Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +438 -3
- config.json +138 -0
- configuration_intern_vit.py +119 -0
- configuration_internvl_chat.py +93 -0
- conversation.py +390 -0
- examples/image1.jpg +0 -0
- examples/image2.jpg +0 -0
- examples/red-panda.mp4 +3 -0
- generation_config.json +4 -0
- model-00001-of-00032.safetensors +3 -0
- model-00002-of-00032.safetensors +3 -0
- model-00003-of-00032.safetensors +3 -0
- model-00004-of-00032.safetensors +3 -0
- model-00005-of-00032.safetensors +3 -0
- model-00006-of-00032.safetensors +3 -0
- model-00007-of-00032.safetensors +3 -0
- model-00008-of-00032.safetensors +3 -0
- model-00009-of-00032.safetensors +3 -0
- model-00010-of-00032.safetensors +3 -0
- model-00011-of-00032.safetensors +3 -0
- model-00012-of-00032.safetensors +3 -0
- model-00013-of-00032.safetensors +3 -0
- model-00014-of-00032.safetensors +3 -0
- model-00015-of-00032.safetensors +3 -0
- model-00016-of-00032.safetensors +3 -0
- model-00017-of-00032.safetensors +3 -0
- model-00018-of-00032.safetensors +3 -0
- model-00019-of-00032.safetensors +3 -0
- model-00020-of-00032.safetensors +3 -0
- model-00021-of-00032.safetensors +3 -0
- model-00022-of-00032.safetensors +3 -0
- model-00023-of-00032.safetensors +3 -0
- model-00024-of-00032.safetensors +3 -0
- model-00025-of-00032.safetensors +3 -0
- model-00026-of-00032.safetensors +3 -0
- model-00027-of-00032.safetensors +3 -0
- model-00028-of-00032.safetensors +3 -0
- model-00029-of-00032.safetensors +3 -0
- model-00030-of-00032.safetensors +3 -0
- model-00031-of-00032.safetensors +3 -0
- model-00032-of-00032.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_intern_vit.py +434 -0
- modeling_internvl_chat.py +340 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2145 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,438 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
            license:  | 
| 3 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: llama3
         | 
| 3 | 
            +
            pipeline_tag: image-text-to-text
         | 
| 4 | 
            +
            ---
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # InternVL2-Llama3-76B
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)  [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)  [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](#quick-start)  [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971)  \[🌟 [魔搭社区](https://modelscope.cn/organization/OpenGVLab) | [教程](https://mp.weixin.qq.com/s/OUaVLkxlk1zhFb1cvMCFjg) \]
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            ## Introduction
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            We are excited to announce the release of InternVL 2.0, the latest addition to the InternVL series of multimodal large language models. InternVL 2.0 features a variety of **instruction-tuned models**, ranging from 2 billion to 108 billion parameters. This repository contains the instruction-tuned InternVL2-Llama3-76B model.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            Compared to the state-of-the-art open-source multimodal large language models, InternVL 2.0 surpasses most open-source models. It demonstrates competitive performance on par with proprietary commercial models across various capabilities, including document and chart comprehension, infographics QA, scene text understanding and OCR tasks, scientific and mathematical problem solving, as well as cultural understanding and integrated multimodal capabilities.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            InternVL 2.0 is trained with an 8k context window and utilizes training data consisting of long texts, multiple images, and videos, significantly improving its ability to handle these types of inputs compared to InternVL 1.5. For more details, please refer to our blog and GitHub.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            ## Model Details
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            InternVL 2.0 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2-Llama3-76B consists of [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5), an MLP projector, and [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B).
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            ## Performance
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            ### Image Benchmarks
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            |          Benchmark           | GPT-4T-20240409 | Gemini-1.5-Pro | InternVL2-40B | InternVL2-Llama3-76B |
         | 
| 29 | 
            +
            | :--------------------------: | :-------------: | :------------: | :-----------: | :------------------: |
         | 
| 30 | 
            +
            |          Model Size          |        -        |       -        |      40B      |         76B          |
         | 
| 31 | 
            +
            |                              |                 |                |               |                      |
         | 
| 32 | 
            +
            |    DocVQA<sub>test</sub>     |      87.2       |      86.5      |     93.9      |                      |
         | 
| 33 | 
            +
            |    ChartQA<sub>test</sub>    |      78.1       |      81.3      |     86.2      |                      |
         | 
| 34 | 
            +
            |    InfoVQA<sub>test</sub>    |        -        |      72.7      |     78.7      |                      |
         | 
| 35 | 
            +
            |    TextVQA<sub>val</sub>     |        -        |      73.5      |     83.0      |                      |
         | 
| 36 | 
            +
            |           OCRBench           |       678       |      754       |      837      |                      |
         | 
| 37 | 
            +
            |      MME<sub>sum</sub>       |     2070.2      |     2110.6     |    2315.0     |                      |
         | 
| 38 | 
            +
            |         RealWorldQA          |      68.0       |      67.5      |     71.8      |                      |
         | 
| 39 | 
            +
            |     AI2D<sub>test</sub>      |      89.4       |      80.3      |     87.1      |                      |
         | 
| 40 | 
            +
            |      MMMU<sub>val</sub>      |      63.1       |      58.5      |     53.9      |                      |
         | 
| 41 | 
            +
            |  MMBench-EN<sub>test</sub>   |      81.0       |      73.9      |     86.8      |                      |
         | 
| 42 | 
            +
            |  MMBench-CN<sub>test</sub>   |      80.2       |      73.8      |     86.5      |                      |
         | 
| 43 | 
            +
            |    CCBench<sub>dev</sub>     |      57.3       |      28.4      |     80.6      |                      |
         | 
| 44 | 
            +
            |  MMVet<sub>GPT-4-0613</sub>  |        -        |       -        |     68.5      |                      |
         | 
| 45 | 
            +
            | MMVet<sub>GPT-4-Turbo</sub>  |      67.5       |      64.0      |     65.5      |                      |
         | 
| 46 | 
            +
            |          SEED-Image          |        -        |       -        |     78.2      |                      |
         | 
| 47 | 
            +
            |   HallBench<sub>avg</sub>    |      43.9       |      45.6      |     56.9      |                      |
         | 
| 48 | 
            +
            | MathVista<sub>testmini</sub> |      58.1       |      57.7      |     63.7      |                      |
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            - We simultaneously use InternVL and VLMEvalKit repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            - Please note that evaluating the same model using different testing toolkits like InternVL and VLMEvalKit can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            - It is important to mention that the MMVet scores we report are evaluated using GPT-4-0613 as the judge model. Different versions of GPT-4 can lead to significant variations in the scores for this dataset. For instance, using GPT-4-Turbo would result in significantly lower scores.
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            ### Video Benchmarks
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            |      Benchmark       | GPT-4V | VILA-1.5 | LLaVA-NeXT-Video | InternVL2-40B | InternVL2-Llama3-76B |
         | 
| 59 | 
            +
            | :------------------: | :----: | :------: | :--------------: | :-----------: | :------------------: |
         | 
| 60 | 
            +
            |      Model Size      |   -    |   34B    |       34B        |      40B      |         76B          |
         | 
| 61 | 
            +
            |                      |        |          |                  |               |                      |
         | 
| 62 | 
            +
            |       MVBench        |   -    |    -     |        -         |     72.5      |                      |
         | 
| 63 | 
            +
            | Video-MME<br>wo subs |  59.9  |   59.0   |       52.0       |      TBD      |         TBD          |
         | 
| 64 | 
            +
            | Video-MME<br>w/ subs |  63.3  |   59.4   |       54.9       |      TBD      |         TBD          |
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            - We evaluate our models on MVBench by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ## Quick Start
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            We provide an example code to run InternVL2-Llama3-76B using `transformers`.
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            > Please use transformers==4.37.2 to ensure the model works normally.
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            ```python
         | 
| 77 | 
            +
            import numpy as np
         | 
| 78 | 
            +
            import torch
         | 
| 79 | 
            +
            import torchvision.transforms as T
         | 
| 80 | 
            +
            from decord import VideoReader, cpu
         | 
| 81 | 
            +
            from PIL import Image
         | 
| 82 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 83 | 
            +
            from transformers import AutoModel, AutoTokenizer
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            IMAGENET_MEAN = (0.485, 0.456, 0.406)
         | 
| 86 | 
            +
            IMAGENET_STD = (0.229, 0.224, 0.225)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
             | 
| 89 | 
            +
            def build_transform(input_size):
         | 
| 90 | 
            +
                MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
         | 
| 91 | 
            +
                transform = T.Compose([
         | 
| 92 | 
            +
                    T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
         | 
| 93 | 
            +
                    T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
         | 
| 94 | 
            +
                    T.ToTensor(),
         | 
| 95 | 
            +
                    T.Normalize(mean=MEAN, std=STD)
         | 
| 96 | 
            +
                ])
         | 
| 97 | 
            +
                return transform
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
         | 
| 101 | 
            +
                best_ratio_diff = float('inf')
         | 
| 102 | 
            +
                best_ratio = (1, 1)
         | 
| 103 | 
            +
                area = width * height
         | 
| 104 | 
            +
                for ratio in target_ratios:
         | 
| 105 | 
            +
                    target_aspect_ratio = ratio[0] / ratio[1]
         | 
| 106 | 
            +
                    ratio_diff = abs(aspect_ratio - target_aspect_ratio)
         | 
| 107 | 
            +
                    if ratio_diff < best_ratio_diff:
         | 
| 108 | 
            +
                        best_ratio_diff = ratio_diff
         | 
| 109 | 
            +
                        best_ratio = ratio
         | 
| 110 | 
            +
                    elif ratio_diff == best_ratio_diff:
         | 
| 111 | 
            +
                        if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
         | 
| 112 | 
            +
                            best_ratio = ratio
         | 
| 113 | 
            +
                return best_ratio
         | 
| 114 | 
            +
             | 
| 115 | 
            +
             | 
| 116 | 
            +
            def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
         | 
| 117 | 
            +
                orig_width, orig_height = image.size
         | 
| 118 | 
            +
                aspect_ratio = orig_width / orig_height
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                # calculate the existing image aspect ratio
         | 
| 121 | 
            +
                target_ratios = set(
         | 
| 122 | 
            +
                    (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
         | 
| 123 | 
            +
                    i * j <= max_num and i * j >= min_num)
         | 
| 124 | 
            +
                target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                # find the closest aspect ratio to the target
         | 
| 127 | 
            +
                target_aspect_ratio = find_closest_aspect_ratio(
         | 
| 128 | 
            +
                    aspect_ratio, target_ratios, orig_width, orig_height, image_size)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                # calculate the target width and height
         | 
| 131 | 
            +
                target_width = image_size * target_aspect_ratio[0]
         | 
| 132 | 
            +
                target_height = image_size * target_aspect_ratio[1]
         | 
| 133 | 
            +
                blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                # resize the image
         | 
| 136 | 
            +
                resized_img = image.resize((target_width, target_height))
         | 
| 137 | 
            +
                processed_images = []
         | 
| 138 | 
            +
                for i in range(blocks):
         | 
| 139 | 
            +
                    box = (
         | 
| 140 | 
            +
                        (i % (target_width // image_size)) * image_size,
         | 
| 141 | 
            +
                        (i // (target_width // image_size)) * image_size,
         | 
| 142 | 
            +
                        ((i % (target_width // image_size)) + 1) * image_size,
         | 
| 143 | 
            +
                        ((i // (target_width // image_size)) + 1) * image_size
         | 
| 144 | 
            +
                    )
         | 
| 145 | 
            +
                    # split the image
         | 
| 146 | 
            +
                    split_img = resized_img.crop(box)
         | 
| 147 | 
            +
                    processed_images.append(split_img)
         | 
| 148 | 
            +
                assert len(processed_images) == blocks
         | 
| 149 | 
            +
                if use_thumbnail and len(processed_images) != 1:
         | 
| 150 | 
            +
                    thumbnail_img = image.resize((image_size, image_size))
         | 
| 151 | 
            +
                    processed_images.append(thumbnail_img)
         | 
| 152 | 
            +
                return processed_images
         | 
| 153 | 
            +
             | 
| 154 | 
            +
             | 
| 155 | 
            +
            def load_image(image_file, input_size=448, max_num=6):
         | 
| 156 | 
            +
                image = Image.open(image_file).convert('RGB')
         | 
| 157 | 
            +
                transform = build_transform(input_size=input_size)
         | 
| 158 | 
            +
                images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
         | 
| 159 | 
            +
                pixel_values = [transform(image) for image in images]
         | 
| 160 | 
            +
                pixel_values = torch.stack(pixel_values)
         | 
| 161 | 
            +
                return pixel_values
         | 
| 162 | 
            +
             | 
| 163 | 
            +
             | 
| 164 | 
            +
            path = 'OpenGVLab/InternVL2-Llama3-76B'
         | 
| 165 | 
            +
            # You need to set device_map='auto' to use multiple GPUs for inference.
         | 
| 166 | 
            +
            import os
         | 
| 167 | 
            +
            os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
         | 
| 168 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 169 | 
            +
                path,
         | 
| 170 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 171 | 
            +
                low_cpu_mem_usage=True,
         | 
| 172 | 
            +
                trust_remote_code=True,
         | 
| 173 | 
            +
                device_map='auto').eval()
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 176 | 
            +
            # set the max number of tiles in `max_num`
         | 
| 177 | 
            +
            pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            generation_config = dict(
         | 
| 180 | 
            +
                num_beams=1,
         | 
| 181 | 
            +
                max_new_tokens=1024,
         | 
| 182 | 
            +
                do_sample=False,
         | 
| 183 | 
            +
            )
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            # pure-text conversation (纯文本对话)
         | 
| 186 | 
            +
            question = 'Hello, who are you?'
         | 
| 187 | 
            +
            response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
         | 
| 188 | 
            +
            print(f'User: {question}')
         | 
| 189 | 
            +
            print(f'Assistant: {response}')
         | 
| 190 | 
            +
             | 
| 191 | 
            +
            question = 'Can you tell me a story?'
         | 
| 192 | 
            +
            response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
         | 
| 193 | 
            +
            print(f'User: {question}')
         | 
| 194 | 
            +
            print(f'Assistant: {response}')
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            # single-image single-round conversation (单图单轮对话)
         | 
| 197 | 
            +
            question = '<image>\nPlease describe the image shortly.'
         | 
| 198 | 
            +
            response = model.chat(tokenizer, pixel_values, question, generation_config)
         | 
| 199 | 
            +
            print(f'User: {question}')
         | 
| 200 | 
            +
            print(f'Assistant: {response}')
         | 
| 201 | 
            +
             | 
| 202 | 
            +
            # single-image multi-round conversation (单图多轮对话)
         | 
| 203 | 
            +
            question = '<image>\nPlease describe the image in detail.'
         | 
| 204 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
         | 
| 205 | 
            +
            print(f'User: {question}')
         | 
| 206 | 
            +
            print(f'Assistant: {response}')
         | 
| 207 | 
            +
             | 
| 208 | 
            +
            question = 'Please write a poem according to the image.'
         | 
| 209 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
         | 
| 210 | 
            +
            print(f'User: {question}')
         | 
| 211 | 
            +
            print(f'Assistant: {response}')
         | 
| 212 | 
            +
             | 
| 213 | 
            +
            # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
         | 
| 214 | 
            +
            pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
         | 
| 215 | 
            +
            pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
         | 
| 216 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
            question = '<image>\nDescribe the two images in detail.'
         | 
| 219 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 220 | 
            +
                                           history=None, return_history=True)
         | 
| 221 | 
            +
             | 
| 222 | 
            +
            question = 'What are the similarities and differences between these two images.'
         | 
| 223 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 224 | 
            +
                                           history=history, return_history=True)
         | 
| 225 | 
            +
            print(f'User: {question}')
         | 
| 226 | 
            +
            print(f'Assistant: {response}')
         | 
| 227 | 
            +
             | 
| 228 | 
            +
            # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
         | 
| 229 | 
            +
            pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
         | 
| 230 | 
            +
            pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
         | 
| 231 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 232 | 
            +
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 233 | 
            +
             | 
| 234 | 
            +
            question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
         | 
| 235 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 236 | 
            +
                                           num_patches_list=num_patches_list,
         | 
| 237 | 
            +
                                           history=None, return_history=True)
         | 
| 238 | 
            +
            print(f'User: {question}')
         | 
| 239 | 
            +
            print(f'Assistant: {response}')
         | 
| 240 | 
            +
             | 
| 241 | 
            +
            question = 'What are the similarities and differences between these two images.'
         | 
| 242 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 243 | 
            +
                                           num_patches_list=num_patches_list,
         | 
| 244 | 
            +
                                           history=history, return_history=True)
         | 
| 245 | 
            +
            print(f'User: {question}')
         | 
| 246 | 
            +
            print(f'Assistant: {response}')
         | 
| 247 | 
            +
             | 
| 248 | 
            +
            # batch inference, single image per sample (单图批处理)
         | 
| 249 | 
            +
            pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
         | 
| 250 | 
            +
            pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
         | 
| 251 | 
            +
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 252 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
            questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
         | 
| 255 | 
            +
            responses = model.batch_chat(tokenizer, pixel_values,
         | 
| 256 | 
            +
                                         num_patches_list=num_patches_list,
         | 
| 257 | 
            +
                                         questions=questions,
         | 
| 258 | 
            +
                                         generation_config=generation_config)
         | 
| 259 | 
            +
            for question, response in zip(questions, responses):
         | 
| 260 | 
            +
                print(f'User: {question}')
         | 
| 261 | 
            +
                print(f'Assistant: {response}')
         | 
| 262 | 
            +
             | 
| 263 | 
            +
            # video multi-round conversation (视频多轮对话)
         | 
| 264 | 
            +
            def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
         | 
| 265 | 
            +
                if bound:
         | 
| 266 | 
            +
                    start, end = bound[0], bound[1]
         | 
| 267 | 
            +
                else:
         | 
| 268 | 
            +
                    start, end = -100000, 100000
         | 
| 269 | 
            +
                start_idx = max(first_idx, round(start * fps))
         | 
| 270 | 
            +
                end_idx = min(round(end * fps), max_frame)
