1839 |
+
"step": 305
|
| 1840 |
+
},
|
| 1841 |
+
{
|
| 1842 |
+
"epoch": 0.46,
|
| 1843 |
+
"learning_rate": 1.1921267173537083e-05,
|
| 1844 |
+
"loss": 1.157,
|
| 1845 |
+
"step": 306
|
| 1846 |
+
},
|
| 1847 |
+
{
|
| 1848 |
+
"epoch": 0.46,
|
| 1849 |
+
"learning_rate": 1.187381314585725e-05,
|
| 1850 |
+
"loss": 1.2327,
|
| 1851 |
+
"step": 307
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.46,
|
| 1855 |
+
"learning_rate": 1.1826315345968014e-05,
|
| 1856 |
+
"loss": 1.2182,
|
| 1857 |
+
"step": 308
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 0.46,
|
| 1861 |
+
"learning_rate": 1.1778774883416325e-05,
|
| 1862 |
+
"loss": 1.2291,
|
| 1863 |
+
"step": 309
|
| 1864 |
+
},
|
| 1865 |
+
{
|
| 1866 |
+
"epoch": 0.46,
|
| 1867 |
+
"learning_rate": 1.1731192868745717e-05,
|
| 1868 |
+
"loss": 1.2624,
|
| 1869 |
+
"step": 310
|
| 1870 |
+
},
|
| 1871 |
+
{
|
| 1872 |
+
"epoch": 0.46,
|
| 1873 |
+
"learning_rate": 1.1683570413470386e-05,
|
| 1874 |
+
"loss": 1.1245,
|
| 1875 |
+
"step": 311
|
| 1876 |
+
},
|
| 1877 |
+
{
|
| 1878 |
+
"epoch": 0.46,
|
| 1879 |
+
"learning_rate": 1.163590863004922e-05,
|
| 1880 |
+
"loss": 1.2198,
|
| 1881 |
+
"step": 312
|
| 1882 |
+
},
|
| 1883 |
+
{
|
| 1884 |
+
"epoch": 0.47,
|
| 1885 |
+
"learning_rate": 1.1588208631859808e-05,
|
| 1886 |
+
"loss": 1.121,
|
| 1887 |
+
"step": 313
|
| 1888 |
+
},
|
| 1889 |
+
{
|
| 1890 |
+
"epoch": 0.47,
|
| 1891 |
+
"learning_rate": 1.154047153317243e-05,
|
| 1892 |
+
"loss": 1.1509,
|
| 1893 |
+
"step": 314
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 0.47,
|
| 1897 |
+
"learning_rate": 1.1492698449124042e-05,
|
| 1898 |
+
"loss": 1.0908,
|
| 1899 |
+
"step": 315
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 0.47,
|
| 1903 |
+
"learning_rate": 1.1444890495692214e-05,
|
| 1904 |
+
"loss": 1.2005,
|
| 1905 |
+
"step": 316
|
| 1906 |
+
},
|
| 1907 |
+
{
|
| 1908 |
+
"epoch": 0.47,
|
| 1909 |
+
"learning_rate": 1.1397048789669061e-05,
|
| 1910 |
+
"loss": 1.1822,
|
| 1911 |
+
"step": 317
|
| 1912 |
+
},
|
| 1913 |
+
{
|
| 1914 |
+
"epoch": 0.47,
|
| 1915 |
+
"learning_rate": 1.1349174448635158e-05,
|
| 1916 |
+
"loss": 1.1689,
|
| 1917 |
+
"step": 318
|
| 1918 |
+
},
|
| 1919 |
+
{
|
| 1920 |
+
"epoch": 0.47,
|
| 1921 |
+
"learning_rate": 1.1301268590933434e-05,
|
| 1922 |
+
"loss": 1.1987,
|
| 1923 |
+
"step": 319
|
| 1924 |
+
},
|
| 1925 |
+
{
|
| 1926 |
+
"epoch": 0.48,
|
| 1927 |
+
"learning_rate": 1.1253332335643043e-05,
|
| 1928 |
+
"loss": 1.1795,
|
| 1929 |
+
"step": 320
|
| 1930 |
+
},
|
| 1931 |
+
{
|
| 1932 |
+
"epoch": 0.48,
|
| 1933 |
+
"learning_rate": 1.1205366802553233e-05,
|
| 1934 |
+
"loss": 1.1771,
|
| 1935 |
+
"step": 321
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 0.48,
|
| 1939 |
+
"learning_rate": 1.1157373112137171e-05,
|
| 1940 |
+
"loss": 1.1479,
|
| 1941 |
+
"step": 322
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 0.48,
|
| 1945 |
+
"learning_rate": 1.1109352385525782e-05,
|
| 1946 |
+
"loss": 1.1888,
|
| 1947 |
+
"step": 323
|
| 1948 |
+
},
|
| 1949 |
+
{
|
| 1950 |
+
"epoch": 0.48,
|
| 1951 |
+
"learning_rate": 1.1061305744481561e-05,
|
| 1952 |
+
"loss": 1.1953,
|
| 1953 |
+
"step": 324
|
| 1954 |
+
},
|
| 1955 |
+
{
|
| 1956 |
+
"epoch": 0.48,
|
| 1957 |
+
"learning_rate": 1.1013234311372353e-05,
|
| 1958 |
+
"loss": 1.2657,
|
| 1959 |
+
"step": 325
|
| 1960 |
+
},
|
| 1961 |
+
{
|
| 1962 |
+
"epoch": 0.49,
|
| 1963 |
+
"learning_rate": 1.096513920914515e-05,
|
| 1964 |
+
"loss": 1.2082,
|
| 1965 |
+
"step": 326
|
| 1966 |
+
},
|
| 1967 |
+
{
|
| 1968 |
+
"epoch": 0.49,
|
| 1969 |
+
"learning_rate": 1.0917021561299864e-05,
|
| 1970 |
+
"loss": 1.212,
|
| 1971 |
+
"step": 327
|
| 1972 |
+
},
|
| 1973 |
+
{
|
| 1974 |
+
"epoch": 0.49,
|
| 1975 |
+
"learning_rate": 1.0868882491863048e-05,
|
| 1976 |
+
"loss": 1.1922,
|
| 1977 |
+
"step": 328
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 0.49,
|
| 1981 |
+
"learning_rate": 1.0820723125361685e-05,
|
| 1982 |
+
"loss": 1.1676,
|
| 1983 |
+
"step": 329
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 0.49,
|
| 1987 |
+
"learning_rate": 1.077254458679689e-05,
|
| 1988 |
+
"loss": 1.1622,
|
| 1989 |
+
"step": 330
|
| 1990 |
+
},
|
| 1991 |
+
{
|
| 1992 |
+
"epoch": 0.49,
|
| 1993 |
+
"learning_rate": 1.0724348001617626e-05,
|
| 1994 |
+
"loss": 1.1919,
|
| 1995 |
+
"step": 331
|
| 1996 |
+
},
|
| 1997 |
+
{
|
| 1998 |
+
"epoch": 0.49,
|
| 1999 |
+
"learning_rate": 1.0676134495694437e-05,
|
| 2000 |
+
"loss": 1.1744,
|
| 2001 |
+
"step": 332
|
| 2002 |
+
},
|
| 2003 |
+
{
|
| 2004 |
+
"epoch": 0.5,
|
| 2005 |
+
"learning_rate": 1.0627905195293135e-05,
|
| 2006 |
+
"loss": 1.1615,
|
| 2007 |
+
"step": 333
|
| 2008 |
+
},
|
| 2009 |
+
{
|
| 2010 |
+
"epoch": 0.5,
|
| 2011 |
+
"learning_rate": 1.0579661227048484e-05,
|
| 2012 |
+
"loss": 1.1561,
|
| 2013 |
+
"step": 334
|
| 2014 |
+
},
|
| 2015 |
+
{
|
| 2016 |
+
"epoch": 0.5,
|
| 2017 |
+
"learning_rate": 1.0531403717937888e-05,
|
| 2018 |
+
"loss": 1.194,
|
| 2019 |
+
"step": 335
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 0.5,
|
| 2023 |
+
"learning_rate": 1.0483133795255072e-05,
|
| 2024 |
+
"loss": 1.1245,
|
| 2025 |
+
"step": 336
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"epoch": 0.5,
|
| 2029 |
+
"learning_rate": 1.0434852586583734e-05,
|
| 2030 |
+
"loss": 1.1741,
|
| 2031 |
+
"step": 337
|
| 2032 |
+
},
|
| 2033 |
+
{
|
| 2034 |
+
"epoch": 0.5,
|
| 2035 |
+
"learning_rate": 1.0386561219771222e-05,
|
| 2036 |
+
"loss": 1.1384,
|
| 2037 |
+
"step": 338
|
| 2038 |
+
},
|
| 2039 |
+
{
|
| 2040 |
+
"epoch": 0.5,
|
| 2041 |
+
"learning_rate": 1.0338260822902166e-05,
|
| 2042 |
+
"loss": 1.1889,
|
| 2043 |
+
"step": 339
|
| 2044 |
+
},
|
| 2045 |
+
{
|
| 2046 |
+
"epoch": 0.51,
|
| 2047 |
+
"learning_rate": 1.0289952524272147e-05,
|
| 2048 |
+
"loss": 1.2371,
|
| 2049 |
+
"step": 340
|
| 2050 |
+
},
|
| 2051 |
+
{
|
| 2052 |
+
"epoch": 0.51,
|
| 2053 |
+
"learning_rate": 1.0241637452361327e-05,
|
| 2054 |
+
"loss": 1.1536,
|
| 2055 |
+
"step": 341
|
| 2056 |
+
},
|
| 2057 |
+
{
|
| 2058 |
+
"epoch": 0.51,
|
| 2059 |
+
"learning_rate": 1.0193316735808085e-05,
|
| 2060 |
+
"loss": 1.1573,
|
| 2061 |
+
"step": 342
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 0.51,
|
| 2065 |
+
"learning_rate": 1.0144991503382676e-05,
|
| 2066 |
+
"loss": 1.1573,
|
| 2067 |
+
"step": 343
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"epoch": 0.51,
|
| 2071 |
+
"learning_rate": 1.0096662883960833e-05,
|
| 2072 |
+
"loss": 1.1788,
|
| 2073 |
+
"step": 344
|
| 2074 |
+
},
|
| 2075 |
+
{
|
| 2076 |
+
"epoch": 0.51,
|
| 2077 |
+
"learning_rate": 1.0048332006497406e-05,
|
| 2078 |
+
"loss": 1.1736,
|
| 2079 |
+
"step": 345
|
| 2080 |
+
},
|
| 2081 |
+
{
|
| 2082 |
+
"epoch": 0.51,
|
| 2083 |
+
"learning_rate": 1e-05,
|
| 2084 |
+
"loss": 1.224,
|
| 2085 |
+
"step": 346
|
| 2086 |
+
},
|
| 2087 |
+
{
|
| 2088 |
+
"epoch": 0.52,
|
| 2089 |
+
"learning_rate": 9.951667993502599e-06,
|
| 2090 |
+
"loss": 1.1847,
|
| 2091 |
+
"step": 347
|
| 2092 |
+
},
|
| 2093 |
+
{
|
| 2094 |
+
"epoch": 0.52,
|
| 2095 |
+
"learning_rate": 9.903337116039172e-06,
|
| 2096 |
+
"loss": 1.2004,
|
| 2097 |
+
"step": 348
|
| 2098 |
+
},
|
| 2099 |
+
{
|
| 2100 |
+
"epoch": 0.52,
|
| 2101 |
+
"learning_rate": 9.855008496617326e-06,
|
| 2102 |
+
"loss": 1.1378,
|
| 2103 |
+
"step": 349
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 0.52,
|
| 2107 |
+
"learning_rate": 9.806683264191916e-06,
|
| 2108 |
+
"loss": 1.171,
|
| 2109 |
+
"step": 350
|
| 2110 |
+
},
|
| 2111 |
+
{
|
| 2112 |
+
"epoch": 0.52,
|
| 2113 |
+
"learning_rate": 9.75836254763868e-06,
|
| 2114 |
+
"loss": 1.162,
|
| 2115 |
+
"step": 351
|
| 2116 |
+
},
|
| 2117 |
+
{
