Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -597,7 +597,7 @@ To deploy InternVL2 as an API, please configure the chat template config first.
|
|
| 597 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 598 |
|
| 599 |
```shell
|
| 600 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-40B --
|
| 601 |
```
|
| 602 |
|
| 603 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
@@ -614,7 +614,7 @@ from openai import OpenAI
|
|
| 614 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 615 |
model_name = client.models.list().data[0].id
|
| 616 |
response = client.chat.completions.create(
|
| 617 |
-
model=
|
| 618 |
messages=[{
|
| 619 |
'role':
|
| 620 |
'user',
|
|
@@ -644,7 +644,7 @@ TODO
|
|
| 644 |
|
| 645 |
## License
|
| 646 |
|
| 647 |
-
This project is released under the MIT license, while
|
| 648 |
|
| 649 |
## Citation
|
| 650 |
|
|
@@ -893,7 +893,7 @@ print(sess.response.text)
|
|
| 893 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
| 894 |
|
| 895 |
```shell
|
| 896 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-40B --
|
| 897 |
```
|
| 898 |
|
| 899 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
|
@@ -910,7 +910,7 @@ from openai import OpenAI
|
|
| 910 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 911 |
model_name = client.models.list().data[0].id
|
| 912 |
response = client.chat.completions.create(
|
| 913 |
-
model=
|
| 914 |
messages=[{
|
| 915 |
'role':
|
| 916 |
'user',
|
|
|
|
| 597 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 598 |
|
| 599 |
```shell
|
| 600 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-40B --backend turbomind --server-port 23333 --chat-template chat_template.json
|
| 601 |
```
|
| 602 |
|
| 603 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
|
| 614 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 615 |
model_name = client.models.list().data[0].id
|
| 616 |
response = client.chat.completions.create(
|
| 617 |
+
model=model_name,
|
| 618 |
messages=[{
|
| 619 |
'role':
|
| 620 |
'user',
|
|
|
|
| 644 |
|
| 645 |
## License
|
| 646 |
|
| 647 |
+
This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
|
| 648 |
|
| 649 |
## Citation
|
| 650 |
|
|
|
|
| 893 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
| 894 |
|
| 895 |
```shell
|
| 896 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-40B --backend turbomind --server-port 23333 --chat-template chat_template.json
|
| 897 |
```
|
| 898 |
|
| 899 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
|
|
|
| 910 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 911 |
model_name = client.models.list().data[0].id
|
| 912 |
response = client.chat.completions.create(
|
| 913 |
+
model=model_name,
|
| 914 |
messages=[{
|
| 915 |
'role':
|
| 916 |
'user',
|