         | 
| 271 | 
            +
                seg_size = float(end_idx - start_idx) / num_segments
         | 
| 272 | 
            +
                frame_indices = np.array([
         | 
| 273 | 
            +
                    int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
         | 
| 274 | 
            +
                    for idx in range(num_segments)
         | 
| 275 | 
            +
                ])
         | 
| 276 | 
            +
                return frame_indices
         | 
| 277 | 
            +
             | 
| 278 | 
            +
            def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
         | 
| 279 | 
            +
                vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
         | 
| 280 | 
            +
                max_frame = len(vr) - 1
         | 
| 281 | 
            +
                fps = float(vr.get_avg_fps())
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                pixel_values_list, num_patches_list = [], []
         | 
| 284 | 
            +
                transform = build_transform(input_size=input_size)
         | 
| 285 | 
            +
                frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
         | 
| 286 | 
            +
                for frame_index in frame_indices:
         | 
| 287 | 
            +
                    img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
         | 
| 288 | 
            +
                    img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
         | 
| 289 | 
            +
                    pixel_values = [transform(tile) for tile in img]
         | 
| 290 | 
            +
                    pixel_values = torch.stack(pixel_values)
         | 
| 291 | 
            +
                    num_patches_list.append(pixel_values.shape[0])
         | 
| 292 | 
            +
                    pixel_values_list.append(pixel_values)
         | 
| 293 | 
            +
                pixel_values = torch.cat(pixel_values_list)
         | 
| 294 | 
            +
                return pixel_values, num_patches_list
         | 
| 295 | 
            +
             | 
| 296 | 
            +
             | 
| 297 | 
            +
            video_path = './examples/red-panda.mp4'
         | 
| 298 | 
            +
            # pixel_values, num_patches_list = load_video(video_path, num_segments=32, max_num=1)
         | 
| 299 | 
            +
            pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
         | 
| 300 | 
            +
            pixel_values = pixel_values.to(torch.bfloat16).cuda()
         | 
| 301 | 
            +
            video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
         | 
| 302 | 
            +
            question = video_prefix + 'What is the red panda doing?'
         | 
| 303 | 
            +
            # Frame1: <image>\nFrame2: <image>\n...\nFrame31: <image>\n{question}
         | 
| 304 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 305 | 
            +
                                           num_patches_list=num_patches_list,
         | 
| 306 | 
            +
                                           history=None, return_history=True)
         | 
| 307 | 
            +
            print(f'User: {question}')
         | 
| 308 | 
            +
            print(f'Assistant: {response}')
         | 
| 309 | 
            +
             | 
| 310 | 
            +
            question = 'Describe this video in detail. Don\'t repeat.'
         | 
| 311 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 312 | 
            +
                                           num_patches_list=num_patches_list,
         | 
| 313 | 
            +
                                           history=history, return_history=True)
         | 
| 314 | 
            +
            print(f'User: {question}')
         | 
| 315 | 
            +
            print(f'Assistant: {response}')
         | 
| 316 | 
            +
            ```
         | 
| 317 | 
            +
             | 
| 318 | 
            +
            ## Deployment
         | 
| 319 | 
            +
             | 
| 320 | 
            +
            TODO
         | 
| 321 | 
            +
             | 
| 322 | 
            +
            ## License
         | 
| 323 | 
            +
             | 
| 324 | 
            +
            This project is released under the MIT license, while Llama3 is licensed under the Llama 3 Community License.
         | 
| 325 | 
            +
             | 
| 326 | 
            +
            ## Citation
         | 
| 327 | 
            +
             | 
| 328 | 
            +
            If you find this project useful in your research, please consider citing:
         | 
| 329 | 
            +
             | 
| 330 | 
            +
            ```BibTeX
         | 
| 331 | 
            +
            @article{chen2023internvl,
         | 
| 332 | 
            +
              title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
         | 
| 333 | 
            +
              author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
         | 
| 334 | 
            +
              journal={arXiv preprint arXiv:2312.14238},
         | 
| 335 | 
            +
              year={2023}
         | 
| 336 | 
            +
            }
         | 
| 337 | 
            +
            @article{chen2024far,
         | 
| 338 | 
            +
              title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
         | 
| 339 | 
            +
              author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
         | 
| 340 | 
            +
              journal={arXiv preprint arXiv:2404.16821},
         | 
| 341 | 
            +
              year={2024}
         | 
| 342 | 
            +
            }
         | 
| 343 | 
            +
            ```
         | 
| 344 | 
            +
             | 
| 345 | 
            +
            ## 简介
         | 
| 346 | 
            +
             | 
| 347 | 
            +
            我们很高兴宣布 InternVL 2.0 的发布,这是 InternVL 系列多模态大语言模型的最新版本。InternVL 2.0 提供了多种**指令微调**的模型,参数从 20 亿到 1080 亿不等。此仓库包含经过指令微调的 InternVL2-Llama3-76B 模型。
         | 
| 348 | 
            +
             | 
| 349 | 
            +
            与最先进的开源多模态大语言模型相比,InternVL 2.0 超越了大多数开源模型。它在各种能力上表现出与闭源商业模型相媲美的竞争力,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务、科学和数学问题解决,以及文化理解和综合多模态能力。
         | 
| 350 | 
            +
             | 
| 351 | 
            +
            InternVL 2.0 使用 8k 上下文窗口进行训练,训练数据包含长文本、多图和视频数据,与 InternVL 1.5 相比,其处理这些类型输入的能力显著提高。更多详细信息,请参阅我们的博客和 GitHub。
         | 
| 352 | 
            +
             | 
| 353 | 
            +
            ## 模型细节
         | 
| 354 | 
            +
             | 
| 355 | 
            +
            InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模型。对于每个规模的模型,我们都会发布针对多模态任务优化的指令微调模型。InternVL2-Llama3-76B 包含 [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5)、一个 MLP 投影器和 [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B)。
         | 
| 356 | 
            +
             | 
| 357 | 
            +
            ## 性能测试
         | 
| 358 | 
            +
             | 
| 359 | 
            +
            ### 图像相关评测
         | 
| 360 | 
            +
             | 
| 361 | 
            +
            |          评测数据集          | GPT-4T-20240409 | Gemini-1.5-Pro | InternVL2-40B | InternVL2-Llama3-76B |
         | 
| 362 | 
            +
            | :--------------------------: | :-------------: | :------------: | :-----------: | :------------------: |
         | 
| 363 | 
            +
            |           模型大小           |        -        |       -        |      40B      |         76B          |
         | 
| 364 | 
            +
            |                              |                 |                |               |                      |
         | 
| 365 | 
            +
            |    DocVQA<sub>test</sub>     |      87.2       |      86.5      |     93.9      |                      |
         | 
| 366 | 
            +
            |    ChartQA<sub>test</sub>    |      78.1       |      81.3      |     86.2      |                      |
         | 
| 367 | 
            +
            |    InfoVQA<sub>test</sub>    |        -        |      72.7      |     78.7      |                      |
         | 
| 368 | 
            +
            |    TextVQA<sub>val</sub>     |        -        |      73.5      |     83.0      |                      |
         | 
| 369 | 
            +
            |           OCRBench           |       678       |      754       |      837      |                      |
         | 
| 370 | 
            +
            |      MME<sub>sum</sub>       |     2070.2      |     2110.6     |    2315.0     |                      |
         | 
| 371 | 
            +
            |         RealWorldQA          |      68.0       |      67.5      |     71.8      |                      |
         | 
| 372 | 
            +
            |     AI2D<sub>test</sub>      |      89.4       |      80.3      |     87.1      |                      |
         | 
| 373 | 
            +
            |      MMMU<sub>val</sub>      |      63.1       |      58.5      |     53.9      |                      |
         | 
| 374 | 
            +
            |  MMBench-EN<sub>test</sub>   |      81.0       |      73.9      |     86.8      |                      |
         | 
| 375 | 
            +
            |  MMBench-CN<sub>test</sub>   |      80.2       |      73.8      |     86.5      |                      |
         | 
| 376 | 
            +
            |    CCBench<sub>dev</sub>     |      57.3       |      28.4      |     80.6      |                      |
         | 
| 377 | 
            +
            |  MMVet<sub>GPT-4-0613</sub>  |        -        |       -        |     68.5      |                      |
         | 
| 378 | 
            +
            | MMVet<sub>GPT-4-Turbo</sub>  |      67.5       |      64.0      |     65.5      |                      |
         | 
| 379 | 
            +
            |          SEED-Image          |        -        |       -        |     78.2      |                      |
         | 
| 380 | 
            +
            |   HallBench<sub>avg</sub>    |      43.9       |      45.6      |     56.9      |                      |
         | 
| 381 | 
            +
            | MathVista<sub>testmini</sub> |      58.1       |      57.7      |     63.7      |                      |
         | 
| 382 | 
            +
             | 
| 383 | 
            +
            - 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。MMMU、OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
         | 
| 384 | 
            +
             | 
| 385 | 
            +
            - 请注意,使用不同的测试工具包(如 InternVL 和 VLMEvalKit)评估同一模型可能会导致细微差异,这是正常的。代码版本的更新、环境和硬件的变化也可能导致结果的微小差异。
         | 
| 386 | 
            +
             | 
| 387 | 
            +
            - 需要提到的是,我们报告的 MMVet 分数是使用 GPT-4-0613 作为评判模型评估的。不同版本的 GPT-4 会导致该数据集分数的显著变化。例如,使用 GPT-4-Turbo 会导致分数显著降低。
         | 
| 388 | 
            +
             | 
| 389 | 
            +
            ### 视频相关评测
         | 
| 390 | 
            +
             | 
| 391 | 
            +
            |      评测数据集      | GPT-4V | VILA-1.5 | LLaVA-NeXT-Video | InternVL2-40B | InternVL2-Llama3-76B |
         | 
| 392 | 
            +
            | :------------------: | :----: | :------: | :--------------: | :-----------: | :------------------: |
         | 
| 393 | 
            +
            |       模型大小       |   -    |   34B    |       34B        |      40B      |         76B          |
         | 
| 394 | 
            +
            |                      |        |          |                  |               |                      |
         | 
| 395 | 
            +
            |       MVBench        |   -    |    -     |        -         |     72.5      |                      |
         | 
| 396 | 
            +
            | Video-MME<br>wo subs |  59.9  |   59.0   |       52.0       |      TBD      |         TBD          |
         | 
| 397 | 
            +
            | Video-MME<br>w/ subs |  63.3  |   59.4   |       54.9       |      TBD      |         TBD          |
         | 
| 398 | 
            +
             | 
| 399 | 
            +
            - 我们通过从每个视频中提取16帧来评估我们的模型在MVBench上的性能,每个视频帧被调整为448x448的图像。
         | 
| 400 | 
            +
             | 
| 401 | 
            +
            限制:尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
         | 
| 402 | 
            +
             | 
| 403 | 
            +
            ## 快速启动
         | 
| 404 | 
            +
             | 
| 405 | 
            +
            我们提供了一个示例代码,用于使用 `transformers` 运行 InternVL2-Llama3-76B。
         | 
| 406 | 
            +
             | 
| 407 | 
            +
            > 请使用 transformers==4.37.2 以确保模型正常运行。
         | 
| 408 | 
            +
             | 
| 409 | 
            +
            示例代码请[点击这里](#quick-start)。
         | 
| 410 | 
            +
             | 
| 411 | 
            +
            ## 部署
         | 
| 412 | 
            +
             | 
| 413 | 
            +
            ### LMDeploy
         | 
| 414 | 
            +
             | 
| 415 | 
            +
            TODO
         | 
| 416 | 
            +
             | 
| 417 | 
            +
            ## 开源许可证
         | 
| 418 | 
            +
             | 
| 419 | 
            +
            该项目采用 MIT 许可证发布,而 LLama3 则采用 Llama 3 Community License 许可证。
         | 
| 420 | 
            +
             | 
| 421 | 
            +
            ## 引用
         | 
| 422 | 
            +
             | 
| 423 | 
            +
            如果您发现此项目对您的研究有用,可以考虑引用我们的论文:
         | 
| 424 | 
            +
             | 
| 425 | 
            +
            ```BibTeX
         | 
| 426 | 
            +
            @article{chen2023internvl,
         | 
| 427 | 
            +
              title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
         | 
| 428 | 
            +
              author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
         | 
| 429 | 
            +
              journal={arXiv preprint arXiv:2312.14238},
         | 
| 430 | 
            +
              year={2023}
         | 
| 431 | 
            +
            }
         | 
| 432 | 
            +
            @article{chen2024far,
         | 
| 433 | 
            +
              title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
         | 
| 434 | 
            +
              author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
         | 
| 435 | 
            +
              journal={arXiv preprint arXiv:2404.16821},
         | 
| 436 | 
            +
              year={2024}
         | 
| 437 | 
            +
            }
         | 
| 438 | 
            +
            ```
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,138 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_commit_hash": null,
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "InternVLChatModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "auto_map": {
         | 
| 7 | 
            +
                "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
         | 
| 8 | 
            +
                "AutoModel": "modeling_internvl_chat.InternVLChatModel",
         | 
| 9 | 
            +
                "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              "downsample_ratio": 0.5,
         | 
| 12 | 
            +
              "dynamic_image_size": true,
         | 
| 13 | 
            +
              "force_image_size": 448,
         | 
| 14 | 
            +
              "llm_config": {
         | 
| 15 | 
            +
                "_name_or_path": "NousResearch/Hermes-2-Theta-Llama-3-70B",
         | 
| 16 | 
            +
                "add_cross_attention": false,
         | 
| 17 | 
            +
                "architectures": [
         | 
| 18 | 
            +
                  "LlamaForCausalLM"
         | 
| 19 | 
            +
                ],
         | 
| 20 | 
            +
                "attention_bias": false,
         | 
| 21 | 
            +
                "attention_dropout": 0.0,
         | 
| 22 | 
            +
                "bad_words_ids": null,
         | 
| 23 | 
            +
                "begin_suppress_tokens": null,
         | 
| 24 | 
            +
                "bos_token_id": 128000,
         | 
| 25 | 
            +
                "chunk_size_feed_forward": 0,
         | 
| 26 | 
            +
                "cross_attention_hidden_size": null,
         | 
| 27 | 
            +
                "decoder_start_token_id": null,
         | 
| 28 | 
            +
                "diversity_penalty": 0.0,
         | 
| 29 | 
            +
                "do_sample": false,
         | 
| 30 | 
            +
                "early_stopping": false,
         | 
| 31 | 
            +
                "encoder_no_repeat_ngram_size": 0,
         | 
| 32 | 
            +
                "eos_token_id": 128003,
         | 
| 33 | 
            +
                "exponential_decay_length_penalty": null,
         | 
| 34 | 
            +
                "finetuning_task": null,
         | 
| 35 | 
            +
                "forced_bos_token_id": null,
         | 
| 36 | 
            +
                "forced_eos_token_id": null,
         | 
| 37 | 
            +
                "hidden_act": "silu",
         | 
| 38 | 
            +
                "hidden_size": 8192,
         | 
| 39 | 
            +
                "id2label": {
         | 
| 40 | 
            +
                  "0": "LABEL_0",
         | 
| 41 | 
            +
                  "1": "LABEL_1"
         | 
| 42 | 
            +
                },
         | 
| 43 | 
            +
                "initializer_range": 0.02,
         | 
| 44 | 
            +
                "intermediate_size": 28672,
         | 
| 45 | 
            +
                "is_decoder": false,
         | 
| 46 | 
            +
                "is_encoder_decoder": false,
         | 
| 47 | 
            +
                "label2id": {
         | 
| 48 | 
            +
                  "LABEL_0": 0,
         | 
| 49 | 
            +
                  "LABEL_1": 1
         | 
| 50 | 
            +
                },
         | 
| 51 | 
            +
                "length_penalty": 1.0,
         | 
| 52 | 
            +
                "max_length": 20,
         | 
| 53 | 
            +
                "max_position_embeddings": 8192,
         | 
| 54 | 
            +
                "min_length": 0,
         | 
| 55 | 
            +
                "mlp_bias": false,
         | 
| 56 | 
            +
                "model_type": "llama",
         | 
| 57 | 
            +
                "no_repeat_ngram_size": 0,
         | 
| 58 | 
            +
                "num_attention_heads": 64,
         | 
| 59 | 
            +
                "num_beam_groups": 1,
         | 
| 60 | 
            +
                "num_beams": 1,
         | 
| 61 | 
            +
                "num_hidden_layers": 80,
         | 
| 62 | 
            +
                "num_key_value_heads": 8,
         | 
| 63 | 
            +
                "num_return_sequences": 1,
         | 
| 64 | 
            +
                "output_attentions": false,
         | 
| 65 | 
            +
                "output_hidden_states": false,
         | 
| 66 | 
            +
                "output_scores": false,
         | 
| 67 | 
            +
                "pad_token_id": null,
         | 
| 68 | 
            +
                "prefix": null,
         | 
| 69 | 
            +
                "pretraining_tp": 1,
         | 
| 70 | 
            +
                "problem_type": null,
         | 
| 71 | 
            +
                "pruned_heads": {},
         | 
| 72 | 
            +
                "remove_invalid_values": false,
         | 
| 73 | 
            +
                "repetition_penalty": 1.0,
         | 
| 74 | 
            +
                "return_dict": true,
         | 
| 75 | 
            +
                "return_dict_in_generate": false,
         | 
| 76 | 
            +
                "rms_norm_eps": 1e-05,
         | 
| 77 | 
            +
                "rope_scaling": null,
         | 
| 78 | 
            +
                "rope_theta": 500000.0,
         | 
| 79 | 
            +
                "sep_token_id": null,
         | 
| 80 | 
            +
                "suppress_tokens": null,
         | 
| 81 | 
            +
                "task_specific_params": null,
         | 
| 82 | 
            +
                "temperature": 1.0,
         | 
| 83 | 
            +
                "tf_legacy_loss": false,
         | 
| 84 | 
            +
                "tie_encoder_decoder": false,
         | 
| 85 | 
            +
                "tie_word_embeddings": false,
         | 
| 86 | 
            +
                "tokenizer_class": null,
         | 
| 87 | 
            +
                "top_k": 50,
         | 
| 88 | 
            +
                "top_p": 1.0,
         | 
| 89 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 90 | 
            +
                "torchscript": false,
         | 
| 91 | 
            +
                "transformers_version": "4.37.2",
         | 
| 92 | 
            +
                "typical_p": 1.0,
         | 
| 93 | 
            +
                "use_bfloat16": true,
         | 
| 94 | 
            +
                "use_cache": true,
         | 
| 95 | 
            +
                "vocab_size": 128265
         | 
| 96 | 
            +
              },
         | 
| 97 | 
            +
              "max_dynamic_patch": 12,
         | 
| 98 | 
            +
              "min_dynamic_patch": 1,
         | 
| 99 | 
            +
              "model_type": "internvl_chat",
         | 
| 100 | 
            +
              "ps_version": "v2",
         | 
| 101 | 
            +
              "select_layer": -1,
         | 
| 102 | 
            +
              "template": "internlm2-chat",
         | 
| 103 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 104 | 
            +
              "transformers_version": null,
         | 
| 105 | 
            +
              "use_backbone_lora": 0,
         | 
| 106 | 
            +
              "use_llm_lora": 0,
         | 
| 107 | 
            +
              "use_thumbnail": true,
         | 
| 108 | 
            +
              "vision_config": {
         | 
| 109 | 
            +
                "architectures": [
         | 
| 110 | 
            +
                  "InternVisionModel"
         | 
| 111 | 
            +
                ],
         | 
| 112 | 
            +
                "attention_dropout": 0.0,
         | 
| 113 | 
            +
                "drop_path_rate": 0.0,
         | 
| 114 | 
            +
                "dropout": 0.0,
         | 
| 115 | 
            +
                "hidden_act": "gelu",
         | 
| 116 | 
            +
                "hidden_size": 3200,
         | 
| 117 | 
            +
                "image_size": 448,
         | 
| 118 | 
            +
                "initializer_factor": 0.1,
         | 
| 119 | 
            +
                "initializer_range": 1e-10,
         | 
| 120 | 
            +
                "intermediate_size": 12800,
         | 
| 121 | 
            +
                "layer_norm_eps": 1e-06,
         | 
| 122 | 
            +
                "model_type": "intern_vit_6b",
         | 
| 123 | 
            +
                "norm_type": "rms_norm",
         | 
| 124 | 
            +
                "num_attention_heads": 25,
         | 
| 125 | 
            +
                "num_channels": 3,
         | 
| 126 | 
            +
                "num_hidden_layers": 45,
         | 
| 127 | 
            +
                "output_attentions": false,
         | 
| 128 | 
            +
                "output_hidden_states": false,
         | 
| 129 | 
            +
                "patch_size": 14,
         | 
| 130 | 
            +
                "qk_normalization": true,
         | 
| 131 | 
            +
                "qkv_bias": false,
         | 
| 132 | 
            +
                "return_dict": true,
         | 
| 133 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 134 | 
            +
                "transformers_version": "4.37.2",
         | 
| 135 | 
            +
                "use_bfloat16": true,
         | 
| 136 | 
            +
                "use_flash_attn": true
         | 
| 137 | 
            +
              }
         | 
| 138 | 
            +
            }
         | 
    	