|
| 2118 |
+
"epoch": 0.52,
|
| 2119 |
+
"learning_rate": 9.710047475727858e-06,
|
| 2120 |
+
"loss": 1.1802,
|
| 2121 |
+
"step": 352
|
| 2122 |
+
},
|
| 2123 |
+
{
|
| 2124 |
+
"epoch": 0.53,
|
| 2125 |
+
"learning_rate": 9.661739177097834e-06,
|
| 2126 |
+
"loss": 1.1686,
|
| 2127 |
+
"step": 353
|
| 2128 |
+
},
|
| 2129 |
+
{
|
| 2130 |
+
"epoch": 0.53,
|
| 2131 |
+
"learning_rate": 9.61343878022878e-06,
|
| 2132 |
+
"loss": 1.1529,
|
| 2133 |
+
"step": 354
|
| 2134 |
+
},
|
| 2135 |
+
{
|
| 2136 |
+
"epoch": 0.53,
|
| 2137 |
+
"learning_rate": 9.565147413416266e-06,
|
| 2138 |
+
"loss": 1.1879,
|
| 2139 |
+
"step": 355
|
| 2140 |
+
},
|
| 2141 |
+
{
|
| 2142 |
+
"epoch": 0.53,
|
| 2143 |
+
"learning_rate": 9.516866204744932e-06,
|
| 2144 |
+
"loss": 1.1072,
|
| 2145 |
+
"step": 356
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 0.53,
|
| 2149 |
+
"learning_rate": 9.468596282062112e-06,
|
| 2150 |
+
"loss": 1.1716,
|
| 2151 |
+
"step": 357
|
| 2152 |
+
},
|
| 2153 |
+
{
|
| 2154 |
+
"epoch": 0.53,
|
| 2155 |
+
"learning_rate": 9.420338772951521e-06,
|
| 2156 |
+
"loss": 1.2,
|
| 2157 |
+
"step": 358
|
| 2158 |
+
},
|
| 2159 |
+
{
|
| 2160 |
+
"epoch": 0.53,
|
| 2161 |
+
"learning_rate": 9.372094804706867e-06,
|
| 2162 |
+
"loss": 1.1524,
|
| 2163 |
+
"step": 359
|
| 2164 |
+
},
|
| 2165 |
+
{
|
| 2166 |
+
"epoch": 0.54,
|
| 2167 |
+
"learning_rate": 9.323865504305566e-06,
|
| 2168 |
+
"loss": 1.1684,
|
| 2169 |
+
"step": 360
|
| 2170 |
+
},
|
| 2171 |
+
{
|
| 2172 |
+
"epoch": 0.54,
|
| 2173 |
+
"learning_rate": 9.275651998382377e-06,
|
| 2174 |
+
"loss": 1.163,
|
| 2175 |
+
"step": 361
|
| 2176 |
+
},
|
| 2177 |
+
{
|
| 2178 |
+
"epoch": 0.54,
|
| 2179 |
+
"learning_rate": 9.227455413203117e-06,
|
| 2180 |
+
"loss": 1.1506,
|
| 2181 |
+
"step": 362
|
| 2182 |
+
},
|
| 2183 |
+
{
|
| 2184 |
+
"epoch": 0.54,
|
| 2185 |
+
"learning_rate": 9.179276874638315e-06,
|
| 2186 |
+
"loss": 1.1785,
|
| 2187 |
+
"step": 363
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 0.54,
|
| 2191 |
+
"learning_rate": 9.131117508136952e-06,
|
| 2192 |
+
"loss": 1.1574,
|
| 2193 |
+
"step": 364
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"epoch": 0.54,
|
| 2197 |
+
"learning_rate": 9.082978438700141e-06,
|
| 2198 |
+
"loss": 1.1907,
|
| 2199 |
+
"step": 365
|
| 2200 |
+
},
|
| 2201 |
+
{
|
| 2202 |
+
"epoch": 0.54,
|
| 2203 |
+
"learning_rate": 9.034860790854848e-06,
|
| 2204 |
+
"loss": 1.1482,
|
| 2205 |
+
"step": 366
|
| 2206 |
+
},
|
| 2207 |
+
{
|
| 2208 |
+
"epoch": 0.55,
|
| 2209 |
+
"learning_rate": 8.986765688627652e-06,
|
| 2210 |
+
"loss": 1.1086,
|
| 2211 |
+
"step": 367
|
| 2212 |
+
},
|
| 2213 |
+
{
|
| 2214 |
+
"epoch": 0.55,
|
| 2215 |
+
"learning_rate": 8.938694255518442e-06,
|
| 2216 |
+
"loss": 1.1637,
|
| 2217 |
+
"step": 368
|
| 2218 |
+
},
|
| 2219 |
+
{
|
| 2220 |
+
"epoch": 0.55,
|
| 2221 |
+
"learning_rate": 8.890647614474223e-06,
|
| 2222 |
+
"loss": 1.1991,
|
| 2223 |
+
"step": 369
|
| 2224 |
+
},
|
| 2225 |
+
{
|
| 2226 |
+
"epoch": 0.55,
|
| 2227 |
+
"learning_rate": 8.842626887862832e-06,
|
| 2228 |
+
"loss": 1.1559,
|
| 2229 |
+
"step": 370
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 0.55,
|
| 2233 |
+
"learning_rate": 8.79463319744677e-06,
|
| 2234 |
+
"loss": 1.2513,
|
| 2235 |
+
"step": 371
|
| 2236 |
+
},
|
| 2237 |
+
{
|
| 2238 |
+
"epoch": 0.55,
|
| 2239 |
+
"learning_rate": 8.74666766435696e-06,
|
| 2240 |
+
"loss": 1.1638,
|
| 2241 |
+
"step": 372
|
| 2242 |
+
},
|
| 2243 |
+
{
|
| 2244 |
+
"epoch": 0.56,
|
| 2245 |
+
"learning_rate": 8.698731409066571e-06,
|
| 2246 |
+
"loss": 1.1504,
|
| 2247 |
+
"step": 373
|
| 2248 |
+
},
|
| 2249 |
+
{
|
| 2250 |
+
"epoch": 0.56,
|
| 2251 |
+
"learning_rate": 8.650825551364844e-06,
|
| 2252 |
+
"loss": 1.1642,
|
| 2253 |
+
"step": 374
|
| 2254 |
+
},
|
| 2255 |
+
{
|
| 2256 |
+
"epoch": 0.56,
|
| 2257 |
+
"learning_rate": 8.60295121033094e-06,
|
| 2258 |
+
"loss": 1.2143,
|
| 2259 |
+
"step": 375
|
| 2260 |
+
},
|
| 2261 |
+
{
|
| 2262 |
+
"epoch": 0.56,
|
| 2263 |
+
"learning_rate": 8.555109504307787e-06,
|
| 2264 |
+
"loss": 1.167,
|
| 2265 |
+
"step": 376
|
| 2266 |
+
},
|
| 2267 |
+
{
|
| 2268 |
+
"epoch": 0.56,
|
| 2269 |
+
"learning_rate": 8.50730155087596e-06,
|
| 2270 |
+
"loss": 1.0684,
|
| 2271 |
+
"step": 377
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"epoch": 0.56,
|
| 2275 |
+
"learning_rate": 8.459528466827576e-06,
|
| 2276 |
+
"loss": 1.1521,
|
| 2277 |
+
"step": 378
|
| 2278 |
+
},
|
| 2279 |
+
{
|
| 2280 |
+
"epoch": 0.56,
|
| 2281 |
+
"learning_rate": 8.411791368140197e-06,
|
| 2282 |
+
"loss": 1.1821,
|
| 2283 |
+
"step": 379
|
| 2284 |
+
},
|
| 2285 |
+
{
|
| 2286 |
+
"epoch": 0.57,
|
| 2287 |
+
"learning_rate": 8.364091369950783e-06,
|
| 2288 |
+
"loss": 1.1589,
|
| 2289 |
+
"step": 380
|
| 2290 |
+
},
|
| 2291 |
+
{
|
| 2292 |
+
"epoch": 0.57,
|
| 2293 |
+
"learning_rate": 8.316429586529616e-06,
|
| 2294 |
+
"loss": 1.1123,
|
| 2295 |
+
"step": 381
|
| 2296 |
+
},
|
| 2297 |
+
{
|
| 2298 |
+
"epoch": 0.57,
|
| 2299 |
+
"learning_rate": 8.268807131254288e-06,
|
| 2300 |
+
"loss": 1.1787,
|
| 2301 |
+
"step": 382
|
| 2302 |
+
},
|
| 2303 |
+
{
|
| 2304 |
+
"epoch": 0.57,
|
| 2305 |
+
"learning_rate": 8.22122511658368e-06,
|
| 2306 |
+
"loss": 1.1102,
|
| 2307 |
+
"step": 383
|
| 2308 |
+
},
|
| 2309 |
+
{
|
| 2310 |
+
"epoch": 0.57,
|
| 2311 |
+
"learning_rate": 8.173684654031986e-06,
|
| 2312 |
+
"loss": 1.1509,
|
| 2313 |
+
"step": 384
|
| 2314 |
+
},
|
| 2315 |
+
{
|
| 2316 |
+
"epoch": 0.57,
|
| 2317 |
+
"learning_rate": 8.126186854142754e-06,
|
| 2318 |
+
"loss": 1.1295,
|
| 2319 |
+
"step": 385
|
| 2320 |
+
},
|
| 2321 |
+
{
|
| 2322 |
+
"epoch": 0.57,
|
| 2323 |
+
"learning_rate": 8.078732826462917e-06,
|
| 2324 |
+
"loss": 1.1561,
|
| 2325 |
+
"step": 386
|
| 2326 |
+
},
|
| 2327 |
+
{
|
| 2328 |
+
"epoch": 0.58,
|
| 2329 |
+
"learning_rate": 8.0313236795169e-06,
|
| 2330 |
+
"loss": 1.1393,
|
| 2331 |
+
"step": 387
|
| 2332 |
+
},
|
| 2333 |
+
{
|
| 2334 |
+
"epoch": 0.58,
|
| 2335 |
+
"learning_rate": 7.983960520780712e-06,
|
| 2336 |
+
"loss": 1.1318,
|
| 2337 |
+
"step": 388
|
| 2338 |
+
},
|
| 2339 |
+
{
|
| 2340 |
+
"epoch": 0.58,
|
| 2341 |
+
"learning_rate": 7.936644456656082e-06,
|
| 2342 |
+
"loss": 1.1277,
|
| 2343 |
+
"step": 389
|
| 2344 |
+
},
|
| 2345 |
+
{
|
| 2346 |
+
"epoch": 0.58,
|
| 2347 |
+
"learning_rate": 7.889376592444605e-06,
|
| 2348 |
+
"loss": 1.2151,
|
| 2349 |
+
"step": 390
|
| 2350 |
+
},
|
| 2351 |
+
{
|
| 2352 |
+
"epoch": 0.58,
|
| 2353 |
+
"learning_rate": 7.84215803232194e-06,
|
| 2354 |
+
"loss": 1.1762,
|
| 2355 |
+
"step": 391
|
| 2356 |
+
},
|
| 2357 |
+
{
|
| 2358 |
+
"epoch": 0.58,
|
| 2359 |
+
"learning_rate": 7.794989879311991e-06,
|
| 2360 |
+
"loss": 1.1384,
|
| 2361 |
+
"step": 392
|
| 2362 |
+
},
|
| 2363 |
+
{
|
| 2364 |
+
"epoch": 0.58,
|
| 2365 |
+
"learning_rate": 7.74787323526116e-06,
|
| 2366 |
+
"loss": 1.0996,
|
| 2367 |
+
"step": 393
|
| 2368 |
+
},
|
| 2369 |
+
{
|
| 2370 |
+
"epoch": 0.59,
|
| 2371 |
+
"learning_rate": 7.700809200812598e-06,
|
| 2372 |
+
"loss": 1.1601,
|
| 2373 |
+
"step": 394
|
| 2374 |
+
},
|
| 2375 |
+
{
|
| 2376 |
+
"epoch": 0.59,
|
| 2377 |
+
"learning_rate": 7.653798875380498e-06,
|
| 2378 |
+
"loss": 1.1501,
|
| 2379 |
+
"step": 395
|
| 2380 |
+
},
|
| 2381 |
+
{
|
| 2382 |
+
"epoch": 0.59,
|
| 2383 |
+
"learning_rate": 7.6068433571244234e-06,
|
| 2384 |
+
"loss": 1.1391,
|
| 2385 |
+
"step": 396
|
| 2386 |
+
},
|
| 2387 |
+
{
|
| 2388 |
+
"epoch": 0.59,
|
| 2389 |
+
"learning_rate": 7.559943742923626e-06,
|
| 2390 |
+
"loss": 1.1429,
|
| 2391 |
+
"step": 397
|
| 2392 |
+
},
|
| 2393 |
+
{
|
| 2394 |
+
"epoch": 0.59,
|
| 2395 |
+
"learning_rate": 7.513101128351454e-06,