        configuration_intern_vit.py
    ADDED
    
    | @@ -0,0 +1,119 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2023 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
            import os
         | 
| 7 | 
            +
            from typing import Union
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 10 | 
            +
            from transformers.utils import logging
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            class InternVisionConfig(PretrainedConfig):
         | 
| 16 | 
            +
                r"""
         | 
| 17 | 
            +
                This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
         | 
| 18 | 
            +
                instantiate a vision encoder according to the specified arguments, defining the model architecture.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 21 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                Args:
         | 
| 24 | 
            +
                    num_channels (`int`, *optional*, defaults to 3):
         | 
| 25 | 
            +
                        Number of color channels in the input images (e.g., 3 for RGB).
         | 
| 26 | 
            +
                    patch_size (`int`, *optional*, defaults to 14):
         | 
| 27 | 
            +
                        The size (resolution) of each patch.
         | 
| 28 | 
            +
                    image_size (`int`, *optional*, defaults to 224):
         | 
| 29 | 
            +
                        The size (resolution) of each image.
         | 
| 30 | 
            +
                    qkv_bias (`bool`, *optional*, defaults to `False`):
         | 
| 31 | 
            +
                        Whether to add a bias to the queries and values in the self-attention layers.
         | 
| 32 | 
            +
                    hidden_size (`int`, *optional*, defaults to 3200):
         | 
| 33 | 
            +
                        Dimensionality of the encoder layers and the pooler layer.
         | 
| 34 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 25):
         | 
| 35 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 36 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 12800):
         | 
| 37 | 
            +
                        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
         | 
| 38 | 
            +
                    qk_normalization (`bool`, *optional*, defaults to `True`):
         | 
| 39 | 
            +
                        Whether to normalize the queries and keys in the self-attention layers.
         | 
| 40 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 48):
         | 
| 41 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 42 | 
            +
                    use_flash_attn (`bool`, *optional*, defaults to `True`):
         | 
| 43 | 
            +
                        Whether to use flash attention mechanism.
         | 
| 44 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
         | 
| 45 | 
            +
                        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
         | 
| 46 | 
            +
                        `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
         | 
| 47 | 
            +
                    layer_norm_eps (`float`, *optional*, defaults to 1e-6):
         | 
| 48 | 
            +
                        The epsilon used by the layer normalization layers.
         | 
| 49 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0):
         | 
| 50 | 
            +
                        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
         | 
| 51 | 
            +
                    drop_path_rate (`float`, *optional*, defaults to 0.0):
         | 
| 52 | 
            +
                        Dropout rate for stochastic depth.
         | 
| 53 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 54 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 55 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 56 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 57 | 
            +
                    initializer_factor (`float`, *optional*, defaults to 0.1):
         | 
| 58 | 
            +
                        A factor for layer scale.
         | 
| 59 | 
            +
                """
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                model_type = 'intern_vit_6b'
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                def __init__(
         | 
| 64 | 
            +
                        self,
         | 
| 65 | 
            +
                        num_channels=3,
         | 
| 66 | 
            +
                        patch_size=14,
         | 
| 67 | 
            +
                        image_size=224,
         | 
| 68 | 
            +
                        qkv_bias=False,
         | 
| 69 | 
            +
                        hidden_size=3200,
         | 
| 70 | 
            +
                        num_attention_heads=25,
         | 
| 71 | 
            +
                        intermediate_size=12800,
         | 
| 72 | 
            +
                        qk_normalization=True,
         | 
| 73 | 
            +
                        num_hidden_layers=48,
         | 
| 74 | 
            +
                        use_flash_attn=True,
         | 
| 75 | 
            +
                        hidden_act='gelu',
         | 
| 76 | 
            +
                        norm_type='rms_norm',
         | 
| 77 | 
            +
                        layer_norm_eps=1e-6,
         | 
| 78 | 
            +
                        dropout=0.0,
         | 
| 79 | 
            +
                        drop_path_rate=0.0,
         | 
| 80 | 
            +
                        attention_dropout=0.0,
         | 
| 81 | 
            +
                        initializer_range=0.02,
         | 
| 82 | 
            +
                        initializer_factor=0.1,
         | 
| 83 | 
            +
                        **kwargs,
         | 
| 84 | 
            +
                ):
         | 
| 85 | 
            +
                    super().__init__(**kwargs)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    self.hidden_size = hidden_size
         | 
| 88 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 89 | 
            +
                    self.dropout = dropout
         | 
| 90 | 
            +
                    self.drop_path_rate = drop_path_rate
         | 
| 91 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 92 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 93 | 
            +
                    self.num_channels = num_channels
         | 
| 94 | 
            +
                    self.patch_size = patch_size
         | 
| 95 | 
            +
                    self.image_size = image_size
         | 
| 96 | 
            +
                    self.initializer_range = initializer_range
         | 
| 97 | 
            +
                    self.initializer_factor = initializer_factor
         | 
| 98 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 99 | 
            +
                    self.layer_norm_eps = layer_norm_eps
         | 
| 100 | 
            +
                    self.hidden_act = hidden_act
         | 
| 101 | 
            +
                    self.norm_type = norm_type
         | 
| 102 | 
            +
                    self.qkv_bias = qkv_bias
         | 
| 103 | 
            +
                    self.qk_normalization = qk_normalization
         | 
| 104 | 
            +
                    self.use_flash_attn = use_flash_attn
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                @classmethod
         | 
| 107 | 
            +
                def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
         | 
| 108 | 
            +
                    config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    if 'vision_config' in config_dict:
         | 
| 111 | 
            +
                        config_dict = config_dict['vision_config']
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
         | 
| 114 | 
            +
                        logger.warning(
         | 
| 115 | 
            +
                            f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
         | 
| 116 | 
            +
                            f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
         | 
| 117 | 
            +
                        )
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    return cls.from_dict(config_dict, **kwargs)
         | 
    	