|
| 2396 |
+
"loss": 1.1895,
|
| 2397 |
+
"step": 398
|
| 2398 |
+
},
|
| 2399 |
+
{
|
| 2400 |
+
"epoch": 0.59,
|
| 2401 |
+
"learning_rate": 7.466316607649735e-06,
|
| 2402 |
+
"loss": 1.171,
|
| 2403 |
+
"step": 399
|
| 2404 |
+
},
|
| 2405 |
+
{
|
| 2406 |
+
"epoch": 0.6,
|
| 2407 |
+
"learning_rate": 7.419591273703245e-06,
|
| 2408 |
+
"loss": 1.1202,
|
| 2409 |
+
"step": 400
|
| 2410 |
+
},
|
| 2411 |
+
{
|
| 2412 |
+
"epoch": 0.6,
|
| 2413 |
+
"learning_rate": 7.372926218014131e-06,
|
| 2414 |
+
"loss": 1.1702,
|
| 2415 |
+
"step": 401
|
| 2416 |
+
},
|
| 2417 |
+
{
|
| 2418 |
+
"epoch": 0.6,
|
| 2419 |
+
"learning_rate": 7.326322530676471e-06,
|
| 2420 |
+
"loss": 1.1175,
|
| 2421 |
+
"step": 402
|
| 2422 |
+
},
|
| 2423 |
+
{
|
| 2424 |
+
"epoch": 0.6,
|
| 2425 |
+
"learning_rate": 7.27978130035076e-06,
|
| 2426 |
+
"loss": 1.1549,
|
| 2427 |
+
"step": 403
|
| 2428 |
+
},
|
| 2429 |
+
{
|
| 2430 |
+
"epoch": 0.6,
|
| 2431 |
+
"learning_rate": 7.233303614238511e-06,
|
| 2432 |
+
"loss": 1.167,
|
| 2433 |
+
"step": 404
|
| 2434 |
+
},
|
| 2435 |
+
{
|
| 2436 |
+
"epoch": 0.6,
|
| 2437 |
+
"learning_rate": 7.186890558056836e-06,
|
| 2438 |
+
"loss": 1.1407,
|
| 2439 |
+
"step": 405
|
| 2440 |
+
},
|
| 2441 |
+
{
|
| 2442 |
+
"epoch": 0.6,
|
| 2443 |
+
"learning_rate": 7.1405432160131076e-06,
|
| 2444 |
+
"loss": 1.1076,
|
| 2445 |
+
"step": 406
|
| 2446 |
+
},
|
| 2447 |
+
{
|
| 2448 |
+
"epoch": 0.61,
|
| 2449 |
+
"learning_rate": 7.0942626707796094e-06,
|
| 2450 |
+
"loss": 1.1575,
|
| 2451 |
+
"step": 407
|
| 2452 |
+
},
|
| 2453 |
+
{
|
| 2454 |
+
"epoch": 0.61,
|
| 2455 |
+
"learning_rate": 7.048050003468252e-06,
|
| 2456 |
+
"loss": 1.1732,
|
| 2457 |
+
"step": 408
|
| 2458 |
+
},
|
| 2459 |
+
{
|
| 2460 |
+
"epoch": 0.61,
|
| 2461 |
+
"learning_rate": 7.001906293605329e-06,
|
| 2462 |
+
"loss": 1.1869,
|
| 2463 |
+
"step": 409
|
| 2464 |
+
},
|
| 2465 |
+
{
|
| 2466 |
+
"epoch": 0.61,
|
| 2467 |
+
"learning_rate": 6.9558326191062775e-06,
|
| 2468 |
+
"loss": 1.1875,
|
| 2469 |
+
"step": 410
|
| 2470 |
+
},
|
| 2471 |
+
{
|
| 2472 |
+
"epoch": 0.61,
|
| 2473 |
+
"learning_rate": 6.909830056250527e-06,
|
| 2474 |
+
"loss": 1.1501,
|
| 2475 |
+
"step": 411
|
| 2476 |
+
},
|
| 2477 |
+
{
|
| 2478 |
+
"epoch": 0.61,
|
| 2479 |
+
"learning_rate": 6.8638996796563275e-06,
|
| 2480 |
+
"loss": 1.1729,
|
| 2481 |
+
"step": 412
|
| 2482 |
+
},
|
| 2483 |
+
{
|
| 2484 |
+
"epoch": 0.61,
|
| 2485 |
+
"learning_rate": 6.81804256225567e-06,
|
| 2486 |
+
"loss": 1.1432,
|
| 2487 |
+
"step": 413
|
| 2488 |
+
},
|
| 2489 |
+
{
|
| 2490 |
+
"epoch": 0.62,
|
| 2491 |
+
"learning_rate": 6.7722597752692055e-06,
|
| 2492 |
+
"loss": 1.1358,
|
| 2493 |
+
"step": 414
|
| 2494 |
+
},
|
| 2495 |
+
{
|
| 2496 |
+
"epoch": 0.62,
|
| 2497 |
+
"learning_rate": 6.726552388181235e-06,
|
| 2498 |
+
"loss": 1.143,
|
| 2499 |
+
"step": 415
|
| 2500 |
+
},
|
| 2501 |
+
{
|
| 2502 |
+
"epoch": 0.62,
|
| 2503 |
+
"learning_rate": 6.6809214687147165e-06,
|
| 2504 |
+
"loss": 1.1349,
|
| 2505 |
+
"step": 416
|
| 2506 |
+
},
|
| 2507 |
+
{
|
| 2508 |
+
"epoch": 0.62,
|
| 2509 |
+
"learning_rate": 6.6353680828063306e-06,
|
| 2510 |
+
"loss": 1.1159,
|
| 2511 |
+
"step": 417
|
| 2512 |
+
},
|
| 2513 |
+
{
|
| 2514 |
+
"epoch": 0.62,
|
| 2515 |
+
"learning_rate": 6.589893294581579e-06,
|
| 2516 |
+
"loss": 1.1903,
|
| 2517 |
+
"step": 418
|
| 2518 |
+
},
|
| 2519 |
+
{
|
| 2520 |
+
"epoch": 0.62,
|
| 2521 |
+
"learning_rate": 6.5444981663299135e-06,
|
| 2522 |
+
"loss": 1.1597,
|
| 2523 |
+
"step": 419
|
| 2524 |
+
},
|
| 2525 |
+
{
|
| 2526 |
+
"epoch": 0.63,
|
| 2527 |
+
"learning_rate": 6.499183758479944e-06,
|
| 2528 |
+
"loss": 1.1564,
|
| 2529 |
+
"step": 420
|
| 2530 |
+
},
|
| 2531 |
+
{
|
| 2532 |
+
"epoch": 0.63,
|
| 2533 |
+
"learning_rate": 6.453951129574644e-06,
|
| 2534 |
+
"loss": 1.1286,
|
| 2535 |
+
"step": 421
|
| 2536 |
+
},
|
| 2537 |
+
{
|
| 2538 |
+
"epoch": 0.63,
|
| 2539 |
+
"learning_rate": 6.408801336246645e-06,
|
| 2540 |
+
"loss": 1.1151,
|
| 2541 |
+
"step": 422
|
| 2542 |
+
},
|
| 2543 |
+
{
|
| 2544 |
+
"epoch": 0.63,
|
| 2545 |
+
"learning_rate": 6.363735433193532e-06,
|
| 2546 |
+
"loss": 1.1358,
|
| 2547 |
+
"step": 423
|
| 2548 |
+
},
|
| 2549 |
+
{
|
| 2550 |
+
"epoch": 0.63,
|
| 2551 |
+
"learning_rate": 6.318754473153224e-06,
|
| 2552 |
+
"loss": 1.14,
|
| 2553 |
+
"step": 424
|
| 2554 |
+
},
|
| 2555 |
+
{
|
| 2556 |
+
"epoch": 0.63,
|
| 2557 |
+
"learning_rate": 6.273859506879365e-06,
|
| 2558 |
+
"loss": 1.1771,
|
| 2559 |
+
"step": 425
|
| 2560 |
+
},
|
| 2561 |
+
{
|
| 2562 |
+
"epoch": 0.63,
|
| 2563 |
+
"learning_rate": 6.229051583116799e-06,
|
| 2564 |
+
"loss": 1.1251,
|
| 2565 |
+
"step": 426
|
| 2566 |
+
},
|
| 2567 |
+
{
|
| 2568 |
+
"epoch": 0.64,
|
| 2569 |
+
"learning_rate": 6.184331748577049e-06,
|
| 2570 |
+
"loss": 1.0971,
|
| 2571 |
+
"step": 427
|
| 2572 |
+
},
|
| 2573 |
+
{
|
| 2574 |
+
"epoch": 0.64,
|
| 2575 |
+
"learning_rate": 6.139701047913885e-06,
|
| 2576 |
+
"loss": 1.0982,
|
| 2577 |
+
"step": 428
|
| 2578 |
+
},
|
| 2579 |
+
{
|
| 2580 |
+
"epoch": 0.64,
|
| 2581 |
+
"learning_rate": 6.095160523698913e-06,
|
| 2582 |
+
"loss": 1.1474,
|
| 2583 |
+
"step": 429
|
| 2584 |
+
},
|
| 2585 |
+
{
|
| 2586 |
+
"epoch": 0.64,
|
| 2587 |
+
"learning_rate": 6.0507112163972106e-06,
|
| 2588 |
+
"loss": 1.1362,
|
| 2589 |
+
"step": 430
|
| 2590 |
+
},
|
| 2591 |
+
{
|
| 2592 |
+
"epoch": 0.64,
|
| 2593 |
+
"learning_rate": 6.006354164343047e-06,
|
| 2594 |
+
"loss": 1.1188,
|
| 2595 |
+
"step": 431
|
| 2596 |
+
},
|
| 2597 |
+
{
|
| 2598 |
+
"epoch": 0.64,
|
| 2599 |
+
"learning_rate": 5.962090403715592e-06,
|
| 2600 |
+
"loss": 1.1482,
|
| 2601 |
+
"step": 432
|
| 2602 |
+
},
|
| 2603 |
+
{
|
| 2604 |
+
"epoch": 0.64,
|
| 2605 |
+
"learning_rate": 5.9179209685147525e-06,
|
| 2606 |
+
"loss": 1.1055,
|
| 2607 |
+
"step": 433
|
| 2608 |
+
},
|
| 2609 |
+
{
|
| 2610 |
+
"epoch": 0.65,
|
| 2611 |
+
"learning_rate": 5.873846890536977e-06,
|
| 2612 |
+
"loss": 1.1933,
|
| 2613 |
+
"step": 434
|
| 2614 |
+
},
|
| 2615 |
+
{
|
| 2616 |
+
"epoch": 0.65,
|
| 2617 |
+
"learning_rate": 5.829869199351188e-06,
|
| 2618 |
+
"loss": 1.1561,
|
| 2619 |
+
"step": 435
|
| 2620 |
+
},
|
| 2621 |
+
{
|
| 2622 |
+
"epoch": 0.65,
|
| 2623 |
+
"learning_rate": 5.785988922274711e-06,
|
| 2624 |
+
"loss": 1.1167,
|
| 2625 |
+
"step": 436
|
| 2626 |
+
},
|
| 2627 |
+
{
|
| 2628 |
+
"epoch": 0.65,
|
| 2629 |
+
"learning_rate": 5.742207084349274e-06,
|
| 2630 |
+
"loss": 1.1961,
|
| 2631 |
+
"step": 437
|
| 2632 |
+
},
|
| 2633 |
+
{
|
| 2634 |
+
"epoch": 0.65,
|
| 2635 |
+
"learning_rate": 5.698524708317082e-06,
|
| 2636 |
+
"loss": 1.1883,
|
| 2637 |
+
"step": 438
|
| 2638 |
+
},
|
| 2639 |
+
{
|
| 2640 |
+
"epoch": 0.65,
|
| 2641 |
+
"learning_rate": 5.654942814596902e-06,
|
| 2642 |
+
"loss": 1.1935,
|
| 2643 |
+
"step": 439
|
| 2644 |
+
},
|
| 2645 |
+
{
|
| 2646 |
+
"epoch": 0.65,
|
| 2647 |
+
"learning_rate": 5.611462421260251e-06,
|
| 2648 |
+
"loss": 1.0944,
|
| 2649 |
+
"step": 440
|
| 2650 |
+
},
|
| 2651 |
+
{
|
| 2652 |
+
"epoch": 0.66,
|
| 2653 |
+
"learning_rate": 5.5680845440075885e-06,
|
| 2654 |
+
"loss": 1.1319,
|
| 2655 |
+
"step": 441
|
| 2656 |
+
},
|
| 2657 |
+
{
|
| 2658 |
+
"epoch": 0.66,
|
| 2659 |
+
"learning_rate": 5.5248101961446065e-06,
|
| 2660 |
+
"loss": 1.2082,
|
| 2661 |
+
"step": 442
|
| 2662 |
+
},
|
| 2663 |
+
{
|
| 2664 |
+
"epoch": 0.66,
|
| 2665 |
+
"learning_rate": 5.481640388558551e-06,
|
| 2666 |
+
"loss": 1.1499,
|
| 2667 |
+
"step": 443
|
| 2668 |
+
},
|
| 2669 |
+
{
|
| 2670 |
+
"epoch": 0.66,
|
| 2671 |
+
"learning_rate": 5.43857612969462e-06,
|
| 2672 |
+
"loss": 1.0991,
|
| 2673 |
+
"step": 444
|
| 2674 |
+
},
|
| 2675 |