        configuration_internvl_chat.py
    ADDED
    
    | @@ -0,0 +1,93 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2023 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import copy
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers import AutoConfig, LlamaConfig
         | 
| 10 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 11 | 
            +
            from transformers.utils import logging
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from .configuration_intern_vit import InternVisionConfig
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            class InternVLChatConfig(PretrainedConfig):
         | 
| 19 | 
            +
                model_type = 'internvl_chat'
         | 
| 20 | 
            +
                is_composition = True
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                def __init__(
         | 
| 23 | 
            +
                        self,
         | 
| 24 | 
            +
                        vision_config=None,
         | 
| 25 | 
            +
                        llm_config=None,
         | 
| 26 | 
            +
                        use_backbone_lora=0,
         | 
| 27 | 
            +
                        use_llm_lora=0,
         | 
| 28 | 
            +
                        select_layer=-1,
         | 
| 29 | 
            +
                        force_image_size=None,
         | 
| 30 | 
            +
                        downsample_ratio=0.5,
         | 
| 31 | 
            +
                        template=None,
         | 
| 32 | 
            +
                        dynamic_image_size=False,
         | 
| 33 | 
            +
                        use_thumbnail=False,
         | 
| 34 | 
            +
                        ps_version='v1',
         | 
| 35 | 
            +
                        min_dynamic_patch=1,
         | 
| 36 | 
            +
                        max_dynamic_patch=6,
         | 
| 37 | 
            +
                        **kwargs):
         | 
| 38 | 
            +
                    super().__init__(**kwargs)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    if vision_config is None:
         | 
| 41 | 
            +
                        vision_config = {}
         | 
| 42 | 
            +
                        logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                    if llm_config is None:
         | 
| 45 | 
            +
                        llm_config = {}
         | 
| 46 | 
            +
                        logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    self.vision_config = InternVisionConfig(**vision_config)
         | 
| 49 | 
            +
                    if llm_config['architectures'][0] == 'LlamaForCausalLM':
         | 
| 50 | 
            +
                        self.llm_config = LlamaConfig(**llm_config)
         | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
         | 
| 53 | 
            +
                    self.use_backbone_lora = use_backbone_lora
         | 
| 54 | 
            +
                    self.use_llm_lora = use_llm_lora
         | 
| 55 | 
            +
                    self.select_layer = select_layer
         | 
| 56 | 
            +
                    self.force_image_size = force_image_size
         | 
| 57 | 
            +
                    self.downsample_ratio = downsample_ratio
         | 
| 58 | 
            +
                    self.template = template
         | 
| 59 | 
            +
                    self.dynamic_image_size = dynamic_image_size
         | 
| 60 | 
            +
                    self.use_thumbnail = use_thumbnail
         | 
| 61 | 
            +
                    self.ps_version = ps_version  # pixel shuffle version
         | 
| 62 | 
            +
                    self.min_dynamic_patch = min_dynamic_patch
         | 
| 63 | 
            +
                    self.max_dynamic_patch = max_dynamic_patch
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                    logger.info(f'vision_select_layer: {self.select_layer}')
         | 
| 66 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 67 | 
            +
                    logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
         | 
| 68 | 
            +
                    logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                def to_dict(self):
         | 
| 71 | 
            +
                    """
         | 
| 72 | 
            +
                    Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    Returns:
         | 
| 75 | 
            +
                        `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
         | 
| 76 | 
            +
                    """
         | 
| 77 | 
            +
                    output = copy.deepcopy(self.__dict__)
         | 
| 78 | 
            +
                    output['vision_config'] = self.vision_config.to_dict()
         | 
| 79 | 
            +
                    output['llm_config'] = self.llm_config.to_dict()
         | 
| 80 | 
            +
                    output['model_type'] = self.__class__.model_type
         | 
| 81 | 
            +
                    output['use_backbone_lora'] = self.use_backbone_lora
         | 
| 82 | 
            +
                    output['use_llm_lora'] = self.use_llm_lora
         | 
| 83 | 
            +
                    output['select_layer'] = self.select_layer
         | 
| 84 | 
            +
                    output['force_image_size'] = self.force_image_size
         | 
| 85 | 
            +
                    output['downsample_ratio'] = self.downsample_ratio
         | 
| 86 | 
            +
                    output['template'] = self.template
         | 
| 87 | 
            +
                    output['dynamic_image_size'] = self.dynamic_image_size
         | 
| 88 | 
            +
                    output['use_thumbnail'] = self.use_thumbnail
         | 
| 89 | 
            +
                    output['ps_version'] = self.ps_version
         | 
| 90 | 
            +
                    output['min_dynamic_patch'] = self.min_dynamic_patch
         | 
| 91 | 
            +
                    output['max_dynamic_patch'] = self.max_dynamic_patch
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    return output
         | 
    	