+
{
|
| 2676 |
+
"epoch": 0.66,
|
| 2677 |
+
"learning_rate": 5.3956184255323855e-06,
|
| 2678 |
+
"loss": 1.1476,
|
| 2679 |
+
"step": 445
|
| 2680 |
+
},
|
| 2681 |
+
{
|
| 2682 |
+
"epoch": 0.66,
|
| 2683 |
+
"learning_rate": 5.352768279562315e-06,
|
| 2684 |
+
"loss": 1.1776,
|
| 2685 |
+
"step": 446
|
| 2686 |
+
},
|
| 2687 |
+
{
|
| 2688 |
+
"epoch": 0.67,
|
| 2689 |
+
"learning_rate": 5.310026692762316e-06,
|
| 2690 |
+
"loss": 1.1296,
|
| 2691 |
+
"step": 447
|
| 2692 |
+
},
|
| 2693 |
+
{
|
| 2694 |
+
"epoch": 0.67,
|
| 2695 |
+
"learning_rate": 5.267394663574351e-06,
|
| 2696 |
+
"loss": 1.087,
|
| 2697 |
+
"step": 448
|
| 2698 |
+
},
|
| 2699 |
+
{
|
| 2700 |
+
"epoch": 0.67,
|
| 2701 |
+
"learning_rate": 5.224873187881136e-06,
|
| 2702 |
+
"loss": 1.1738,
|
| 2703 |
+
"step": 449
|
| 2704 |
+
},
|
| 2705 |
+
{
|
| 2706 |
+
"epoch": 0.67,
|
| 2707 |
+
"learning_rate": 5.1824632589828465e-06,
|
| 2708 |
+
"loss": 1.1627,
|
| 2709 |
+
"step": 450
|
| 2710 |
+
},
|
| 2711 |
+
{
|
| 2712 |
+
"epoch": 0.67,
|
| 2713 |
+
"learning_rate": 5.14016586757394e-06,
|
| 2714 |
+
"loss": 1.1736,
|
| 2715 |
+
"step": 451
|
| 2716 |
+
},
|
| 2717 |
+
{
|
| 2718 |
+
"epoch": 0.67,
|
| 2719 |
+
"learning_rate": 5.097982001719994e-06,
|
| 2720 |
+
"loss": 1.1486,
|
| 2721 |
+
"step": 452
|
| 2722 |
+
},
|
| 2723 |
+
{
|
| 2724 |
+
"epoch": 0.67,
|
| 2725 |
+
"learning_rate": 5.0559126468346354e-06,
|
| 2726 |
+
"loss": 1.2196,
|
| 2727 |
+
"step": 453
|
| 2728 |
+
},
|
| 2729 |
+
{
|
| 2730 |
+
"epoch": 0.68,
|
| 2731 |
+
"learning_rate": 5.013958785656516e-06,
|
| 2732 |
+
"loss": 1.2005,
|
| 2733 |
+
"step": 454
|
| 2734 |
+
},
|
| 2735 |
+
{
|
| 2736 |
+
"epoch": 0.68,
|
| 2737 |
+
"learning_rate": 4.972121398226371e-06,
|
| 2738 |
+
"loss": 1.1786,
|
| 2739 |
+
"step": 455
|
| 2740 |
+
},
|
| 2741 |
+
{
|
| 2742 |
+
"epoch": 0.68,
|
| 2743 |
+
"learning_rate": 4.930401461864096e-06,
|
| 2744 |
+
"loss": 1.1405,
|
| 2745 |
+
"step": 456
|
| 2746 |
+
},
|
| 2747 |
+
{
|
| 2748 |
+
"epoch": 0.68,
|
| 2749 |
+
"learning_rate": 4.888799951145948e-06,
|
| 2750 |
+
"loss": 1.15,
|
| 2751 |
+
"step": 457
|
| 2752 |
+
},
|
| 2753 |
+
{
|
| 2754 |
+
"epoch": 0.68,
|
| 2755 |
+
"learning_rate": 4.847317837881757e-06,
|
| 2756 |
+
"loss": 1.1965,
|
| 2757 |
+
"step": 458
|
| 2758 |
+
},
|
| 2759 |
+
{
|
| 2760 |
+
"epoch": 0.68,
|
| 2761 |
+
"learning_rate": 4.805956091092228e-06,
|
| 2762 |
+
"loss": 1.1939,
|
| 2763 |
+
"step": 459
|
| 2764 |
+
},
|
| 2765 |
+
{
|
| 2766 |
+
"epoch": 0.68,
|
| 2767 |
+
"learning_rate": 4.764715676986327e-06,
|
| 2768 |
+
"loss": 1.0932,
|
| 2769 |
+
"step": 460
|
| 2770 |
+
},
|
| 2771 |
+
{
|
| 2772 |
+
"epoch": 0.69,
|
| 2773 |
+
"learning_rate": 4.7235975589386715e-06,
|
| 2774 |
+
"loss": 1.1657,
|
| 2775 |
+
"step": 461
|
| 2776 |
+
},
|
| 2777 |
+
{
|
| 2778 |
+
"epoch": 0.69,
|
| 2779 |
+
"learning_rate": 4.6826026974670665e-06,
|
| 2780 |
+
"loss": 1.1878,
|
| 2781 |
+
"step": 462
|
| 2782 |
+
},
|
| 2783 |
+
{
|
| 2784 |
+
"epoch": 0.69,
|
| 2785 |
+
"learning_rate": 4.641732050210036e-06,
|
| 2786 |
+
"loss": 1.1552,
|
| 2787 |
+
"step": 463
|
| 2788 |
+
},
|
| 2789 |
+
{
|
| 2790 |
+
"epoch": 0.69,
|
| 2791 |
+
"learning_rate": 4.6009865719044645e-06,
|
| 2792 |
+
"loss": 1.0927,
|
| 2793 |
+
"step": 464
|
| 2794 |
+
},
|
| 2795 |
+
{
|
| 2796 |
+
"epoch": 0.69,
|
| 2797 |
+
"learning_rate": 4.560367214363295e-06,
|
| 2798 |
+
"loss": 1.0978,
|
| 2799 |
+
"step": 465
|
| 2800 |
+
},
|
| 2801 |
+
{
|
| 2802 |
+
"epoch": 0.69,
|
| 2803 |
+
"learning_rate": 4.519874926453303e-06,
|
| 2804 |
+
"loss": 1.1518,
|
| 2805 |
+
"step": 466
|
| 2806 |
+
},
|
| 2807 |
+
{
|
| 2808 |
+
"epoch": 0.7,
|
| 2809 |
+
"learning_rate": 4.479510654072905e-06,
|
| 2810 |
+
"loss": 1.0652,
|
| 2811 |
+
"step": 467
|
| 2812 |
+
},
|
| 2813 |
+
{
|
| 2814 |
+
"epoch": 0.7,
|
| 2815 |
+
"learning_rate": 4.439275340130099e-06,
|
| 2816 |
+
"loss": 1.1441,
|
| 2817 |
+
"step": 468
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"epoch": 0.7,
|
| 2821 |
+
"learning_rate": 4.399169924520403e-06,
|
| 2822 |
+
"loss": 1.0733,
|
| 2823 |
+
"step": 469
|
| 2824 |
+
},
|
| 2825 |
+
{
|
| 2826 |
+
"epoch": 0.7,
|
| 2827 |
+
"learning_rate": 4.359195344104916e-06,
|
| 2828 |
+
"loss": 1.1216,
|
| 2829 |
+
"step": 470
|
| 2830 |
+
},
|
| 2831 |
+
{
|
| 2832 |
+
"epoch": 0.7,
|
| 2833 |
+
"learning_rate": 4.319352532688444e-06,
|
| 2834 |
+
"loss": 1.1248,
|
| 2835 |
+
"step": 471
|
| 2836 |
+
},
|
| 2837 |
+
{
|
| 2838 |
+
"epoch": 0.7,
|
| 2839 |
+
"learning_rate": 4.279642420997655e-06,
|
| 2840 |
+
"loss": 1.1487,
|
| 2841 |
+
"step": 472
|
| 2842 |
+
},
|
| 2843 |
+
{
|
| 2844 |
+
"epoch": 0.7,
|
| 2845 |
+
"learning_rate": 4.240065936659374e-06,
|
| 2846 |
+
"loss": 1.1352,
|
| 2847 |
+
"step": 473
|
| 2848 |
+
},
|
| 2849 |
+
{
|
| 2850 |
+
"epoch": 0.71,
|
| 2851 |
+
"learning_rate": 4.200624004178886e-06,
|
| 2852 |
+
"loss": 1.1473,
|
| 2853 |
+
"step": 474
|
| 2854 |
+
},
|
| 2855 |
+
{
|
| 2856 |
+
"epoch": 0.71,
|
| 2857 |
+
"learning_rate": 4.1613175449183484e-06,
|
| 2858 |
+
"loss": 1.1667,
|
| 2859 |
+
"step": 475
|
| 2860 |
+
},
|
| 2861 |
+
{
|
| 2862 |
+
"epoch": 0.71,
|
| 2863 |
+
"learning_rate": 4.12214747707527e-06,
|
| 2864 |
+
"loss": 1.1294,
|
| 2865 |
+
"step": 476
|
| 2866 |
+
},
|
| 2867 |
+
{
|
| 2868 |
+
"epoch": 0.71,
|
| 2869 |
+
"learning_rate": 4.083114715661069e-06,
|
| 2870 |
+
"loss": 1.1839,
|
| 2871 |
+
"step": 477
|
| 2872 |
+
},
|
| 2873 |
+
{
|
| 2874 |
+
"epoch": 0.71,
|
| 2875 |
+
"learning_rate": 4.044220172479675e-06,
|
| 2876 |
+
"loss": 1.0997,
|
| 2877 |
+
"step": 478
|
| 2878 |
+
},
|
| 2879 |
+
{
|
| 2880 |
+
"epoch": 0.71,
|
| 2881 |
+
"learning_rate": 4.0054647561062625e-06,
|
| 2882 |
+
"loss": 1.0926,
|
| 2883 |
+
"step": 479
|
| 2884 |
+
},
|
| 2885 |
+
{
|
| 2886 |
+
"epoch": 0.71,
|
| 2887 |
+
"learning_rate": 3.9668493718659924e-06,
|
| 2888 |
+
"loss": 1.1799,
|
| 2889 |
+
"step": 480
|
| 2890 |
+
},
|
| 2891 |
+
{
|
| 2892 |
+
"epoch": 0.72,
|
| 2893 |
+
"learning_rate": 3.9283749218128885e-06,
|
| 2894 |
+
"loss": 1.1347,
|
| 2895 |
+
"step": 481
|
| 2896 |
+
},
|
| 2897 |
+
{
|
| 2898 |
+
"epoch": 0.72,
|
| 2899 |
+
"learning_rate": 3.890042304708758e-06,
|
| 2900 |
+
"loss": 1.1829,
|
| 2901 |
+
"step": 482
|
| 2902 |
+
},
|
| 2903 |
+
{
|
| 2904 |
+
"epoch": 0.72,
|
| 2905 |
+
"learning_rate": 3.8518524160021876e-06,
|
| 2906 |
+
"loss": 1.1717,
|
| 2907 |
+
"step": 483
|
| 2908 |
+
},
|
| 2909 |
+
{
|
| 2910 |
+
"epoch": 0.72,
|
| 2911 |
+
"learning_rate": 3.813806147807645e-06,
|
| 2912 |
+
"loss": 1.1431,
|
| 2913 |
+
"step": 484
|
| 2914 |
+
},
|
| 2915 |
+
{
|
| 2916 |
+
"epoch": 0.72,
|
| 2917 |
+
"learning_rate": 3.775904388884615e-06,
|
| 2918 |
+
"loss": 1.1427,
|
| 2919 |
+
"step": 485
|
| 2920 |
+
},
|
| 2921 |
+
{
|
| 2922 |
+
"epoch": 0.72,
|
| 2923 |
+
"learning_rate": 3.7381480246168665e-06,
|
| 2924 |
+
"loss": 1.1423,
|
| 2925 |
+
"step": 486
|
| 2926 |
+
},
|
| 2927 |
+
{
|
| 2928 |
+
"epoch": 0.72,
|
| 2929 |
+
"learning_rate": 3.700537936991733e-06,
|
| 2930 |
+
"loss": 1.1204,
|
| 2931 |
+
"step": 487
|
| 2932 |
+
},
|
| 2933 |
+
{
|
| 2934 |
+
"epoch": 0.73,
|
| 2935 |
+
"learning_rate": 3.6630750045795506e-06,
|
| 2936 |
+
"loss": 1.1612,
|
| 2937 |
+
"step": 488
|
| 2938 |
+
},
|
| 2939 |
+
{
|
| 2940 |
+
"epoch": 0.73,
|
| 2941 |
+
"learning_rate": 3.625760102513103e-06,
|
| 2942 |
+
"loss": 1.1158,
|
| 2943 |
+
"step": 489
|
| 2944 |
+
},
|
| 2945 |
+
{
|
| 2946 |
+
"epoch": 0.73,
|
| 2947 |
+
"learning_rate": 3.5885941024672e-06,
|
| 2948 |
+
"loss": 1.1642,
|
| 2949 |
+
"step": 490
|
| 2950 |
+
},
|
| 2951 |
+
{
|
| 2952 |
+
"epoch": 0.73,
|
| 2953 |
+
"learning_rate": 3.5515778726382933e-06,
|
| 2954 |
+
"loss": 1.146,
|
| 2955 |
+
"step": 491
|
| 2956 |
+
},
|
| 2957 |
+
{
|
| 2958 |
+
"epoch": 0.73,
|
| 2959 |
+
"learning_rate": 3.5147122777242203e-06,
|
| 2960 |
+
"loss": 1.1832,
|
| 2961 |
+
"step": 492
|
| 2962 |
+
},
|
| 2963 |
+
{
|
| 2964 |
+
"epoch": 0.73,
|
| 2965 |
+
"learning_rate": 3.477998178903982e-06,
|
| 2966 |
+
"loss": 1.1724,
|
| 2967 |
+
"step": 493
|
| 2968 |
+
},
|
| 2969 |
+
{
|
| 2970 |
+
"epoch": 0.74,
|
| 2971 |
+
"learning_rate": 3.4414364338176376e-06,
|
| 2972 |
+
"loss": 1.1447,
|
| 2973 |
+
"step": 494
|
| 2974 |
+
},
|
| 2975 |
+
{
|
| 2976 |
+
"epoch": 0.74,
|
| 2977 |
+
"learning_rate": 3.405027896546277e-06,
|
| 2978 |
+
"loss": 1.1156,
|
| 2979 |
+
"step": 495
|
| 2980 |
+
},
|
| 2981 |
+
{
|
| 2982 |
+
"epoch": 0.74,
|
| 2983 |
+
"learning_rate": 3.368773417592047e-06,
|
| 2984 |
+
"loss": 1.1168,
|
| 2985 |
+
"step": 496
|
| 2986 |
+
},
|
| 2987 |
+
{
|
| 2988 |
+
"epoch": 0.74,
|
| 2989 |
+
"learning_rate": 3.3326738438583116e-06,
|
| 2990 |
+
"loss": 1.1344,
|
| 2991 |
+
"step": 497
|
| 2992 |
+
},
|
| 2993 |
+
{
|
| 2994 |
+
"epoch": 0.74,
|
| 2995 |
+
"learning_rate": 3.2967300186298456e-06,
|
| 2996 |
+
"loss": 1.1161,
|
| 2997 |
+
"step": 498
|
| 2998 |
+
},
|
| 2999 |
+
{
|
| 3000 |
+
"epoch": 0.74,
|
| 3001 |
+
"learning_rate": 3.2609427815531448e-06,
|
| 3002 |
+
"loss": 1.1473,
|
| 3003 |
+
"step": 499
|
| 3004 |
+
},
|
| 3005 |
+
{
|
| 3006 |
+
"epoch": 0.74,
|
| 3007 |
+
"learning_rate": 3.2253129686168105e-06,
|
| 3008 |
+
"loss": 1.0854,
|
| 3009 |
+
"step": 500
|
| 3010 |
+
},
|
| 3011 |
+
{
|
| 3012 |
+
"epoch": 0.75,
|
| 3013 |
+
"learning_rate": 3.18984141213203e-06,
|
| 3014 |
+
"loss": 1.1898,
|
| 3015 |
+
"step": 501
|
| 3016 |
+
},
|
| 3017 |
+
{
|
| 3018 |
+
"epoch": 0.75,
|
| 3019 |
+
"learning_rate": 3.1545289407131128e-06,
|
| 3020 |
+
"loss": 1.1258,
|
| 3021 |
+
"step": 502
|
| 3022 |
+
},
|
| 3023 |
+
{
|
| 3024 |
+
"epoch": 0.75,
|
| 3025 |
+
"learning_rate": 3.11937637925816e-06,
|
| 3026 |
+
"loss": 1.1519,
|
| 3027 |
+
"step": 503
|
| 3028 |
+
},
|
| 3029 |
+
{
|
| 3030 |
+
"epoch": 0.75,
|
| 3031 |
+
"learning_rate": 3.0843845489297698e-06,
|
| 3032 |
+
"loss": 1.1353,
|
| 3033 |
+
"step": 504
|
| 3034 |
+
},
|
| 3035 |
+
{
|
| 3036 |
+
"epoch": 0.75,
|
| 3037 |
+
"learning_rate": 3.0495542671358715e-06,
|
| 3038 |
+
"loss": 1.1341,
|
| 3039 |
+
"step": 505
|
| 3040 |
+
},
|
| 3041 |
+
{
|
| 3042 |
+
"epoch": 0.75,
|
| 3043 |
+
"learning_rate": 3.0148863475106315e-06,
|
| 3044 |
+
"loss": 1.1278,
|
| 3045 |
+
"step": 506
|
| 3046 |
+
},
|
| 3047 |
+
{
|
| 3048 |
+
"epoch": 0.75,
|
| 3049 |
+
"learning_rate": 2.98038159989543e-06,
|
| 3050 |
+
"loss": 1.1183,
|
| 3051 |
+
"step": 507
|
| 3052 |
+
},
|
| 3053 |
+
{
|
| 3054 |
+
"epoch": 0.76,
|
| 3055 |
+
"learning_rate": 2.9460408303199696e-06,
|
| 3056 |
+
"loss": 1.1502,
|
| 3057 |
+
"step": 508
|
| 3058 |
+
},
|
| 3059 |
+
{
|
| 3060 |
+
"epoch": 0.76,
|
| 3061 |
+
"learning_rate": 2.9118648409834205e-06,
|
| 3062 |
+
"loss": 1.1151,
|
| 3063 |
+
"step": 509
|
| 3064 |
+
},
|
| 3065 |
+
{
|
| 3066 |
+
"epoch": 0.76,
|
| 3067 |
+
"learning_rate": 2.8778544302356938e-06,
|
| 3068 |
+
"loss": 1.0964,
|
| 3069 |
+
"step": 510
|
| 3070 |
+
},
|
| 3071 |
+
{
|
| 3072 |
+
"epoch": 0.76,
|
| 3073 |
+
"learning_rate": 2.8440103925587904e-06,
|
| 3074 |
+
"loss": 1.1387,
|
| 3075 |
+
"step": 511
|
| 3076 |
+
},
|
| 3077 |
+
{
|
| 3078 |
+
"epoch": 0.76,
|
| 3079 |
+
"learning_rate": 2.810333518548246e-06,
|
| 3080 |
+
"loss": 1.0998,
|
| 3081 |
+
"step": 512
|
| 3082 |
+
},
|
| 3083 |
+
{
|
| 3084 |
+
"epoch": 0.76,
|
| 3085 |
+
"learning_rate": 2.7768245948946615e-06,
|
| 3086 |
+
"loss": 1.1495,
|
| 3087 |
+
"step": 513
|
| 3088 |
+
},
|
| 3089 |
+
{
|
| 3090 |
+
"epoch": 0.77,
|
| 3091 |
+
"learning_rate": 2.743484404365314e-06,
|
| 3092 |
+
"loss": 1.153,
|
| 3093 |
+
"step": 514
|
| 3094 |
+
},
|
| 3095 |
+
{
|
| 3096 |
+
"epoch": 0.77,
|
| 3097 |
+
"learning_rate": 2.7103137257858867e-06,
|
| 3098 |
+
"loss": 1.1609,
|
| 3099 |
+
"step": 515
|
| 3100 |
+
},
|
| 3101 |
+
{
|
| 3102 |
+
"epoch": 0.77,
|
| 3103 |
+
"learning_rate": 2.6773133340222647e-06,
|
| 3104 |
+
"loss": 1.1579,
|
| 3105 |
+
"step": 516
|
| 3106 |
+
},
|
| 3107 |
+
{
|
| 3108 |
+
"epoch": 0.77,
|
| 3109 |
+
"learning_rate": 2.6444839999624496e-06,
|
| 3110 |
+
"loss": 1.1728,
|
| 3111 |
+
"step": 517
|
| 3112 |
+
},
|
| 3113 |
+
{
|
| 3114 |
+
"epoch": 0.77,
|
| 3115 |
+
"learning_rate": 2.611826490498527e-06,
|
| 3116 |
+
"loss": 1.1371,
|
| 3117 |
+
"step": 518
|
| 3118 |
+
},
|
| 3119 |
+
{
|
| 3120 |
+
"epoch": 0.77,
|
| 3121 |
+
"learning_rate": 2.5793415685087797e-06,
|
| 3122 |
+
"loss": 1.1787,
|
| 3123 |
+
"step": 519
|
| 3124 |
+
},
|
| 3125 |
+
{
|
| 3126 |
+
"epoch": 0.77,
|
| 3127 |
+
"learning_rate": 2.5470299928398424e-06,
|
| 3128 |
+
"loss": 1.1468,
|
| 3129 |
+
"step": 520
|
| 3130 |
+
},
|
| 3131 |
+
{
|
| 3132 |
+
"epoch": 0.78,
|
| 3133 |
+
"learning_rate": 2.5148925182889916e-06,
|
| 3134 |
+
"loss": 1.1859,
|
| 3135 |
+
"step": 521
|
| 3136 |
+
},
|
| 3137 |
+
{
|
| 3138 |
+
"epoch": 0.78,
|
| 3139 |
+
"learning_rate": 2.4829298955865022e-06,
|
| 3140 |
+
"loss": 1.088,
|
| 3141 |
+
"step": 522
|
| 3142 |
+
},
|
| 3143 |
+
{
|
| 3144 |
+
"epoch": 0.78,
|
| 3145 |
+
"learning_rate": 2.451142871378124e-06,
|
| 3146 |
+
"loss": 1.1379,
|
| 3147 |
+
"step": 523
|
| 3148 |
+
},
|
| 3149 |
+
{
|
| 3150 |
+
"epoch": 0.78,
|
| 3151 |
+
"learning_rate": 2.4195321882076295e-06,
|
| 3152 |
+
"loss": 1.1373,
|
| 3153 |
+
"step": 524
|
| 3154 |
+
},
|
| 3155 |
+
{
|
| 3156 |
+
"epoch": 0.78,
|
| 3157 |
+
"learning_rate": 2.3880985844994674e-06,
|
| 3158 |
+
"loss": 1.2,
|
| 3159 |
+
"step": 525
|
| 3160 |
+
},
|
| 3161 |
+
{
|
| 3162 |
+
"epoch": 0.78,
|
| 3163 |
+
"learning_rate": 2.3568427945415196e-06,
|
| 3164 |
+
"loss": 1.1295,
|
| 3165 |
+
"step": 526
|
| 3166 |
+
},
|
| 3167 |
+
{
|
| 3168 |
+
"epoch": 0.78,
|
| 3169 |
+
"learning_rate": 2.3257655484679376e-06,
|
| 3170 |
+
"loss": 1.1727,
|
| 3171 |
+
"step": 527
|
| 3172 |
+
},
|
| 3173 |
+
{
|
| 3174 |
+
"epoch": 0.79,
|
| 3175 |
+
"learning_rate": 2.2948675722421086e-06,
|
| 3176 |
+
"loss": 1.1532,
|
| 3177 |
+
"step": 528
|
| 3178 |
+
},
|
| 3179 |
+
{
|
| 3180 |
+
"epoch": 0.79,
|
| 3181 |
+
"learning_rate": 2.264149587639668e-06,
|
| 3182 |
+
"loss": 1.1731,
|
| 3183 |
+
"step": 529
|
| 3184 |
+
},
|
| 3185 |
+
{
|
| 3186 |
+
"epoch": 0.79,
|
| 3187 |
+
"learning_rate": 2.2336123122316642e-06,
|
| 3188 |
+
"loss": 1.1585,
|
| 3189 |
+
"step": 530
|
| 3190 |
+
},
|
| 3191 |
+
{
|
| 3192 |
+
"epoch": 0.79,
|
| 3193 |
+
"learning_rate": 2.2032564593677773e-06,
|
| 3194 |
+
"loss": 1.0844,
|
| 3195 |
+
"step": 531
|
| 3196 |
+
},
|
| 3197 |
+
{
|
| 3198 |
+
"epoch": 0.79,
|
| 3199 |
+
"learning_rate": 2.1730827381596677e-06,
|
| 3200 |
+
"loss": 1.1697,
|
| 3201 |
+
"step": 532
|
| 3202 |
+
},
|
| 3203 |
+
{
|
| 3204 |
+
"epoch": 0.79,
|
| 3205 |
+
"learning_rate": 2.1430918534643996e-06,
|
| 3206 |
+
"loss": 1.107,
|
| 3207 |
+
"step": 533
|
| 3208 |
+
},
|
| 3209 |
+
{
|
| 3210 |
+
"epoch": 0.79,
|
| 3211 |
+
"learning_rate": 2.1132845058679917e-06,
|
| 3212 |
+
"loss": 1.1906,
|
| 3213 |
+
"step": 534
|
| 3214 |
+
},
|
| 3215 |
+
{
|
| 3216 |
+
"epoch": 0.8,
|
| 3217 |
+
"learning_rate": 2.083661391669043e-06,
|
| 3218 |
+
"loss": 1.1275,
|
| 3219 |
+
"step": 535
|
| 3220 |
+
},
|
| 3221 |
+
{
|
| 3222 |
+
"epoch": 0.8,
|
| 3223 |
+
"learning_rate": 2.0542232028624585e-06,
|
| 3224 |
+
"loss": 1.0969,
|
| 3225 |
+
"step": 536
|
| 3226 |
+
},
|
| 3227 |
+
{
|
| 3228 |
+
"epoch": 0.8,
|
| 3229 |
+
"learning_rate": 2.024970627123297e-06,
|
| 3230 |
+
"loss": 1.1445,
|
| 3231 |
+
"step": 537