        conversation.py
    ADDED
    
    | @@ -0,0 +1,390 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Conversation prompt templates.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            We kindly request that you import fastchat instead of copying this file if you wish to use it.
         | 
| 5 | 
            +
            If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
         | 
| 6 | 
            +
            """
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import dataclasses
         | 
| 9 | 
            +
            from enum import IntEnum, auto
         | 
| 10 | 
            +
            from typing import Any, Dict, List, Tuple, Union
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            class SeparatorStyle(IntEnum):
         | 
| 14 | 
            +
                """Separator styles."""
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                ADD_COLON_SINGLE = auto()
         | 
| 17 | 
            +
                ADD_COLON_TWO = auto()
         | 
| 18 | 
            +
                ADD_COLON_SPACE_SINGLE = auto()
         | 
| 19 | 
            +
                NO_COLON_SINGLE = auto()
         | 
| 20 | 
            +
                NO_COLON_TWO = auto()
         | 
| 21 | 
            +
                ADD_NEW_LINE_SINGLE = auto()
         | 
| 22 | 
            +
                LLAMA2 = auto()
         | 
| 23 | 
            +
                CHATGLM = auto()
         | 
| 24 | 
            +
                CHATML = auto()
         | 
| 25 | 
            +
                CHATINTERN = auto()
         | 
| 26 | 
            +
                DOLLY = auto()
         | 
| 27 | 
            +
                RWKV = auto()
         | 
| 28 | 
            +
                PHOENIX = auto()
         | 
| 29 | 
            +
                ROBIN = auto()
         | 
| 30 | 
            +
                FALCON_CHAT = auto()
         | 
| 31 | 
            +
                CHATGLM3 = auto()
         | 
| 32 | 
            +
                INTERNVL_ZH = auto()
         | 
| 33 | 
            +
                MPT = auto()
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            @dataclasses.dataclass
         | 
| 37 | 
            +
            class Conversation:
         | 
| 38 | 
            +
                """A class that manages prompt templates and keeps all conversation history."""
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                # The name of this template
         | 
| 41 | 
            +
                name: str
         | 
| 42 | 
            +
                # The template of the system prompt
         | 
| 43 | 
            +
                system_template: str = '{system_message}'
         | 
| 44 | 
            +
                # The system message
         | 
| 45 | 
            +
                system_message: str = ''
         | 
| 46 | 
            +
                # The names of two roles
         | 
| 47 | 
            +
                roles: Tuple[str] = ('USER', 'ASSISTANT')
         | 
| 48 | 
            +
                # All messages. Each item is (role, message).
         | 
| 49 | 
            +
                messages: List[List[str]] = ()
         | 
| 50 | 
            +
                # The number of few shot examples
         | 
| 51 | 
            +
                offset: int = 0
         | 
| 52 | 
            +
                # The separator style and configurations
         | 
| 53 | 
            +
                sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
         | 
| 54 | 
            +
                sep: str = '\n'
         | 
| 55 | 
            +
                sep2: str = None
         | 
| 56 | 
            +
                # Stop criteria (the default one is EOS token)
         | 
| 57 | 
            +
                stop_str: Union[str, List[str]] = None
         | 
| 58 | 
            +
                # Stops generation if meeting any token in this list
         | 
| 59 | 
            +
                stop_token_ids: List[int] = None
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                def get_prompt(self) -> str:
         | 
| 62 | 
            +
                    """Get the prompt for generation."""
         | 
| 63 | 
            +
                    system_prompt = self.system_template.format(system_message=self.system_message)
         | 
| 64 | 
            +
                    if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
         | 
| 65 | 
            +
                        ret = system_prompt + self.sep
         | 
| 66 | 
            +
                        for role, message in self.messages:
         | 
| 67 | 
            +
                            if message:
         | 
| 68 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 69 | 
            +
                            else:
         | 
| 70 | 
            +
                                ret += role + ':'
         | 
| 71 | 
            +
                        return ret
         | 
| 72 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
         | 
| 73 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 74 | 
            +
                        ret = system_prompt + seps[0]
         | 
| 75 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 76 | 
            +
                            if message:
         | 
| 77 | 
            +
                                ret += role + ': ' + message + seps[i % 2]
         | 
| 78 | 
            +
                            else:
         | 
| 79 | 
            +
                                ret += role + ':'
         | 
| 80 | 
            +
                        return ret
         | 
| 81 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
         | 
| 82 | 
            +
                        ret = system_prompt + self.sep
         | 
| 83 | 
            +
                        for role, message in self.messages:
         | 
| 84 | 
            +
                            if message:
         | 
| 85 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 86 | 
            +
                            else:
         | 
| 87 | 
            +
                                ret += role + ': '  # must be end with a space
         | 
| 88 | 
            +
                        return ret
         | 
| 89 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
         | 
| 90 | 
            +
                        ret = '' if system_prompt == '' else system_prompt + self.sep
         | 
| 91 | 
            +
                        for role, message in self.messages:
         | 
| 92 | 
            +
                            if message:
         | 
| 93 | 
            +
                                ret += role + '\n' + message + self.sep
         | 
| 94 | 
            +
                            else:
         | 
| 95 | 
            +
                                ret += role + '\n'
         | 
| 96 | 
            +
                        return ret
         | 
| 97 | 
            +
                    elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
         | 
| 98 | 
            +
                        ret = system_prompt
         | 
| 99 | 
            +
                        for role, message in self.messages:
         | 
| 100 | 
            +
                            if message:
         | 
| 101 | 
            +
                                ret += role + message + self.sep
         | 
| 102 | 
            +
                            else:
         | 
| 103 | 
            +
                                ret += role
         | 
| 104 | 
            +
                        return ret
         | 
| 105 | 
            +
                    elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
         | 
| 106 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 107 | 
            +
                        ret = system_prompt
         | 
| 108 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 109 | 
            +
                            if message:
         | 
| 110 | 
            +
                                ret += role + message + seps[i % 2]
         | 
| 111 | 
            +
                            else:
         | 
| 112 | 
            +
                                ret += role
         | 
| 113 | 
            +
                        return ret
         | 
| 114 | 
            +
                    elif self.sep_style == SeparatorStyle.RWKV:
         | 
| 115 | 
            +
                        ret = system_prompt
         | 
| 116 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 117 | 
            +
                            if message:
         | 
| 118 | 
            +
                                ret += (
         | 
| 119 | 
            +
                                    role
         | 
| 120 | 
            +
                                    + ': '
         | 
| 121 | 
            +
                                    + message.replace('\r\n', '\n').replace('\n\n', '\n')
         | 
| 122 | 
            +
                                )
         | 
| 123 | 
            +
                                ret += '\n\n'
         | 
| 124 | 
            +
                            else:
         | 
| 125 | 
            +
                                ret += role + ':'
         | 
| 126 | 
            +
                        return ret
         | 
| 127 | 
            +
                    elif self.sep_style == SeparatorStyle.LLAMA2:
         | 
| 128 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 129 | 
            +
                        if self.system_message:
         | 
| 130 | 
            +
                            ret = system_prompt
         | 
| 131 | 
            +
                        else:
         | 
| 132 | 
            +
                            ret = '[INST] '
         | 
| 133 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 134 | 
            +
                            tag = self.roles[i % 2]
         | 
| 135 | 
            +
                            if message:
         | 
| 136 | 
            +
                                if i == 0:
         | 
| 137 | 
            +
                                    ret += message + ' '
         | 
| 138 | 
            +
                                else:
         | 
| 139 | 
            +
                                    ret += tag + ' ' + message + seps[i % 2]
         | 
| 140 | 
            +
                            else:
         | 
| 141 | 
            +
                                ret += tag
         | 
| 142 | 
            +
                        return ret
         | 
| 143 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATGLM:
         | 
| 144 | 
            +
                        # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
         | 
| 145 | 
            +
                        # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
         | 
| 146 | 
            +
                        round_add_n = 1 if self.name == 'chatglm2' else 0
         | 
| 147 | 
            +
                        if system_prompt:
         | 
| 148 | 
            +
                            ret = system_prompt + self.sep
         | 
| 149 | 
            +
                        else:
         | 
| 150 | 
            +
                            ret = ''
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 153 | 
            +
                            if i % 2 == 0:
         | 
| 154 | 
            +
                                ret += f'[Round {i//2 + round_add_n}]{self.sep}'
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                            if message:
         | 
| 157 | 
            +
                                ret += f'{role}:{message}{self.sep}'
         | 
| 158 | 
            +
                            else:
         | 
| 159 | 
            +
                                ret += f'{role}:'
         | 
| 160 | 
            +
                        return ret
         | 
| 161 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATML:
         | 
| 162 | 
            +
                        ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
         | 
| 163 | 
            +
                        for role, message in self.messages:
         | 
| 164 | 
            +
                            if message:
         | 
| 165 | 
            +
                                ret += role + '\n' + message + self.sep + '\n'
         | 
| 166 | 
            +
                            else:
         | 
| 167 | 
            +
                                ret += role + '\n'
         | 
| 168 | 
            +
                        return ret
         | 
| 169 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATGLM3:
         | 
| 170 | 
            +
                        ret = ''
         | 
| 171 | 
            +
                        if self.system_message:
         | 
| 172 | 
            +
                            ret += system_prompt
         | 
| 173 | 
            +
                        for role, message in self.messages:
         | 
| 174 | 
            +
                            if message:
         | 
| 175 | 
            +
                                ret += role + '\n' + ' ' + message
         | 
| 176 | 
            +
                            else:
         | 
| 177 | 
            +
                                ret += role
         | 
| 178 | 
            +
                        return ret
         | 
| 179 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATINTERN:
         | 
| 180 | 
            +
                        # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
         | 
| 181 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 182 | 
            +
                        ret = system_prompt
         | 
| 183 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 184 | 
            +
                            # if i % 2 == 0:
         | 
| 185 | 
            +
                            #     ret += "<s>"
         | 
| 186 | 
            +
                            if message:
         | 
| 187 | 
            +
                                ret += role + ':' + message + seps[i % 2] + '\n'
         | 
| 188 | 
            +
                            else:
         | 
| 189 | 
            +
                                ret += role + ':'
         | 
| 190 | 
            +
                        return ret
         | 
| 191 | 
            +
                    elif self.sep_style == SeparatorStyle.DOLLY:
         | 
| 192 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 193 | 
            +
                        ret = system_prompt
         | 
| 194 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 195 | 
            +
                            if message:
         | 
| 196 | 
            +
                                ret += role + ':\n' + message + seps[i % 2]
         | 
| 197 | 
            +
                                if i % 2 == 1:
         | 
| 198 | 
            +
                                    ret += '\n\n'
         | 
| 199 | 
            +
                            else:
         | 
| 200 | 
            +
                                ret += role + ':\n'
         | 
| 201 | 
            +
                        return ret
         | 
| 202 | 
            +
                    elif self.sep_style == SeparatorStyle.PHOENIX:
         | 
| 203 | 
            +
                        ret = system_prompt
         | 
| 204 | 
            +
                        for role, message in self.messages:
         | 
| 205 | 
            +
                            if message:
         | 
| 206 | 
            +
                                ret += role + ': ' + '<s>' + message + '</s>'
         | 
| 207 | 
            +
                            else:
         | 
| 208 | 
            +
                                ret += role + ': ' + '<s>'
         | 
| 209 | 
            +
                        return ret
         | 
| 210 | 
            +
                    elif self.sep_style == SeparatorStyle.ROBIN:
         | 
| 211 | 
            +
                        ret = system_prompt + self.sep
         | 
| 212 | 
            +
                        for role, message in self.messages:
         | 
| 213 | 
            +
                            if message:
         | 
| 214 | 
            +
                                ret += role + ':\n' + message + self.sep
         | 
| 215 | 
            +
                            else:
         | 
| 216 | 
            +
                                ret += role + ':\n'
         | 
| 217 | 
            +
                        return ret
         | 
| 218 | 
            +
                    elif self.sep_style == SeparatorStyle.FALCON_CHAT:
         | 
| 219 | 
            +
                        ret = ''
         | 
| 220 | 
            +
                        if self.system_message:
         | 
| 221 | 
            +
                            ret += system_prompt + self.sep
         | 
| 222 | 
            +
                        for role, message in self.messages:
         | 
| 223 | 
            +
                            if message:
         | 
| 224 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 225 | 
            +
                            else:
         | 
| 226 | 
            +
                                ret += role + ':'
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                        return ret
         | 
| 229 | 
            +
                    elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
         | 
| 230 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 231 | 
            +
                        ret = self.system_message + seps[0]
         | 
| 232 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 233 | 
            +
                            if message:
         | 
| 234 | 
            +
                                ret += role + ': ' + message + seps[i % 2]
         | 
| 235 | 
            +
                            else:
         | 
| 236 | 
            +
                                ret += role + ':'
         | 
| 237 | 
            +
                        return ret
         | 
| 238 | 
            +
                    elif self.sep_style == SeparatorStyle.MPT:
         | 
| 239 | 
            +
                        ret = system_prompt + self.sep
         | 
| 240 | 
            +
                        for role, message in self.messages:
         | 
| 241 | 
            +
                            if message:
         | 
| 242 | 
            +
                                if type(message) is tuple:
         | 
| 243 | 
            +
                                    message, _, _ = message
         | 
| 244 | 
            +
                                ret += role + message + self.sep
         | 
| 245 | 
            +
                            else:
         | 
| 246 | 
            +
                                ret += role
         | 
| 247 | 
            +
                        return ret
         | 
| 248 | 
            +
                    else:
         | 
| 249 | 
            +
                        raise ValueError(f'Invalid style: {self.sep_style}')
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                def set_system_message(self, system_message: str):
         | 
| 252 | 
            +
                    """Set the system message."""
         | 
| 253 | 
            +
                    self.system_message = system_message
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                def append_message(self, role: str, message: str):
         | 
| 256 | 
            +
                    """Append a new message."""
         | 
| 257 | 
            +
                    self.messages.append([role, message])
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def update_last_message(self, message: str):
         | 
| 260 | 
            +
                    """Update the last output.
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    The last message is typically set to be None when constructing the prompt,
         | 
| 263 | 
            +
                    so we need to update it in-place after getting the response from a model.
         | 
| 264 | 
            +
                    """
         | 
| 265 | 
            +
                    self.messages[-1][1] = message
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def to_gradio_chatbot(self):
         | 
| 268 | 
            +
                    """Convert the conversation to gradio chatbot format."""
         | 
| 269 | 
            +
                    ret = []
         | 
| 270 | 
            +
                    for i, (role, msg) in enumerate(self.messages[self.offset :]):
         | 
| 271 | 
            +
                        if i % 2 == 0:
         | 
| 272 | 
            +
                            ret.append([msg, None])
         | 
| 273 | 
            +
                        else:
         | 
| 274 | 
            +
                            ret[-1][-1] = msg
         | 
| 275 | 
            +
                    return ret
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                def to_openai_api_messages(self):
         | 
| 278 | 
            +
                    """Convert the conversation to OpenAI chat completion format."""
         | 
| 279 | 
            +
                    ret = [{'role': 'system', 'content': self.system_message}]
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    for i, (_, msg) in enumerate(self.messages[self.offset :]):
         | 
| 282 | 
            +
                        if i % 2 == 0:
         | 
| 283 | 
            +
                            ret.append({'role': 'user', 'content': msg})
         | 
| 284 | 
            +
                        else:
         | 
| 285 | 
            +
                            if msg is not None:
         | 
| 286 | 
            +
                                ret.append({'role': 'assistant', 'content': msg})
         | 
| 287 | 
            +
                    return ret
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                def copy(self):
         | 
| 290 | 
            +
                    return Conversation(
         | 
| 291 | 
            +
                        name=self.name,
         | 
| 292 | 
            +
                        system_template=self.system_template,
         | 
| 293 | 
            +
                        system_message=self.system_message,
         | 
| 294 | 
            +
                        roles=self.roles,
         | 
| 295 | 
            +
                        messages=[[x, y] for x, y in self.messages],
         | 
| 296 | 
            +
                        offset=self.offset,
         | 
| 297 | 
            +
                        sep_style=self.sep_style,
         | 
| 298 | 
            +
                        sep=self.sep,
         | 
| 299 | 
            +
                        sep2=self.sep2,
         | 
| 300 | 
            +
                        stop_str=self.stop_str,
         | 
| 301 | 
            +
                        stop_token_ids=self.stop_token_ids,
         | 
| 302 | 
            +
                    )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                def dict(self):
         | 
| 305 | 
            +
                    return {
         | 
| 306 | 
            +
                        'template_name': self.name,
         | 
| 307 | 
            +
                        'system_message': self.system_message,
         | 
| 308 | 
            +
                        'roles': self.roles,
         | 
| 309 | 
            +
                        'messages': self.messages,
         | 
| 310 | 
            +
                        'offset': self.offset,
         | 
| 311 | 
            +
                    }
         | 
| 312 | 
            +
             | 
| 313 | 
            +
             | 
| 314 | 
            +
            # A global registry for all conversation templates
         | 
| 315 | 
            +
            conv_templates: Dict[str, Conversation] = {}
         | 
| 316 | 
            +
             | 
| 317 | 
            +
             | 
| 318 | 
            +
            def register_conv_template(template: Conversation, override: bool = False):
         | 
| 319 | 
            +
                """Register a new conversation template."""
         | 
| 320 | 
            +
                if not override:
         | 
| 321 | 
            +
                    assert (
         | 
| 322 | 
            +
                        template.name not in conv_templates
         | 
| 323 | 
            +
                    ), f'{template.name} has been registered.'
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                conv_templates[template.name] = template
         | 
| 326 | 
            +
             | 
| 327 | 
            +
             | 
| 328 | 
            +
            def get_conv_template(name: str) -> Conversation:
         | 
| 329 | 
            +
                """Get a conversation template."""
         | 
| 330 | 
            +
                return conv_templates[name].copy()
         | 
| 331 | 
            +
             | 
| 332 | 
            +
             | 
| 333 | 
            +
            # Note that for inference, using the Hermes-2 and internlm2-chat templates is equivalent.
         | 
| 334 | 
            +
            register_conv_template(
         | 
| 335 | 
            +
                Conversation(
         | 
| 336 | 
            +
                    name='Hermes-2',
         | 
| 337 | 
            +
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 338 | 
            +
                    # note: The new system prompt was not used here to avoid changes in benchmark performance.
         | 
| 339 | 
            +
                    # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。人工智能实验室致力于原始技术创新,开源开放,共享共创,推动科技进步和产业发展。',
         | 
| 340 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 341 | 
            +
                    roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
         | 
| 342 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 343 | 
            +
                    sep='<|im_end|>',
         | 
| 344 | 
            +
                    stop_token_ids=[
         | 
| 345 | 
            +
                        2,
         | 
| 346 | 
            +
                        6,
         | 
| 347 | 
            +
                        7,
         | 
| 348 | 
            +
                        8,
         | 
| 349 | 
            +
                    ],
         | 
| 350 | 
            +
                    stop_str='<|endoftext|>',
         | 
| 351 | 
            +
                )
         | 
| 352 | 
            +
            )
         | 
| 353 | 
            +
             | 
| 354 | 
            +
             | 
| 355 | 
            +
            register_conv_template(
         | 
| 356 | 
            +
                Conversation(
         | 
| 357 | 
            +
                    name='internlm2-chat',
         | 
| 358 | 
            +
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 359 | 
            +
                    # note: The new system prompt was not used here to avoid changes in benchmark performance.
         | 
| 360 | 
            +
                    # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。人工智能实验室致力于原始技术创新,开源开放,共享共创,推动科技进步和产业发展。',
         | 
| 361 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 362 | 
            +
                    roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
         | 
| 363 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 364 | 
            +
                    sep='<|im_end|>',
         | 
| 365 | 
            +
                    stop_token_ids=[
         | 
| 366 | 
            +
                        2,
         | 
| 367 | 
            +
                        92543,
         | 
| 368 | 
            +
                        92542
         | 
| 369 | 
            +
                    ]
         | 
| 370 | 
            +
                )
         | 
| 371 | 
            +
            )
         | 
| 372 | 
            +
             | 
| 373 | 
            +
             | 
| 374 | 
            +
            register_conv_template(
         | 
| 375 | 
            +
                Conversation(
         | 
| 376 | 
            +
                    name='phi3-chat',
         | 
| 377 | 
            +
                    system_template='<|system|>\n{system_message}',
         | 
| 378 | 
            +
                    # note: The new system prompt was not used here to avoid changes in benchmark performance.
         | 
| 379 | 
            +
                    # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。人工智能实验室致力于原始技术创新,开源开放,共享共创,推动科技进步和产业发展。',
         | 
| 380 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 381 | 
            +
                    roles=('<|user|>\n', '<|assistant|>\n'),
         | 
| 382 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 383 | 
            +
                    sep='<|end|>',
         | 
| 384 | 
            +
                    stop_token_ids=[
         | 
| 385 | 
            +
                        2,
         | 
| 386 | 
            +
                        32000,
         | 
| 387 | 
            +
                        32007
         | 
| 388 | 
            +
                    ]
         | 
| 389 | 
            +
                )
         | 
| 390 | 
            +
            )
         | 
    	