|
| 3232 |
+
},
|
| 3233 |
+
{
|
| 3234 |
+
"epoch": 0.8,
|
| 3235 |
+
"learning_rate": 1.9959043477907e-06,
|
| 3236 |
+
"loss": 1.0651,
|
| 3237 |
+
"step": 538
|
| 3238 |
+
},
|
| 3239 |
+
{
|
| 3240 |
+
"epoch": 0.8,
|
| 3241 |
+
"learning_rate": 1.967025043851939e-06,
|
| 3242 |
+
"loss": 1.0988,
|
| 3243 |
+
"step": 539
|
| 3244 |
+
},
|
| 3245 |
+
{
|
| 3246 |
+
"epoch": 0.8,
|
| 3247 |
+
"learning_rate": 1.9383333899265368e-06,
|
| 3248 |
+
"loss": 1.0866,
|
| 3249 |
+
"step": 540
|
| 3250 |
+
},
|
| 3251 |
+
{
|
| 3252 |
+
"epoch": 0.81,
|
| 3253 |
+
"learning_rate": 1.9098300562505266e-06,
|
| 3254 |
+
"loss": 1.1574,
|
| 3255 |
+
"step": 541
|
| 3256 |
+
},
|
| 3257 |
+
{
|
| 3258 |
+
"epoch": 0.81,
|
| 3259 |
+
"learning_rate": 1.8815157086607826e-06,
|
| 3260 |
+
"loss": 1.1884,
|
| 3261 |
+
"step": 542
|
| 3262 |
+
},
|
| 3263 |
+
{
|
| 3264 |
+
"epoch": 0.81,
|
| 3265 |
+
"learning_rate": 1.8533910085794714e-06,
|
| 3266 |
+
"loss": 1.1106,
|
| 3267 |
+
"step": 543
|
| 3268 |
+
},
|
| 3269 |
+
{
|
| 3270 |
+
"epoch": 0.81,
|
| 3271 |
+
"learning_rate": 1.8254566129985996e-06,
|
| 3272 |
+
"loss": 1.138,
|
| 3273 |
+
"step": 544
|
| 3274 |
+
},
|
| 3275 |
+
{
|
| 3276 |
+
"epoch": 0.81,
|
| 3277 |
+
"learning_rate": 1.7977131744646692e-06,
|
| 3278 |
+
"loss": 1.1997,
|
| 3279 |
+
"step": 545
|
| 3280 |
+
},
|
| 3281 |
+
{
|
| 3282 |
+
"epoch": 0.81,
|
| 3283 |
+
"learning_rate": 1.7701613410634367e-06,
|
| 3284 |
+
"loss": 1.1939,
|
| 3285 |
+
"step": 546
|
| 3286 |
+
},
|
| 3287 |
+
{
|
| 3288 |
+
"epoch": 0.81,
|
| 3289 |
+
"learning_rate": 1.7428017564047594e-06,
|
| 3290 |
+
"loss": 1.1176,
|
| 3291 |
+
"step": 547
|
| 3292 |
+
},
|
| 3293 |
+
{
|
| 3294 |
+
"epoch": 0.82,
|
| 3295 |
+
"learning_rate": 1.7156350596075777e-06,
|
| 3296 |
+
"loss": 1.1404,
|
| 3297 |
+
"step": 548
|
| 3298 |
+
},
|
| 3299 |
+
{
|
| 3300 |
+
"epoch": 0.82,
|
| 3301 |
+
"learning_rate": 1.6886618852849723e-06,
|
| 3302 |
+
"loss": 1.1449,
|
| 3303 |
+
"step": 549
|
| 3304 |
+
},
|
| 3305 |
+
{
|
| 3306 |
+
"epoch": 0.82,
|
| 3307 |
+
"learning_rate": 1.6618828635293561e-06,
|
| 3308 |
+
"loss": 1.1488,
|
| 3309 |
+
"step": 550
|
| 3310 |
+
},
|
| 3311 |
+
{
|
| 3312 |
+
"epoch": 0.82,
|
| 3313 |
+
"learning_rate": 1.6352986198977327e-06,
|
| 3314 |
+
"loss": 1.1442,
|
| 3315 |
+
"step": 551
|
| 3316 |
+
},
|
| 3317 |
+
{
|
| 3318 |
+
"epoch": 0.82,
|
| 3319 |
+
"learning_rate": 1.6089097753971061e-06,
|
| 3320 |
+
"loss": 1.0947,
|
| 3321 |
+
"step": 552
|
| 3322 |
+
},
|
| 3323 |
+
{
|
| 3324 |
+
"epoch": 0.82,
|
| 3325 |
+
"learning_rate": 1.5827169464699576e-06,
|
| 3326 |
+
"loss": 1.1533,
|
| 3327 |
+
"step": 553
|
| 3328 |
+
},
|
| 3329 |
+
{
|
| 3330 |
+
"epoch": 0.82,
|
| 3331 |
+
"learning_rate": 1.5567207449798517e-06,
|
| 3332 |
+
"loss": 1.1549,
|
| 3333 |
+
"step": 554
|
| 3334 |
+
},
|
| 3335 |
+
{
|
| 3336 |
+
"epoch": 0.83,
|
| 3337 |
+
"learning_rate": 1.5309217781971419e-06,
|
| 3338 |
+
"loss": 1.1368,
|
| 3339 |
+
"step": 555
|
| 3340 |
+
},
|
| 3341 |
+
{
|
| 3342 |
+
"epoch": 0.83,
|
| 3343 |
+
"learning_rate": 1.5053206487847893e-06,
|
| 3344 |
+
"loss": 1.1504,
|
| 3345 |
+
"step": 556
|
| 3346 |
+
},
|
| 3347 |
+
{
|
| 3348 |
+
"epoch": 0.83,
|
| 3349 |
+
"learning_rate": 1.4799179547842823e-06,
|
| 3350 |
+
"loss": 1.1365,
|
| 3351 |
+
"step": 557
|
| 3352 |
+
},
|
| 3353 |
+
{
|
| 3354 |
+
"epoch": 0.83,
|
| 3355 |
+
"learning_rate": 1.4547142896016586e-06,
|
| 3356 |
+
"loss": 1.1375,
|
| 3357 |
+
"step": 558
|
| 3358 |
+
},
|
| 3359 |
+
{
|
| 3360 |
+
"epoch": 0.83,
|
| 3361 |
+
"learning_rate": 1.4297102419936582e-06,
|
| 3362 |
+
"loss": 1.1443,
|
| 3363 |
+
"step": 559
|
| 3364 |
+
},
|
| 3365 |
+
{
|
| 3366 |
+
"epoch": 0.83,
|
| 3367 |
+
"learning_rate": 1.4049063960539488e-06,
|
| 3368 |
+
"loss": 1.1405,
|
| 3369 |
+
"step": 560
|
| 3370 |
+
},
|
| 3371 |
+
{
|
| 3372 |
+
"epoch": 0.83,
|
| 3373 |
+
"learning_rate": 1.3803033311995096e-06,
|
| 3374 |
+
"loss": 1.1526,
|
| 3375 |
+
"step": 561
|
| 3376 |
+
},
|
| 3377 |
+
{
|
| 3378 |
+
"epoch": 0.84,
|
| 3379 |
+
"learning_rate": 1.3559016221570663e-06,
|
| 3380 |
+
"loss": 1.0707,
|
| 3381 |
+
"step": 562
|
| 3382 |
+
},
|
| 3383 |
+
{
|
| 3384 |
+
"epoch": 0.84,
|
| 3385 |
+
"learning_rate": 1.3317018389496927e-06,
|
| 3386 |
+
"loss": 1.1649,
|
| 3387 |
+
"step": 563
|
| 3388 |
+
},
|
| 3389 |
+
{
|
| 3390 |
+
"epoch": 0.84,
|
| 3391 |
+
"learning_rate": 1.3077045468834714e-06,
|
| 3392 |
+
"loss": 1.1294,
|
| 3393 |
+
"step": 564
|
| 3394 |
+
},
|
| 3395 |
+
{
|
| 3396 |
+
"epoch": 0.84,
|
| 3397 |
+
"learning_rate": 1.2839103065343084e-06,
|
| 3398 |
+
"loss": 1.0976,
|
| 3399 |
+
"step": 565
|
| 3400 |
+
},
|
| 3401 |
+
{
|
| 3402 |
+
"epoch": 0.84,
|
| 3403 |
+
"learning_rate": 1.2603196737348211e-06,
|
| 3404 |
+
"loss": 1.1443,
|
| 3405 |
+
"step": 566
|
| 3406 |
+
},
|
| 3407 |
+
{
|
| 3408 |
+
"epoch": 0.84,
|
| 3409 |
+
"learning_rate": 1.2369331995613643e-06,
|
| 3410 |
+
"loss": 1.1315,
|
| 3411 |
+
"step": 567
|
| 3412 |
+
},
|
| 3413 |
+
{
|
| 3414 |
+
"epoch": 0.85,
|
| 3415 |
+
"learning_rate": 1.213751430321156e-06,
|
| 3416 |
+
"loss": 1.1398,
|
| 3417 |
+
"step": 568
|
| 3418 |
+
},
|
| 3419 |
+
{
|
| 3420 |
+
"epoch": 0.85,
|
| 3421 |
+
"learning_rate": 1.1907749075395126e-06,
|
| 3422 |
+
"loss": 1.1239,
|
| 3423 |
+
"step": 569
|
| 3424 |
+
},
|
| 3425 |
+
{
|
| 3426 |
+
"epoch": 0.85,
|
| 3427 |
+
"learning_rate": 1.168004167947202e-06,
|
| 3428 |
+
"loss": 1.1014,
|
| 3429 |
+
"step": 570
|
| 3430 |
+
},
|
| 3431 |
+
{
|
| 3432 |
+
"epoch": 0.85,
|
| 3433 |
+
"learning_rate": 1.1454397434679022e-06,
|
| 3434 |
+
"loss": 1.1451,
|
| 3435 |
+
"step": 571
|
| 3436 |
+
},
|
| 3437 |
+
{
|
| 3438 |
+
"epoch": 0.85,
|
| 3439 |
+
"learning_rate": 1.1230821612057764e-06,
|
| 3440 |
+
"loss": 1.1545,
|
| 3441 |
+
"step": 572
|
| 3442 |
+
},
|
| 3443 |
+
{
|
| 3444 |
+
"epoch": 0.85,
|
| 3445 |
+
"learning_rate": 1.1009319434331623e-06,
|
| 3446 |
+
"loss": 1.0954,
|
| 3447 |
+
"step": 573
|
| 3448 |
+
},
|
| 3449 |
+
{
|
| 3450 |
+
"epoch": 0.85,
|
| 3451 |
+
"learning_rate": 1.0789896075783734e-06,
|
| 3452 |
+
"loss": 1.1322,
|
| 3453 |
+
"step": 574
|
| 3454 |
+
},
|
| 3455 |
+
{
|
| 3456 |
+
"epoch": 0.86,
|
| 3457 |
+
"learning_rate": 1.0572556662136036e-06,
|
| 3458 |
+
"loss": 1.1098,
|
| 3459 |
+
"step": 575
|
| 3460 |
+
},
|
| 3461 |
+
{
|
| 3462 |
+
"epoch": 0.86,
|
| 3463 |
+
"learning_rate": 1.0357306270429623e-06,
|
| 3464 |
+
"loss": 1.1495,
|
| 3465 |
+
"step": 576
|
| 3466 |
+
},
|
| 3467 |
+
{
|
| 3468 |
+
"epoch": 0.86,
|
| 3469 |
+
"learning_rate": 1.014414992890611e-06,
|
| 3470 |
+
"loss": 1.1342,
|
| 3471 |
+
"step": 577
|
| 3472 |
+
},
|
| 3473 |
+
{
|
| 3474 |
+
"epoch": 0.86,
|
| 3475 |
+
"learning_rate": 9.933092616890127e-07,
|
| 3476 |
+
"loss": 1.1954,
|
| 3477 |
+
"step": 578
|
| 3478 |
+
},
|
| 3479 |
+
{
|
| 3480 |
+
"epoch": 0.86,
|
| 3481 |
+
"learning_rate": 9.724139264673116e-07,
|
| 3482 |
+
"loss": 1.1296,
|
| 3483 |
+
"step": 579
|
| 3484 |
+
},
|
| 3485 |
+
{
|
| 3486 |
+
"epoch": 0.86,
|
| 3487 |
+
"learning_rate": 9.517294753398043e-07,
|
| 3488 |
+
"loss": 1.1447,
|
| 3489 |
+
"step": 580
|
| 3490 |
+
},
|
| 3491 |
+
{
|
| 3492 |
+
"epoch": 0.86,
|
| 3493 |
+
"learning_rate": 9.312563914945461e-07,
|
| 3494 |
+
"loss": 1.082,
|
| 3495 |
+
"step": 581
|
| 3496 |
+
},
|
| 3497 |
+
{
|
| 3498 |
+
"epoch": 0.87,
|
| 3499 |
+
"learning_rate": 9.10995153182056e-07,
|
| 3500 |
+
"loss": 1.1625,
|
| 3501 |
+
"step": 582
|
| 3502 |
+
},
|
| 3503 |
+
{
|
| 3504 |
+
"epoch": 0.87,
|
| 3505 |
+
"learning_rate": 8.909462337041508e-07,
|
| 3506 |
+
"loss": 1.1774,
|
| 3507 |
+
"step": 583
|
| 3508 |
+
},
|
| 3509 |
+
{
|
| 3510 |
+
"epoch": 0.87,
|
| 3511 |
+
"learning_rate": 8.711101014028855e-07,
|
| 3512 |
+
"loss": 1.1183,
|
| 3513 |
+
"step": 584
|
| 3514 |
+
},
|
| 3515 |
+
{
|
| 3516 |
+
"epoch": 0.87,
|
| 3517 |
+
"learning_rate": 8.514872196496182e-07,
|
| 3518 |
+
"loss": 1.1269,
|
| 3519 |
+
"step": 585
|
| 3520 |
+
},
|
| 3521 |
+
{
|
| 3522 |
+
"epoch": 0.87,
|
| 3523 |
+
"learning_rate": 8.320780468341761e-07,
|
| 3524 |
+
"loss": 1.0736,
|
| 3525 |
+
"step": 586
|
| 3526 |
+
},
|
| 3527 |
+
{
|
| 3528 |
+
"epoch": 0.87,
|
| 3529 |
+
"learning_rate": 8.128830363541574e-07,
|
| 3530 |
+
"loss": 1.1115,
|
| 3531 |
+
"step": 587
|
| 3532 |
+
},
|
| 3533 |
+
{
|
| 3534 |
+
"epoch": 0.88,
|
| 3535 |
+
"learning_rate": 7.939026366043346e-07,
|
| 3536 |
+
"loss": 1.1085,
|
| 3537 |
+
"step": 588
|
| 3538 |
+
},
|
| 3539 |
+
{
|
| 3540 |
+
"epoch": 0.88,
|
| 3541 |
+
"learning_rate": 7.75137290966177e-07,
|
| 3542 |
+
"loss": 1.1869,
|
| 3543 |
+
"step": 589
|
| 3544 |
+
},
|
| 3545 |
+
{
|
| 3546 |
+
"epoch": 0.88,
|
| 3547 |
+
"learning_rate": 7.565874377975046e-07,
|
| 3548 |
+
"loss": 1.1166,
|
| 3549 |
+
"step": 590
|
| 3550 |
+
},
|
| 3551 |
+
{
|
| 3552 |
+
"epoch": 0.88,
|
| 3553 |
+
"learning_rate": 7.382535104222344e-07,
|
| 3554 |
+
"loss": 1.124,
|
| 3555 |
+
"step": 591
|
| 3556 |
+
},
|
| 3557 |
+
{
|
| 3558 |
+
"epoch": 0.88,
|
| 3559 |
+
"learning_rate": 7.201359371202698e-07,
|
| 3560 |
+
"loss": 1.1771,
|
| 3561 |
+
"step": 592
|
| 3562 |
+
},
|
| 3563 |
+
{
|
| 3564 |
+
"epoch": 0.88,
|
| 3565 |
+
"learning_rate": 7.022351411174866e-07,
|
| 3566 |
+
"loss": 1.1086,
|
| 3567 |
+
"step": 593
|
| 3568 |
+
},
|
| 3569 |
+
{
|
| 3570 |
+
"epoch": 0.88,
|
| 3571 |
+
"learning_rate": 6.845515405758518e-07,
|
| 3572 |
+
"loss": 1.1588,
|
| 3573 |
+
"step": 594
|
| 3574 |
+
},
|
| 3575 |
+
{
|
| 3576 |
+
"epoch": 0.89,
|
| 3577 |
+
"learning_rate": 6.670855485836525e-07,
|
| 3578 |
+
"loss": 1.1115,
|
| 3579 |
+
"step": 595
|
| 3580 |
+
},
|
| 3581 |
+
{
|
| 3582 |
+
"epoch": 0.89,
|
| 3583 |
+
"learning_rate": 6.498375731458529e-07,
|
| 3584 |
+
"loss": 1.1282,
|
| 3585 |
+
"step": 596
|
| 3586 |
+
},
|
| 3587 |
+
{
|
| 3588 |
+
"epoch": 0.89,
|
| 3589 |
+
"learning_rate": 6.32808017174551e-07,
|
| 3590 |
+
"loss": 1.16,
|
| 3591 |
+
"step": 597
|
| 3592 |
+
},
|
| 3593 |
+
{
|
| 3594 |
+
"epoch": 0.89,
|
| 3595 |
+
"learning_rate": 6.159972784795798e-07,
|
| 3596 |
+
"loss": 1.1252,
|
| 3597 |
+
"step": 598
|
| 3598 |
+
},
|
| 3599 |
+
{
|
| 3600 |
+
"epoch": 0.89,
|
| 3601 |
+
"learning_rate": 5.994057497592054e-07,
|
| 3602 |
+
"loss": 1.1086,
|
| 3603 |
+
"step": 599
|
| 3604 |
+
},
|
| 3605 |
+
{
|
| 3606 |
+
"epoch": 0.89,
|
| 3607 |
+
"learning_rate": 5.830338185909545e-07,
|
| 3608 |
+
"loss": 1.1208,
|
| 3609 |
+
"step": 600
|
| 3610 |
+
},
|
| 3611 |
+
{
|
| 3612 |
+
"epoch": 0.89,
|
| 3613 |
+
"learning_rate": 5.668818674225696e-07,
|
| 3614 |
+
"loss": 1.1315,
|
| 3615 |
+
"step": 601
|
| 3616 |
+
},
|
| 3617 |
+
{
|
| 3618 |
+
"epoch": 0.9,
|
| 3619 |
+
"learning_rate": 5.509502735630601e-07,
|
| 3620 |
+
"loss": 1.0897,
|
| 3621 |
+
"step": 602
|
| 3622 |
+
},
|
| 3623 |
+
{
|
| 3624 |
+
"epoch": 0.9,
|
| 3625 |
+
"learning_rate": 5.352394091739022e-07,
|
| 3626 |
+
"loss": 1.1225,
|
| 3627 |
+
"step": 603
|
| 3628 |
+
},
|
| 3629 |
+
{
|
| 3630 |
+
"epoch": 0.9,
|
| 3631 |
+
"learning_rate": 5.197496412603365e-07,
|
| 3632 |
+
"loss": 1.1742,
|
| 3633 |
+
"step": 604
|
| 3634 |
+
},
|
| 3635 |
+
{
|
| 3636 |
+
"epoch": 0.9,
|
| 3637 |
+
"learning_rate": 5.044813316627994e-07,
|
| 3638 |
+
"loss": 1.1343,
|
| 3639 |
+
"step": 605
|
| 3640 |
+
},
|
| 3641 |
+
{
|
| 3642 |
+
"epoch": 0.9,
|
| 3643 |
+
"learning_rate": 4.894348370484648e-07,
|
| 3644 |
+
"loss": 1.1333,
|
| 3645 |
+
"step": 606
|
| 3646 |
+
},
|
| 3647 |
+
{
|
| 3648 |
+
"epoch": 0.9,
|
| 3649 |
+
"learning_rate": 4.746105089029229e-07,
|
| 3650 |
+
"loss": 1.154,
|
| 3651 |
+
"step": 607
|
| 3652 |
+
},
|
| 3653 |
+
{
|
| 3654 |
+
"epoch": 0.9,
|
| 3655 |
+
"learning_rate": 4.6000869352195607e-07,
|
| 3656 |
+
"loss": 1.0746,
|
| 3657 |
+
"step": 608
|
| 3658 |
+
},
|
| 3659 |
+
{
|
| 3660 |
+
"epoch": 0.91,
|
| 3661 |
+
"learning_rate": 4.4562973200346413e-07,
|
| 3662 |
+
"loss": 1.1104,
|
| 3663 |
+
"step": 609
|
| 3664 |
+
},
|
| 3665 |
+
{
|
| 3666 |
+
"epoch": 0.91,
|
| 3667 |
+
"learning_rate": 4.314739602394813e-07,
|
| 3668 |
+
"loss": 1.1653,
|
| 3669 |
+
"step": 610
|
| 3670 |
+
},
|
| 3671 |
+
{
|
| 3672 |
+
"epoch": 0.91,
|
| 3673 |
+
"learning_rate": 4.1754170890833777e-07,
|
| 3674 |
+
"loss": 1.1645,
|
| 3675 |
+
"step": 611
|
| 3676 |
+
},
|
| 3677 |
+
{
|
| 3678 |
+
"epoch": 0.91,
|
| 3679 |
+
"learning_rate": 4.038333034669406e-07,
|
| 3680 |
+
"loss": 1.1725,
|
| 3681 |
+
"step": 612
|
| 3682 |
+
},
|
| 3683 |
+
{
|
| 3684 |
+
"epoch": 0.91,
|
| 3685 |
+
"learning_rate": 3.903490641431573e-07,
|
| 3686 |
+
"loss": 1.1453,
|
| 3687 |
+
"step": 613
|
| 3688 |
+
},
|
| 3689 |
+
{
|
| 3690 |
+
"epoch": 0.91,
|
| 3691 |
+
"learning_rate": 3.770893059283465e-07,
|
| 3692 |
+
"loss": 1.1292,
|
| 3693 |
+
"step": 614
|
| 3694 |
+
},
|
| 3695 |
+
{
|
| 3696 |
+
"epoch": 0.92,
|
| 3697 |
+
"learning_rate": 3.6405433856999684e-07,
|
| 3698 |
+
"loss": 1.0625,
|
| 3699 |
+
"step": 615
|
| 3700 |
+
},
|
| 3701 |
+
{
|
| 3702 |
+
"epoch": 0.92,
|
| 3703 |
+
"learning_rate": 3.5124446656448654e-07,
|
| 3704 |
+
"loss": 1.1049,
|
| 3705 |
+
"step": 616
|
| 3706 |
+
},
|
| 3707 |
+
{
|
| 3708 |
+
"epoch": 0.92,
|
| 3709 |
+
"learning_rate": 3.3865998914997645e-07,
|
| 3710 |
+
"loss": 1.0797,
|
| 3711 |
+
"step": 617
|
| 3712 |
+
},
|
| 3713 |
+
{
|
| 3714 |
+
"epoch": 0.92,
|
| 3715 |
+
"learning_rate": 3.2630120029942034e-07,
|
| 3716 |
+
"loss": 1.0995,
|
| 3717 |
+
"step": 618
|
| 3718 |
+
},
|
| 3719 |
+
{
|
| 3720 |
+
"epoch": 0.92,
|
| 3721 |
+
"learning_rate": 3.1416838871368925e-07,
|
| 3722 |
+
"loss": 1.1127,
|
| 3723 |
+
"step": 619
|
| 3724 |
+
},
|
| 3725 |
+
{
|
| 3726 |
+
"epoch": 0.92,
|
| 3727 |
+
"learning_rate": 3.0226183781483786e-07,
|
| 3728 |
+
"loss": 1.1122,
|
| 3729 |
+
"step": 620
|
| 3730 |
+
},
|
| 3731 |
+
{
|
| 3732 |
+
"epoch": 0.92,
|
| 3733 |
+
"learning_rate": 2.90581825739481e-07,
|
| 3734 |
+
"loss": 1.1484,
|
| 3735 |
+
"step": 621
|
| 3736 |
+
},
|
| 3737 |
+
{
|
| 3738 |
+
"epoch": 0.93,
|
| 3739 |
+
"learning_rate": 2.791286253322856e-07,
|
| 3740 |
+
"loss": 1.0956,
|
| 3741 |
+
"step": 622
|
| 3742 |
+
},
|
| 3743 |
+
{
|
| 3744 |
+
"epoch": 0.93,
|
| 3745 |
+
"learning_rate": 2.679025041396155e-07,
|
| 3746 |
+
"loss": 1.0632,
|
| 3747 |
+
"step": 623
|
| 3748 |
+
},
|
| 3749 |
+
{
|
| 3750 |
+
"epoch": 0.93,
|
| 3751 |
+
"learning_rate": 2.569037244032657e-07,
|
| 3752 |
+
"loss": 1.1184,
|
| 3753 |
+
"step": 624
|
| 3754 |
+
},
|
| 3755 |
+
{
|
| 3756 |
+
"epoch": 0.93,
|
| 3757 |
+
"learning_rate": 2.461325430543482e-07,
|
| 3758 |
+
"loss": 1.1178,
|
| 3759 |
+
"step": 625
|
| 3760 |
+
},
|
| 3761 |
+
{
|
| 3762 |
+
"epoch": 0.93,
|
| 3763 |
+
"learning_rate": 2.3558921170728e-07,
|
| 3764 |
+
"loss": 1.1309,
|
| 3765 |
+
"step": 626
|
| 3766 |
+
},
|
| 3767 |
+
{
|
| 3768 |
+
"epoch": 0.93,
|
| 3769 |
+
"learning_rate": 2.2527397665391137e-07,
|
| 3770 |
+
"loss": 1.1154,
|
| 3771 |
+
"step": 627
|
| 3772 |
+
},
|
| 3773 |
+
{
|
| 3774 |
+
"epoch": 0.93,
|
| 3775 |
+
"learning_rate": 2.1518707885777147e-07,
|
| 3776 |
+
"loss": 1.1322,
|
| 3777 |
+
"step": 628
|
| 3778 |
+
},
|
| 3779 |
+
{
|
| 3780 |
+
"epoch": 0.94,
|
| 3781 |
+
"learning_rate": 2.0532875394844053e-07,
|
| 3782 |
+
"loss": 1.1287,
|
| 3783 |
+
"step": 629
|
| 3784 |
+
},
|
| 3785 |
+
{
|
| 3786 |
+
"epoch": 0.94,
|
| 3787 |
+
"learning_rate": 1.9569923221604224e-07,
|
| 3788 |
+
"loss": 1.1287,