        examples/image1.jpg
    ADDED
    
    |   | 
    	
        examples/image2.jpg
    ADDED
    
    |   | 
    	
        examples/red-panda.mp4
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
         | 
| 3 | 
            +
            size 1867237
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "transformers_version": "4.37.2"
         | 
| 4 | 
            +
            }
         | 
    	
        model-00001-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:6aefab1bfa6dbbef3256a05ce1b837eec3c832d228d32de91f486b205222b6a6
         | 
| 3 | 
            +
            size 4988569440
         | 
    	
        model-00002-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f901277d65bf971c4f8f635db9f7138bc316a21cdf9dc4e3185e34e65909a384
         | 
| 3 | 
            +
            size 4937253584
         | 
    	
        model-00003-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:de371242fdad1c4364d515bc4862b4f937ca45b66c9f7da0e43d833064dab392
         | 
| 3 | 
            +
            size 4960042816
         | 
    	
        model-00004-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:087b819ef03fa377e70bf2af22a734e48aa20338402496113b62db8bbc11468b
         | 
| 3 | 
            +
            size 4664134744
         | 
    	
        model-00005-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:80a4ca822245e7b3ecbe58f2d55b6902f5a240e2a124afa3b94b68af531283e5
         | 
| 3 | 
            +
            size 4664167768
         | 
    	
        model-00006-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4fdde3727f143feaf98055151ef908850c65f7cabc79965de4fc0caa7bb21aff
         | 
| 3 | 
            +
            size 4664167768
         | 
    	
        model-00007-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d346885749cbf3f9841f8337e8cd6db64f104feb6199e5ed8f2cba2859f189e8
         | 
| 3 | 
            +
            size 4999712112
         | 
    	
        model-00008-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2ec3daba4a459393bf95e157c4f7c9c93f5dcb2e65c2838697f27d6087d25ce3
         | 
| 3 | 
            +
            size 4966157416
         | 
    	
        model-00009-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:962c674182533d7058f6bb75ff784a083e459aeef6d4aa14dbad81d434987147
         | 
| 3 | 
            +
            size 4664134768
         | 
    	
        model-00010-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:548af1ac378e7e92a5e54fcf628d39a0af26de906e75b0acd358480f93dc6a9d
         | 
| 3 | 
            +
            size 4664167800
         | 
    	
        model-00011-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:a6abdbe8f7119dd697ac12b6e435a218f9da42f074b0935c1627ff4077cdaaf6
         | 
| 3 | 
            +
            size 4664167792
         | 
    	
        model-00012-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5ca6dc8266abb7d3d949e07e65c994d002c173c05cc22268b606ddb883779c20
         | 
| 3 | 
            +
            size 4999712120
         | 
    	
        model-00013-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:0b3d39fd639bf661bee1b18da4f33a8b5dbd09fb1fe527c8a5d488bc2f9bdc80
         | 
| 3 | 
            +
            size 4966157416
         | 
    	
        model-00014-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8075098784897729ee94a649c6e8f8e38fa621f89c38d3408ae9fd09758eb3e1
         | 
| 3 | 
            +
            size 4664134768
         | 
    	
        model-00015-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7b3dabf91379c58d79fc572fdc39b00902f6208636537d2130b9ca4280493c0c
         | 
| 3 | 
            +
            size 4664167800
         | 
    	
        model-00016-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8270c34ff00e6373292e923c86ffe45e9eb85c36d7beaf0187b94841685b39eb
         | 
| 3 | 
            +
            size 4664167792
         | 
    	
        model-00017-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:3cf3ff7dbb956dcbfb5f6ddc7024a8a04ff4733a69e271bc66a846d7dcf13dac
         | 
| 3 | 
            +
            size 4999712120
         | 
    	
        model-00018-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:00db82db0afaa53b9b3781a8359b021249065d6c57388a2e7d963442c5122290
         | 
| 3 | 
            +
            size 4966157416
         | 
    	
        model-00019-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d456b8fde17b77d4a1ae1837bdb8dbc0a6ab5710388a4de4da7c1047b12f4bd5
         | 
| 3 | 
            +
            size 4664134768
         | 
    	
        model-00020-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:bd6c8a09e2f32e65e99ead64890ec43211787e9a844f61756b131df260848a11
         | 
| 3 | 
            +
            size 4664167800
         | 
    	
        model-00021-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:42b2fc4a9dbf979f9ea7599ca0c99059194e87db25493e6680a93e3ecbb0d8f3
         | 
| 3 | 
            +
            size 4664167792
         | 
    	
        model-00022-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2402891f204c4c4e168661b20c05f3389482b9bffed5480b8ee23105c5f480dc
         | 
| 3 | 
            +
            size 4999712120
         | 
    	
        model-00023-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:42452f2adddc0ae85e5214dd06215275acf1d20b3ddb594bfc9c302242fb15ab
         | 
| 3 | 
            +
            size 4966157416
         | 
    	
        model-00024-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8f5323f057201d8480f75f3e829b0afebc118088adce3894da1a188d588c0c8d
         | 
| 3 | 
            +
            size 4664134768
         | 
    	
        model-00025-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:22306600567ab62805f46ecd50d0303ae7204a0a82c5bfa7e752c1866f5423a4
         | 
| 3 | 
            +
            size 4664167800
         | 
    	
        model-00026-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2175cca75dfeb2170fac67cbb3eec3f9a1ca6ab3534414c13eee33b049da8ce5
         | 
| 3 | 
            +
            size 4664167792
         | 
    	
        model-00027-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9eda55ee32e961eb286e751650d37b6b241dfa5b20a0671ac2eb4d4352b0de6f
         | 
| 3 | 
            +
            size 4999712120
         | 
    	
        model-00028-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:089fb02c8790c927680eac5cc10e593835860704fa531b09e9e32b804d696468
         | 
| 3 | 
            +
            size 4966157416
         | 
    	
        model-00029-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:eeb8b053ba5a1a8135b1d34359aa3feec4c7e09d330e4f3b9ccc0e11ae4d5acf
         | 
| 3 | 
            +
            size 4664134768
         | 
    	
        model-00030-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d30c8049ef00ad9e232e66c031b9e708366a8c705d1fde73e116403df9730f49
         | 
| 3 | 
            +
            size 4664167800
         | 
    	
        model-00031-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4f9fb3075befcefb3966485bb11cf3e2ae6d9c559dd398ab6b4a03b1bbad43e2
         | 
| 3 | 
            +
            size 4664167792
         | 
    	
        model-00032-of-00032.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:059cac854f6f17f8f2d7fa1098e5de3a42c78c8c79b6fb1b7ce621d41952a6f7
         | 
| 3 | 
            +
            size 3854847384
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        modeling_intern_vit.py
    ADDED
    