|
| 3789 |
+
"step": 630
|
| 3790 |
+
},
|
| 3791 |
+
{
|
| 3792 |
+
"epoch": 0.94,
|
| 3793 |
+
"learning_rate": 1.8629873860586567e-07,
|
| 3794 |
+
"loss": 1.0926,
|
| 3795 |
+
"step": 631
|
| 3796 |
+
},
|
| 3797 |
+
{
|
| 3798 |
+
"epoch": 0.94,
|
| 3799 |
+
"learning_rate": 1.7712749271311392e-07,
|
| 3800 |
+
"loss": 1.1313,
|
| 3801 |
+
"step": 632
|
| 3802 |
+
},
|
| 3803 |
+
{
|
| 3804 |
+
"epoch": 0.94,
|
| 3805 |
+
"learning_rate": 1.681857087777672e-07,
|
| 3806 |
+
"loss": 1.1336,
|
| 3807 |
+
"step": 633
|
| 3808 |
+
},
|
| 3809 |
+
{
|
| 3810 |
+
"epoch": 0.94,
|
| 3811 |
+
"learning_rate": 1.5947359567958677e-07,
|
| 3812 |
+
"loss": 1.1612,
|
| 3813 |
+
"step": 634
|
| 3814 |
+
},
|
| 3815 |
+
{
|
| 3816 |
+
"epoch": 0.95,
|
| 3817 |
+
"learning_rate": 1.5099135693322776e-07,
|
| 3818 |
+
"loss": 1.1071,
|
| 3819 |
+
"step": 635
|
| 3820 |
+
},
|
| 3821 |
+
{
|
| 3822 |
+
"epoch": 0.95,
|
| 3823 |
+
"learning_rate": 1.4273919068349184e-07,
|
| 3824 |
+
"loss": 1.102,
|
| 3825 |
+
"step": 636
|
| 3826 |
+
},
|
| 3827 |
+
{
|
| 3828 |
+
"epoch": 0.95,
|
| 3829 |
+
"learning_rate": 1.3471728970068986e-07,
|
| 3830 |
+
"loss": 1.1045,
|
| 3831 |
+
"step": 637
|
| 3832 |
+
},
|
| 3833 |
+
{
|
| 3834 |
+
"epoch": 0.95,
|
| 3835 |
+
"learning_rate": 1.2692584137615205e-07,
|
| 3836 |
+
"loss": 1.125,
|
| 3837 |
+
"step": 638
|
| 3838 |
+
},
|
| 3839 |
+
{
|
| 3840 |
+
"epoch": 0.95,
|
| 3841 |
+
"learning_rate": 1.1936502771783488e-07,
|
| 3842 |
+
"loss": 1.1887,
|
| 3843 |
+
"step": 639
|
| 3844 |
+
},
|
| 3845 |
+
{
|
| 3846 |
+
"epoch": 0.95,
|
| 3847 |
+
"learning_rate": 1.1203502534608113e-07,
|
| 3848 |
+
"loss": 1.0997,
|
| 3849 |
+
"step": 640
|
| 3850 |
+
},
|
| 3851 |
+
{
|
| 3852 |
+
"epoch": 0.95,
|
| 3853 |
+
"learning_rate": 1.0493600548948879e-07,
|
| 3854 |
+
"loss": 1.0907,
|
| 3855 |
+
"step": 641
|
| 3856 |
+
},
|
| 3857 |
+
{
|
| 3858 |
+
"epoch": 0.96,
|
| 3859 |
+
"learning_rate": 9.806813398091419e-08,
|
| 3860 |
+
"loss": 1.1638,
|
| 3861 |
+
"step": 642
|
| 3862 |
+
},
|
| 3863 |
+
{
|
| 3864 |
+
"epoch": 0.96,
|
| 3865 |
+
"learning_rate": 9.143157125359403e-08,
|
| 3866 |
+
"loss": 1.1088,
|
| 3867 |
+
"step": 643
|
| 3868 |
+
},
|
| 3869 |
+
{
|
| 3870 |
+
"epoch": 0.96,
|
| 3871 |
+
"learning_rate": 8.502647233740169e-08,
|
| 3872 |
+
"loss": 1.069,
|
| 3873 |
+
"step": 644
|
| 3874 |
+
},
|
| 3875 |
+
{
|
| 3876 |
+
"epoch": 0.96,
|
| 3877 |
+
"learning_rate": 7.885298685522235e-08,
|
| 3878 |
+
"loss": 1.1003,
|
| 3879 |
+
"step": 645
|
| 3880 |
+
},
|
| 3881 |
+
{
|
| 3882 |
+
"epoch": 0.96,
|
| 3883 |
+
"learning_rate": 7.291125901946027e-08,
|
| 3884 |
+
"loss": 1.1347,
|
| 3885 |
+
"step": 646
|
| 3886 |
+
},
|
| 3887 |
+
{
|
| 3888 |
+
"epoch": 0.96,
|
| 3889 |
+
"learning_rate": 6.720142762867032e-08,
|
| 3890 |
+
"loss": 1.1776,
|
| 3891 |
+
"step": 647
|
| 3892 |
+
},
|
| 3893 |
+
{
|
| 3894 |
+
"epoch": 0.96,
|
| 3895 |
+
"learning_rate": 6.172362606431281e-08,
|
| 3896 |
+
"loss": 1.1104,
|
| 3897 |
+
"step": 648
|
| 3898 |
+
},
|
| 3899 |
+
{
|
| 3900 |
+
"epoch": 0.97,
|
| 3901 |
+
"learning_rate": 5.647798228764156e-08,
|
| 3902 |
+
"loss": 1.1623,
|
| 3903 |
+
"step": 649
|
| 3904 |
+
},
|
| 3905 |
+
{
|
| 3906 |
+
"epoch": 0.97,
|
| 3907 |
+
"learning_rate": 5.146461883671072e-08,
|
| 3908 |
+
"loss": 1.0729,
|
| 3909 |
+
"step": 650
|
| 3910 |
+
},
|
| 3911 |
+
{
|
| 3912 |
+
"epoch": 0.97,
|
| 3913 |
+
"learning_rate": 4.6683652823513725e-08,
|
| 3914 |
+
"loss": 1.0913,
|
| 3915 |
+
"step": 651
|
| 3916 |
+
},
|
| 3917 |
+
{
|
| 3918 |
+
"epoch": 0.97,
|
| 3919 |
+
"learning_rate": 4.2135195931249925e-08,
|
| 3920 |
+
"loss": 1.149,
|
| 3921 |
+
"step": 652
|
| 3922 |
+
},
|
| 3923 |
+
{
|
| 3924 |
+
"epoch": 0.97,
|
| 3925 |
+
"learning_rate": 3.781935441171225e-08,
|
| 3926 |
+
"loss": 1.0957,
|
| 3927 |
+
"step": 653
|
| 3928 |
+
},
|
| 3929 |
+
{
|
| 3930 |
+
"epoch": 0.97,
|
| 3931 |
+
"learning_rate": 3.373622908280916e-08,
|
| 3932 |
+
"loss": 1.0875,
|
| 3933 |
+
"step": 654
|
| 3934 |
+
},
|
| 3935 |
+
{
|
| 3936 |
+
"epoch": 0.97,
|
| 3937 |
+
"learning_rate": 2.988591532620322e-08,
|
| 3938 |
+
"loss": 1.1031,
|
| 3939 |
+
"step": 655
|
| 3940 |
+
},
|
| 3941 |
+
{
|
| 3942 |
+
"epoch": 0.98,
|
| 3943 |
+
"learning_rate": 2.6268503085089547e-08,
|
| 3944 |
+
"loss": 1.1561,
|
| 3945 |
+
"step": 656
|
| 3946 |
+
},
|
| 3947 |
+
{
|
| 3948 |
+
"epoch": 0.98,
|
| 3949 |
+
"learning_rate": 2.2884076862089712e-08,
|
| 3950 |
+
"loss": 1.2111,
|
| 3951 |
+
"step": 657
|
| 3952 |
+
},
|
| 3953 |
+
{
|
| 3954 |
+
"epoch": 0.98,
|
| 3955 |
+
"learning_rate": 1.973271571728441e-08,
|
| 3956 |
+
"loss": 1.1655,
|
| 3957 |
+
"step": 658
|
| 3958 |
+
},
|
| 3959 |
+
{
|
| 3960 |
+
"epoch": 0.98,
|
| 3961 |
+
"learning_rate": 1.6814493266357202e-08,
|
| 3962 |
+
"loss": 1.1432,
|
| 3963 |
+
"step": 659
|
| 3964 |
+
},
|
| 3965 |
+
{
|
| 3966 |
+
"epoch": 0.98,
|
| 3967 |
+
"learning_rate": 1.4129477678884728e-08,
|
| 3968 |
+
"loss": 1.1066,
|
| 3969 |
+
"step": 660
|
| 3970 |
+
},
|
| 3971 |
+
{
|
| 3972 |
+
"epoch": 0.98,
|
| 3973 |
+
"learning_rate": 1.1677731676734694e-08,
|
| 3974 |
+
"loss": 1.1371,
|
| 3975 |
+
"step": 661
|
| 3976 |
+
},
|
| 3977 |
+
{
|
| 3978 |
+
"epoch": 0.99,
|
| 3979 |
+
"learning_rate": 9.459312532608122e-09,
|
| 3980 |
+
"loss": 1.1792,
|
| 3981 |
+
"step": 662
|
| 3982 |
+
},
|
| 3983 |
+
{
|
| 3984 |
+
"epoch": 0.99,
|
| 3985 |
+
"learning_rate": 7.474272068698219e-09,
|
| 3986 |
+
"loss": 1.0863,
|
| 3987 |
+
"step": 663
|
| 3988 |
+
},
|
| 3989 |
+
{
|
| 3990 |
+
"epoch": 0.99,
|
| 3991 |
+
"learning_rate": 5.722656655482439e-09,
|
| 3992 |
+
"loss": 1.1954,
|
| 3993 |
+
"step": 664
|
| 3994 |
+
},
|
| 3995 |
+
{
|
| 3996 |
+
"epoch": 0.99,
|
| 3997 |
+
"learning_rate": 4.204507210633368e-09,
|
| 3998 |
+
"loss": 1.1196,
|
| 3999 |
+
"step": 665
|
| 4000 |
+
},
|
| 4001 |
+
{
|
| 4002 |
+
"epoch": 0.99,
|
| 4003 |
+
"learning_rate": 2.9198591980705847e-09,
|
| 4004 |
+
"loss": 1.1339,
|
| 4005 |
+
"step": 666
|
| 4006 |
+
},
|
| 4007 |
+
{
|
| 4008 |
+
"epoch": 0.99,
|
| 4009 |
+
"learning_rate": 1.8687426271246646e-09,
|
| 4010 |
+
"loss": 1.1454,
|
| 4011 |
+
"step": 667
|
| 4012 |
+
},
|
| 4013 |
+
{
|
| 4014 |
+
"epoch": 0.99,
|
| 4015 |
+
"learning_rate": 1.0511820518432915e-09,
|
| 4016 |
+
"loss": 1.1141,
|
| 4017 |
+
"step": 668
|
| 4018 |
+
},
|
| 4019 |
+
{
|
| 4020 |
+
"epoch": 1.0,
|
| 4021 |
+
"learning_rate": 4.671965704128312e-10,
|
| 4022 |
+
"loss": 1.2043,
|
| 4023 |
+
"step": 669
|
| 4024 |
+
},
|
| 4025 |
+
{
|
| 4026 |
+
"epoch": 1.0,
|
| 4027 |
+
"learning_rate": 1.167998247131319e-10,
|
| 4028 |
+
"loss": 1.1129,
|
| 4029 |
+
"step": 670
|
| 4030 |
+
},
|
| 4031 |
+
{
|
| 4032 |
+
"epoch": 1.0,
|
| 4033 |
+
"learning_rate": 0.0,
|
| 4034 |
+
"loss": 1.0999,
|
| 4035 |
+
"step": 671
|
| 4036 |
+
},
|
| 4037 |
+
{
|
| 4038 |
+
"epoch": 1.0,
|
| 4039 |
+
"step": 671,
|
| 4040 |
+
"total_flos": 2.178765965849998e+19,
|
| 4041 |
+
"train_loss": 1.1755684873563876,
|
| 4042 |
+
"train_runtime": 47161.9361,
|
| 4043 |
+
"train_samples_per_second": 1.823,
|
| 4044 |
+
"train_steps_per_second": 0.014
|
| 4045 |
+
}
|
| 4046 |
+
],
|
| 4047 |
+
"logging_steps": 1.0,
|
| 4048 |
+
"max_steps": 671,
|
| 4049 |
+
"num_input_tokens_seen": 0,
|
| 4050 |
+
"num_train_epochs": 1,
|
| 4051 |
+
"save_steps": 200,
|
| 4052 |
+
"total_flos": 2.178765965849998e+19,
|
| 4053 |
+
"train_batch_size": 2,
|
| 4054 |
+
"trial_name": null,
|
| 4055 |
+
"trial_params": null
|
| 4056 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9406b4f3c8d431c0b7315b7138e16a21e799211e92743859523278b45a652a8
|
| 3 |
+
size 6968
|
training_log.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|