    | @@ -0,0 +1,434 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2023 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
            from typing import Optional, Tuple, Union
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            import torch.nn.functional as F
         | 
| 10 | 
            +
            import torch.utils.checkpoint
         | 
| 11 | 
            +
            from einops import rearrange
         | 
| 12 | 
            +
            from timm.models.layers import DropPath
         | 
| 13 | 
            +
            from torch import nn
         | 
| 14 | 
            +
            from transformers.activations import ACT2FN
         | 
| 15 | 
            +
            from transformers.modeling_outputs import (BaseModelOutput,
         | 
| 16 | 
            +
                                                       BaseModelOutputWithPooling)
         | 
| 17 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 18 | 
            +
            from transformers.utils import logging
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from .configuration_intern_vit import InternVisionConfig
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            try:
         | 
| 23 | 
            +
                try:  # v1
         | 
| 24 | 
            +
                    from flash_attn.flash_attn_interface import \
         | 
| 25 | 
            +
                        flash_attn_unpadded_qkvpacked_func
         | 
| 26 | 
            +
                except:  # v2
         | 
| 27 | 
            +
                    from flash_attn.flash_attn_interface import \
         | 
| 28 | 
            +
                        flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                from flash_attn.bert_padding import pad_input, unpad_input
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                has_flash_attn = True
         | 
| 33 | 
            +
            except:
         | 
| 34 | 
            +
                print('FlashAttention is not installed.')
         | 
| 35 | 
            +
                has_flash_attn = False
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            class FlashAttention(nn.Module):
         | 
| 41 | 
            +
                """Implement the scaled dot product attention with softmax.
         | 
| 42 | 
            +
                Arguments
         | 
| 43 | 
            +
                ---------
         | 
| 44 | 
            +
                    softmax_scale: The temperature to use for the softmax attention.
         | 
| 45 | 
            +
                                  (default: 1/sqrt(d_keys) where d_keys is computed at
         | 
| 46 | 
            +
                                  runtime)
         | 
| 47 | 
            +
                    attention_dropout: The dropout rate to apply to the attention
         | 
| 48 | 
            +
                                       (default: 0.0)
         | 
| 49 | 
            +
                """
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
         | 
| 52 | 
            +
                    super().__init__()
         | 
| 53 | 
            +
                    self.softmax_scale = softmax_scale
         | 
| 54 | 
            +
                    self.dropout_p = attention_dropout
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
         | 
| 57 | 
            +
                            max_s=None, need_weights=False):
         | 
| 58 | 
            +
                    """Implements the multihead softmax attention.
         | 
| 59 | 
            +
                    Arguments
         | 
| 60 | 
            +
                    ---------
         | 
| 61 | 
            +
                        qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
         | 
| 62 | 
            +
                            if unpadded: (nnz, 3, h, d)
         | 
| 63 | 
            +
                        key_padding_mask: a bool tensor of shape (B, S)
         | 
| 64 | 
            +
                    """
         | 
| 65 | 
            +
                    assert not need_weights
         | 
| 66 | 
            +
                    assert qkv.dtype in [torch.float16, torch.bfloat16]
         | 
| 67 | 
            +
                    assert qkv.is_cuda
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    if cu_seqlens is None:
         | 
| 70 | 
            +
                        batch_size = qkv.shape[0]
         | 
| 71 | 
            +
                        seqlen = qkv.shape[1]
         | 
| 72 | 
            +
                        if key_padding_mask is None:
         | 
| 73 | 
            +
                            qkv = rearrange(qkv, 'b s ... -> (b s) ...')
         | 
| 74 | 
            +
                            max_s = seqlen
         | 
| 75 | 
            +
                            cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
         | 
| 76 | 
            +
                                                      device=qkv.device)
         | 
| 77 | 
            +
                            output = flash_attn_unpadded_qkvpacked_func(
         | 
| 78 | 
            +
                                qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 79 | 
            +
                                softmax_scale=self.softmax_scale, causal=causal
         | 
| 80 | 
            +
                            )
         | 
| 81 | 
            +
                            output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
         | 
| 82 | 
            +
                        else:
         | 
| 83 | 
            +
                            nheads = qkv.shape[-2]
         | 
| 84 | 
            +
                            x = rearrange(qkv, 'b s three h d -> b s (three h d)')
         | 
| 85 | 
            +
                            x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
         | 
| 86 | 
            +
                            x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
         | 
| 87 | 
            +
                            output_unpad = flash_attn_unpadded_qkvpacked_func(
         | 
| 88 | 
            +
                                x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 89 | 
            +
                                softmax_scale=self.softmax_scale, causal=causal
         | 
| 90 | 
            +
                            )
         | 
| 91 | 
            +
                            output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
         | 
| 92 | 
            +
                                                         indices, batch_size, seqlen),
         | 
| 93 | 
            +
                                               'b s (h d) -> b s h d', h=nheads)
         | 
| 94 | 
            +
                    else:
         | 
| 95 | 
            +
                        assert max_s is not None
         | 
| 96 | 
            +
                        output = flash_attn_unpadded_qkvpacked_func(
         | 
| 97 | 
            +
                            qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 98 | 
            +
                            softmax_scale=self.softmax_scale, causal=causal
         | 
| 99 | 
            +
                        )
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    return output, None
         | 
| 102 | 
            +
             | 
| 103 | 
            +
             | 
| 104 | 
            +
            class InternRMSNorm(nn.Module):
         | 
| 105 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 106 | 
            +
                    super().__init__()
         | 
| 107 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 108 | 
            +
                    self.variance_epsilon = eps
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def forward(self, hidden_states):
         | 
| 111 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 112 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 113 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 114 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 115 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            try:
         | 
| 119 | 
            +
                from apex.normalization import FusedRMSNorm
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                InternRMSNorm = FusedRMSNorm  # noqa
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
         | 
| 124 | 
            +
            except ImportError:
         | 
| 125 | 
            +
                # using the normal InternRMSNorm
         | 
| 126 | 
            +
                pass
         | 
| 127 | 
            +
            except Exception:
         | 
| 128 | 
            +
                logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
         | 
| 129 | 
            +
                pass
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
            NORM2FN = {
         | 
| 133 | 
            +
                'rms_norm': InternRMSNorm,
         | 
| 134 | 
            +
                'layer_norm': nn.LayerNorm,
         | 
| 135 | 
            +
            }
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
            +
            class InternVisionEmbeddings(nn.Module):
         | 
| 139 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 140 | 
            +
                    super().__init__()
         | 
| 141 | 
            +
                    self.config = config
         | 
| 142 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 143 | 
            +
                    self.image_size = config.image_size
         | 
| 144 | 
            +
                    self.patch_size = config.patch_size
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    self.class_embedding = nn.Parameter(
         | 
| 147 | 
            +
                        torch.randn(1, 1, self.embed_dim),
         | 
| 148 | 
            +
                    )
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    self.patch_embedding = nn.Conv2d(
         | 
| 151 | 
            +
                        in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
         | 
| 152 | 
            +
                    )
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    self.num_patches = (self.image_size // self.patch_size) ** 2
         | 
| 155 | 
            +
                    self.num_positions = self.num_patches + 1
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                def _get_pos_embed(self, pos_embed, H, W):
         | 
| 160 | 
            +
                    target_dtype = pos_embed.dtype
         | 
| 161 | 
            +
                    pos_embed = pos_embed.float().reshape(
         | 
| 162 | 
            +
                        1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
         | 
| 163 | 
            +
                    pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
         | 
| 164 | 
            +
                        reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
         | 
| 165 | 
            +
                    return pos_embed
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
         | 
| 168 | 
            +
                    target_dtype = self.patch_embedding.weight.dtype
         | 
| 169 | 
            +
                    patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, channel, width, height]
         | 
| 170 | 
            +
                    batch_size, _, height, width = patch_embeds.shape
         | 
| 171 | 
            +
                    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
         | 
| 172 | 
            +
                    class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
         | 
| 173 | 
            +
                    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
         | 
| 174 | 
            +
                    position_embedding = torch.cat([
         | 
| 175 | 
            +
                        self.position_embedding[:, :1, :],
         | 
| 176 | 
            +
                        self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
         | 
| 177 | 
            +
                    ], dim=1)
         | 
| 178 | 
            +
                    embeddings = embeddings + position_embedding.to(target_dtype)
         | 
| 179 | 
            +
                    return embeddings
         | 
| 180 | 
            +
             | 
| 181 | 
            +
             | 
| 182 | 
            +
            class InternAttention(nn.Module):
         | 
| 183 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 186 | 
            +
                    super().__init__()
         | 
| 187 | 
            +
                    self.config = config
         | 
| 188 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 189 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 190 | 
            +
                    self.use_flash_attn = config.use_flash_attn and has_flash_attn
         | 
| 191 | 
            +
                    if config.use_flash_attn and not has_flash_attn:
         | 
| 192 | 
            +
                        print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
         | 
| 193 | 
            +
                    self.head_dim = self.embed_dim // self.num_heads
         | 
| 194 | 
            +
                    if self.head_dim * self.num_heads != self.embed_dim:
         | 
| 195 | 
            +
                        raise ValueError(
         | 
| 196 | 
            +
                            f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
         | 
| 197 | 
            +
                            f' {self.num_heads}).'
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    self.scale = self.head_dim ** -0.5
         | 
| 201 | 
            +
                    self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
         | 
| 202 | 
            +
                    self.attn_drop = nn.Dropout(config.attention_dropout)
         | 
| 203 | 
            +
                    self.proj_drop = nn.Dropout(config.dropout)
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    self.qk_normalization = config.qk_normalization
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    if self.qk_normalization:
         | 
| 208 | 
            +
                        self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
         | 
| 209 | 
            +
                        self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    if self.use_flash_attn:
         | 
| 212 | 
            +
                        self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
         | 
| 213 | 
            +
                    self.proj = nn.Linear(self.embed_dim, self.embed_dim)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                def _naive_attn(self, x):
         | 
| 216 | 
            +
                    B, N, C = x.shape
         | 
| 217 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 218 | 
            +
                    q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    if self.qk_normalization:
         | 
| 221 | 
            +
                        B_, H_, N_, D_ = q.shape
         | 
| 222 | 
            +
                        q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
         | 
| 223 | 
            +
                        k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    attn = ((q * self.scale) @ k.transpose(-2, -1))
         | 
| 226 | 
            +
                    attn = attn.softmax(dim=-1)
         | 
| 227 | 
            +
                    attn = self.attn_drop(attn)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 230 | 
            +
                    x = self.proj(x)
         | 
| 231 | 
            +
                    x = self.proj_drop(x)
         | 
| 232 | 
            +
                    return x
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
         | 
| 235 | 
            +
                    qkv = self.qkv(x)
         | 
| 236 | 
            +
                    qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    if self.qk_normalization:
         | 
| 239 | 
            +
                        q, k, v = qkv.unbind(2)
         | 
| 240 | 
            +
                        q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
         | 
| 241 | 
            +
                        k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
         | 
| 242 | 
            +
                        qkv = torch.stack([q, k, v], dim=2)
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    context, _ = self.inner_attn(
         | 
| 245 | 
            +
                        qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
         | 
| 246 | 
            +
                    )
         | 
| 247 | 
            +
                    outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
         | 
| 248 | 
            +
                    outs = self.proj_drop(outs)
         | 
| 249 | 
            +
                    return outs
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 252 | 
            +
                    x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
         | 
| 253 | 
            +
                    return x
         | 
| 254 | 
            +
             | 
| 255 | 
            +
             | 
| 256 | 
            +
            class InternMLP(nn.Module):
         | 
| 257 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 258 | 
            +
                    super().__init__()
         | 
| 259 | 
            +
                    self.config = config
         | 
| 260 | 
            +
                    self.act = ACT2FN[config.hidden_act]
         | 
| 261 | 
            +
                    self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
         | 
| 262 | 
            +
                    self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 265 | 
            +
                    hidden_states = self.fc1(hidden_states)
         | 
| 266 | 
            +
                    hidden_states = self.act(hidden_states)
         | 
| 267 | 
            +
                    hidden_states = self.fc2(hidden_states)
         | 
| 268 | 
            +
                    return hidden_states
         | 
| 269 | 
            +
             | 
| 270 | 
            +
             | 
| 271 | 
            +
            class InternVisionEncoderLayer(nn.Module):
         | 
| 272 | 
            +
                def __init__(self, config: InternVisionConfig, drop_path_rate: float):
         | 
| 273 | 
            +
                    super().__init__()
         | 
| 274 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 275 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 276 | 
            +
                    self.norm_type = config.norm_type
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    self.attn = InternAttention(config)
         | 
| 279 | 
            +
                    self.mlp = InternMLP(config)
         | 
| 280 | 
            +
                    self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 281 | 
            +
                    self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 284 | 
            +
                    self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 285 | 
            +
                    self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
         | 
| 286 | 
            +
                    self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                def forward(
         | 
| 289 | 
            +
                        self,
         | 
| 290 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 291 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
         | 
| 292 | 
            +
                    """
         | 
| 293 | 
            +
                    Args:
         | 
| 294 | 
            +
                        hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 295 | 
            +
                    """
         | 
| 296 | 
            +
                    hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    return hidden_states
         | 
| 301 | 
            +
             | 
| 302 | 
            +
             | 
| 303 | 
            +
            class InternVisionEncoder(nn.Module):
         | 
| 304 | 
            +
                """
         | 
| 305 | 
            +
                Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
         | 
| 306 | 
            +
                [`InternEncoderLayer`].
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                Args:
         | 
| 309 | 
            +
                    config (`InternConfig`):
         | 
| 310 | 
            +
                        The corresponding vision configuration for the `InternEncoder`.
         | 
| 311 | 
            +
                """
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 314 | 
            +
                    super().__init__()
         | 
| 315 | 
            +
                    self.config = config
         | 
| 316 | 
            +
                    # stochastic depth decay rule
         | 
| 317 | 
            +
                    dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
         | 
| 318 | 
            +
                    self.layers = nn.ModuleList([
         | 
| 319 | 
            +
                        InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
         | 
| 320 | 
            +
                    self.gradient_checkpointing = True
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                def forward(
         | 
| 323 | 
            +
                        self,
         | 
| 324 | 
            +
                        inputs_embeds,
         | 
| 325 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 326 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 327 | 
            +
                ) -> Union[Tuple, BaseModelOutput]:
         | 
| 328 | 
            +
                    r"""
         | 
| 329 | 
            +
                    Args:
         | 
| 330 | 
            +
                        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
         | 
| 331 | 
            +
                            Embedded representation of the inputs. Should be float, not int tokens.
         | 
| 332 | 
            +
                        output_hidden_states (`bool`, *optional*):
         | 
| 333 | 
            +
                            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
         | 
| 334 | 
            +
                            for more detail.
         | 
| 335 | 
            +
                        return_dict (`bool`, *optional*):
         | 
| 336 | 
            +
                            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 337 | 
            +
                    """
         | 
| 338 | 
            +
                    output_hidden_states = (
         | 
| 339 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 340 | 
            +
                    )
         | 
| 341 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    encoder_states = () if output_hidden_states else None
         | 
| 344 | 
            +
                    hidden_states = inputs_embeds
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    for idx, encoder_layer in enumerate(self.layers):
         | 
| 347 | 
            +
                        if output_hidden_states:
         | 
| 348 | 
            +
                            encoder_states = encoder_states + (hidden_states,)
         | 
| 349 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 350 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 351 | 
            +
                                encoder_layer,
         | 
| 352 | 
            +
                                hidden_states)
         | 
| 353 | 
            +
                        else:
         | 
| 354 | 
            +
                            layer_outputs = encoder_layer(
         | 
| 355 | 
            +
                                hidden_states,
         | 
| 356 | 
            +
                            )
         | 
| 357 | 
            +
                        hidden_states = layer_outputs
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    if output_hidden_states:
         | 
| 360 | 
            +
                        encoder_states = encoder_states + (hidden_states,)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    if not return_dict:
         | 
| 363 | 
            +
                        return tuple(v for v in [hidden_states, encoder_states] if v is not None)
         | 
| 364 | 
            +
                    return BaseModelOutput(
         | 
| 365 | 
            +
                        last_hidden_state=hidden_states, hidden_states=encoder_states
         | 
| 366 | 
            +
                    )
         | 
| 367 | 
            +
             | 
| 368 | 
            +
             | 
| 369 | 
            +
            class InternVisionModel(PreTrainedModel):
         | 
| 370 | 
            +
                main_input_name = 'pixel_values'
         | 
| 371 | 
            +
                config_class = InternVisionConfig
         | 
| 372 | 
            +
                _no_split_modules = ['InternVisionEncoderLayer']
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 375 | 
            +
                    super().__init__(config)
         | 
| 376 | 
            +
                    self.config = config
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    self.embeddings = InternVisionEmbeddings(config)
         | 
| 379 | 
            +
                    self.encoder = InternVisionEncoder(config)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                def resize_pos_embeddings(self, old_size, new_size, patch_size):
         | 
| 382 | 
            +
                    pos_emb = self.embeddings.position_embedding
         | 
| 383 | 
            +
                    _, num_positions, embed_dim = pos_emb.shape
         | 
| 384 | 
            +
                    cls_emb = pos_emb[:, :1, :]
         | 
| 385 | 
            +
                    pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
         | 
| 386 | 
            +
                    pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
         | 
| 387 | 
            +
                    pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
         | 
| 388 | 
            +
                    pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
         | 
| 389 | 
            +
                    self.embeddings.position_embedding = nn.Parameter(pos_emb)
         | 
| 390 | 
            +
                    self.embeddings.image_size = new_size
         | 
| 391 | 
            +
                    logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                def get_input_embeddings(self):
         | 
| 394 | 
            +
                    return self.embeddings
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                def forward(
         | 
| 397 | 
            +
                        self,
         | 
| 398 | 
            +
                        pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 399 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 400 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 401 | 
            +
                        pixel_embeds: Optional[torch.FloatTensor] = None,
         | 
| 402 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPooling]:
         | 
| 403 | 
            +
                    output_hidden_states = (
         | 
| 404 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 405 | 
            +
                    )
         | 
| 406 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                    if pixel_values is None and pixel_embeds is None:
         | 
| 409 | 
            +
                        raise ValueError('You have to specify pixel_values or pixel_embeds')
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                    if pixel_embeds is not None:
         | 
| 412 | 
            +
                        hidden_states = pixel_embeds
         | 
| 413 | 
            +
                    else:
         | 
| 414 | 
            +
                        if len(pixel_values.shape) == 4:
         | 
| 415 | 
            +
                            hidden_states = self.embeddings(pixel_values)
         | 
| 416 | 
            +
                        else:
         | 
| 417 | 
            +
                            raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
         | 
| 418 | 
            +
                    encoder_outputs = self.encoder(
         | 
| 419 | 
            +
                        inputs_embeds=hidden_states,
         | 
| 420 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 421 | 
            +
                        return_dict=return_dict,
         | 
| 422 | 
            +
                    )
         | 
| 423 | 
            +
                    last_hidden_state = encoder_outputs.last_hidden_state
         | 
| 424 | 
            +
                    pooled_output = last_hidden_state[:, 0, :]
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    if not return_dict:
         | 
| 427 | 
            +
                        return (last_hidden_state, pooled_output) + encoder_outputs[1:]
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    return BaseModelOutputWithPooling(
         | 
| 430 | 
            +
                        last_hidden_state=last_hidden_state,
         | 
| 431 | 
            +
                        pooler_output=pooled_output,
         | 
| 432 | 
            +
                        hidden_states=encoder_outputs.hidden_states,
         | 
| 433 | 
            +
                        attentions=encoder_outputs.attentions,
         | 
| 434 | 
            +
                    )
         | 
    	
        modeling_internvl_chat.py
    ADDED
    
    | @@ -0,0 +1,340 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
            import warnings
         | 
| 7 | 
            +
            from typing import Any, List, Optional, Tuple, Union
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch.utils.checkpoint
         | 
| 10 | 
            +
            import transformers
         | 
| 11 | 
            +
            from torch import nn
         | 
| 12 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 13 | 
            +
            from transformers import AutoModel, GenerationConfig, LlamaForCausalLM
         | 
| 14 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 15 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 16 | 
            +
            from transformers.utils import ModelOutput, logging
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from .configuration_internvl_chat import InternVLChatConfig
         | 
| 19 | 
            +
            from .conversation import get_conv_template
         | 
| 20 | 
            +
            from .modeling_intern_vit import InternVisionModel
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            def version_cmp(v1, v2, op='eq'):
         | 
| 26 | 
            +
                import operator
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                from packaging import version
         | 
| 29 | 
            +
                op_func = getattr(operator, op)
         | 
| 30 | 
            +
                return op_func(version.parse(v1), version.parse(v2))
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            class InternVLChatModel(PreTrainedModel):
         | 
| 34 | 
            +
                config_class = InternVLChatConfig
         | 
| 35 | 
            +
                main_input_name = 'pixel_values'
         | 
| 36 | 
            +
                _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer']
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
         | 
| 39 | 
            +
                    super().__init__(config)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                    assert version_cmp(transformers.__version__, '4.36.2', 'ge')
         | 
| 42 | 
            +
                    image_size = config.force_image_size or config.vision_config.image_size
         | 
| 43 | 
            +
                    patch_size = config.vision_config.patch_size
         | 
| 44 | 
            +
                    self.patch_size = patch_size
         | 
| 45 | 
            +
                    self.select_layer = config.select_layer
         | 
| 46 | 
            +
                    self.template = config.template
         | 
| 47 | 
            +
                    self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
         | 
| 48 | 
            +
                    self.downsample_ratio = config.downsample_ratio
         | 
| 49 | 
            +
                    self.ps_version = config.ps_version
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    logger.info(f'num_image_token: {self.num_image_token}')
         | 
| 52 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 53 | 
            +
                    if vision_model is not None:
         | 
| 54 | 
            +
                        self.vision_model = vision_model
         | 
| 55 | 
            +
                    else:
         | 
| 56 | 
            +
                        self.vision_model = InternVisionModel(config.vision_config)
         | 
| 57 | 
            +
                    if language_model is not None:
         | 
| 58 | 
            +
                        self.language_model = language_model
         | 
| 59 | 
            +
                    else:
         | 
| 60 | 
            +
                        if config.llm_config.architectures[0] == 'LlamaForCausalLM':
         | 
| 61 | 
            +
                            self.language_model = LlamaForCausalLM(config.llm_config)
         | 
| 62 | 
            +
                        else:
         | 
| 63 | 
            +
                            raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                    vit_hidden_size = config.vision_config.hidden_size
         | 
| 66 | 
            +
                    llm_hidden_size = config.llm_config.hidden_size
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    self.mlp1 = nn.Sequential(
         | 
| 69 | 
            +
                        nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
         | 
| 70 | 
            +
                        nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
         | 
| 71 | 
            +
                        nn.GELU(),
         | 
| 72 | 
            +
                        nn.Linear(llm_hidden_size, llm_hidden_size)
         | 
| 73 | 
            +
                    )
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    self.img_context_token_id = None
         | 
| 76 | 
            +
                    self.conv_template = get_conv_template(self.template)
         | 
| 77 | 
            +
                    self.system_message = self.conv_template.system_message
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                def forward(
         | 
| 80 | 
            +
                        self,
         | 
| 81 | 
            +
                        pixel_values: torch.FloatTensor,
         | 
| 82 | 
            +
                        input_ids: torch.LongTensor = None,
         | 
| 83 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 84 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 85 | 
            +
                        image_flags: Optional[torch.LongTensor] = None,
         | 
| 86 | 
            +
                        past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 87 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 88 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 89 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 90 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 91 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 92 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 93 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    image_flags = image_flags.squeeze(-1)
         | 
| 96 | 
            +
                    input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    vit_embeds = self.extract_feature(pixel_values)
         | 
| 99 | 
            +
                    vit_embeds = vit_embeds[image_flags == 1]
         | 
| 100 | 
            +
                    vit_batch_size = pixel_values.shape[0]
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    B, N, C = input_embeds.shape
         | 
| 103 | 
            +
                    input_embeds = input_embeds.reshape(B * N, C)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    if torch.distributed.get_rank() == 0:
         | 
| 106 | 
            +
                        print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    input_ids = input_ids.reshape(B * N)
         | 
| 109 | 
            +
                    selected = (input_ids == self.img_context_token_id)
         | 
| 110 | 
            +
                    try:
         | 
| 111 | 
            +
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
         | 
| 112 | 
            +
                    except Exception as e:
         | 
| 113 | 
            +
                        vit_embeds = vit_embeds.reshape(-1, C)
         | 
| 114 | 
            +
                        print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
         | 
| 115 | 
            +
                              f'vit_embeds.shape={vit_embeds.shape}')
         | 
| 116 | 
            +
                        n_token = selected.sum()
         | 
| 117 | 
            +
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    input_embeds = input_embeds.reshape(B, N, C)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    outputs = self.language_model(
         | 
| 122 | 
            +
                        inputs_embeds=input_embeds,
         | 
| 123 | 
            +
                        attention_mask=attention_mask,
         | 
| 124 | 
            +
                        position_ids=position_ids,
         | 
| 125 | 
            +
                        past_key_values=past_key_values,
         | 
| 126 | 
            +
                        use_cache=use_cache,
         | 
| 127 | 
            +
                        output_attentions=output_attentions,
         | 
| 128 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 129 | 
            +
                        return_dict=return_dict,
         | 
| 130 | 
            +
                    )
         | 
| 131 | 
            +
                    logits = outputs.logits
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    loss = None
         | 
| 134 | 
            +
                    if labels is not None:
         | 
| 135 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 136 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 137 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 138 | 
            +
                        # Flatten the tokens
         | 
| 139 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 140 | 
            +
                        shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
         | 
| 141 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 142 | 
            +
                        # Enable model parallelism
         | 
| 143 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 144 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    if not return_dict:
         | 
| 147 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 148 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 151 | 
            +
                        loss=loss,
         | 
| 152 | 
            +
                        logits=logits,
         | 
| 153 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 154 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 155 | 
            +
                        attentions=outputs.attentions,
         | 
| 156 | 
            +
                    )
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                def pixel_shuffle(self, x, scale_factor=0.5):
         | 
| 159 | 
            +
                    n, w, h, c = x.size()
         | 
| 160 | 
            +
                    # N, W, H, C --> N, W, H * scale, C // scale
         | 
| 161 | 
            +
                    x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
         | 
| 162 | 
            +
                    # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
         | 
| 163 | 
            +
                    x = x.permute(0, 2, 1, 3).contiguous()
         | 
| 164 | 
            +
                    # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
         | 
| 165 | 
            +
                    x = x.view(n, int(h * scale_factor), int(w * scale_factor),
         | 
| 166 | 
            +
                               int(c / (scale_factor * scale_factor)))
         | 
| 167 | 
            +
                    if self.ps_version == 'v1':
         | 
| 168 | 
            +
                        warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
         | 
| 169 | 
            +
                                      'which results in a transposed image.')
         | 
| 170 | 
            +
                    else:
         | 
| 171 | 
            +
                        x = x.permute(0, 2, 1, 3).contiguous()
         | 
| 172 | 
            +
                    return x
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def extract_feature(self, pixel_values):
         | 
| 175 | 
            +
                    if self.select_layer == -1:
         | 
| 176 | 
            +
                        vit_embeds = self.vision_model(
         | 
| 177 | 
            +
                            pixel_values=pixel_values,
         | 
| 178 | 
            +
                            output_hidden_states=False,
         | 
| 179 | 
            +
                            return_dict=True).last_hidden_state
         | 
| 180 | 
            +
                    else:
         | 
| 181 | 
            +
                        vit_embeds = self.vision_model(
         | 
| 182 | 
            +
                            pixel_values=pixel_values,
         | 
| 183 | 
            +
                            output_hidden_states=True,
         | 
| 184 | 
            +
                            return_dict=True).hidden_states[self.select_layer]
         | 
| 185 | 
            +
                    vit_embeds = vit_embeds[:, 1:, :]
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    h = w = int(vit_embeds.shape[1] ** 0.5)
         | 
| 188 | 
            +
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
         | 
| 189 | 
            +
                    vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
         | 
| 190 | 
            +
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
         | 
| 191 | 
            +
                    vit_embeds = self.mlp1(vit_embeds)
         | 
| 192 | 
            +
                    return vit_embeds
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
         | 
| 195 | 
            +
                               history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
         | 
| 196 | 
            +
                               IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
         | 
| 197 | 
            +
                    if history is not None or return_history:
         | 
| 198 | 
            +
                        print('Now multi-turn chat is not supported in batch_chat.')
         | 
| 199 | 
            +
                        raise NotImplementedError
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    if image_counts is not None:
         | 
| 202 | 
            +
                        num_patches_list = image_counts
         | 
| 203 | 
            +
                        print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 206 | 
            +
                    self.img_context_token_id = img_context_token_id
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    if verbose and pixel_values is not None:
         | 
| 209 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 210 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}')
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    queries = []
         | 
| 213 | 
            +
                    for idx, num_patches in enumerate(num_patches_list):
         | 
| 214 | 
            +
                        question = questions[idx]
         | 
| 215 | 
            +
                        if pixel_values is not None and '<image>' not in question:
         | 
| 216 | 
            +
                            question = '<image>\n' + question
         | 
| 217 | 
            +
                        template = get_conv_template(self.template)
         | 
| 218 | 
            +
                        template.append_message(template.roles[0], question)
         | 
| 219 | 
            +
                        template.append_message(template.roles[1], None)
         | 
| 220 | 
            +
                        query = template.get_prompt()
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                        image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 223 | 
            +
                        query = query.replace('<image>', image_tokens, 1)
         | 
| 224 | 
            +
                        queries.append(query)
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    tokenizer.padding_side = 'left'
         | 
| 227 | 
            +
                    model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
         | 
| 228 | 
            +
                    input_ids = model_inputs['input_ids'].cuda()
         | 
| 229 | 
            +
                    attention_mask = model_inputs['attention_mask'].cuda()
         | 
| 230 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
         | 
| 231 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 232 | 
            +
                    generation_output = self.generate(
         | 
| 233 | 
            +
                        pixel_values=pixel_values,
         | 
| 234 | 
            +
                        input_ids=input_ids,
         | 
| 235 | 
            +
                        attention_mask=attention_mask,
         | 
| 236 | 
            +
                        **generation_config
         | 
| 237 | 
            +
                    )
         | 
| 238 | 
            +
                    responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
         | 
| 239 | 
            +
                    responses = [response.split(template.sep)[0].strip() for response in responses]
         | 
| 240 | 
            +
                    return responses
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
         | 
| 243 | 
            +
                         num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
         | 
| 244 | 
            +
                         verbose=False):
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    if history is None and pixel_values is not None and '<image>' not in question:
         | 
| 247 | 
            +
                        question = '<image>\n' + question
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    if num_patches_list is None:
         | 
| 250 | 
            +
                        num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
         | 
| 251 | 
            +
                    assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 254 | 
            +
                    self.img_context_token_id = img_context_token_id
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    template = get_conv_template(self.template)
         | 
| 257 | 
            +
                    template.system_message = self.system_message
         | 
| 258 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    history = [] if history is None else history
         | 
| 261 | 
            +
                    for (old_question, old_answer) in history:
         | 
| 262 | 
            +
                        template.append_message(template.roles[0], old_question)
         | 
| 263 | 
            +
                        template.append_message(template.roles[1], old_answer)
         | 
| 264 | 
            +
                    template.append_message(template.roles[0], question)
         | 
| 265 | 
            +
                    template.append_message(template.roles[1], None)
         | 
| 266 | 
            +
                    query = template.get_prompt()
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    if verbose and pixel_values is not None:
         | 
| 269 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 270 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}')
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    for num_patches in num_patches_list:
         | 
| 273 | 
            +
                        image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 274 | 
            +
                        query = query.replace('<image>', image_tokens, 1)
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    model_inputs = tokenizer(query, return_tensors='pt')
         | 
| 277 | 
            +
                    input_ids = model_inputs['input_ids'].cuda()
         | 
| 278 | 
            +
                    attention_mask = model_inputs['attention_mask'].cuda()
         | 
| 279 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 280 | 
            +
                    generation_output = self.generate(
         | 
| 281 | 
            +
                        pixel_values=pixel_values,
         | 
| 282 | 
            +
                        input_ids=input_ids,
         | 
| 283 | 
            +
                        attention_mask=attention_mask,
         | 
| 284 | 
            +
                        **generation_config
         | 
| 285 | 
            +
                    )
         | 
| 286 | 
            +
                    response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
         | 
| 287 | 
            +
                    response = response.split(template.sep)[0].strip()
         | 
| 288 | 
            +
                    history.append((question, response))
         | 
| 289 | 
            +
                    if return_history:
         | 
| 290 | 
            +
                        return response, history
         | 
| 291 | 
            +
                    else:
         | 
| 292 | 
            +
                        query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
         | 
| 293 | 
            +
                        query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
         | 
| 294 | 
            +
                        if verbose:
         | 
| 295 | 
            +
                            print(query_to_print, response)
         | 
| 296 | 
            +
                        return response
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                @torch.no_grad()
         | 
| 299 | 
            +
                def generate(
         | 
| 300 | 
            +
                        self,
         | 
| 301 | 
            +
                        pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 302 | 
            +
                        input_ids: Optional[torch.FloatTensor] = None,
         | 
| 303 | 
            +
                        attention_mask: Optional[torch.LongTensor] = None,
         | 
| 304 | 
            +
                        visual_features: Optional[torch.FloatTensor] = None,
         | 
| 305 | 
            +
                        generation_config: Optional[GenerationConfig] = None,
         | 
| 306 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 307 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 308 | 
            +
                        **generate_kwargs,
         | 
| 309 | 
            +
                ) -> torch.LongTensor:
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    assert self.img_context_token_id is not None
         | 
| 312 | 
            +
                    if pixel_values is not None:
         | 
| 313 | 
            +
                        if visual_features is not None:
         | 
| 314 | 
            +
                            vit_embeds = visual_features
         | 
| 315 | 
            +
                        else:
         | 
| 316 | 
            +
                            vit_embeds = self.extract_feature(pixel_values)
         | 
| 317 | 
            +
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 318 | 
            +
                        B, N, C = input_embeds.shape
         | 
| 319 | 
            +
                        input_embeds = input_embeds.reshape(B * N, C)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                        input_ids = input_ids.reshape(B * N)
         | 
| 322 | 
            +
                        selected = (input_ids == self.img_context_token_id)
         | 
| 323 | 
            +
                        assert selected.sum() != 0
         | 
| 324 | 
            +
                        input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                        input_embeds = input_embeds.reshape(B, N, C)
         | 
| 327 | 
            +
                    else:
         | 
| 328 | 
            +
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    outputs = self.language_model.generate(
         | 
| 331 | 
            +
                        inputs_embeds=input_embeds,
         | 
| 332 | 
            +
                        attention_mask=attention_mask,
         | 
| 333 | 
            +
                        generation_config=generation_config,
         | 
| 334 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 335 | 
            +
                        return_dict=return_dict,
         | 
| 336 | 
            +
                        use_cache=True,
         | 
| 337 | 
            +
                        **generate_kwargs,
         | 
| 338 | 
            +
                    )
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                    return outputs
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,23 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "<|begin_of_text|>",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "eos_token": {
         | 
| 10 | 
            +
                "content": "<|im_end|>",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": true,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "pad_token": {
         | 
| 17 | 
            +
                "content": "<|end_of_text|>",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              }
         | 
| 23 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,2145 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_eos_token": false,
         | 
| 3 | 
            +
              "added_tokens_decoder": {
         | 
| 4 | 
            +
                "128000": {
         | 
| 5 | 
            +
                  "content": "<|begin_of_text|>",
         | 
| 6 | 
            +
                  "lstrip": false,
         | 
| 7 | 
            +
                  "normalized": false,
         | 
| 8 | 
            +
                  "rstrip": false,
         | 
| 9 | 
            +
                  "single_word": false,
         | 
| 10 | 
            +
                  "special": true
         | 
| 11 | 
            +
                },
         | 
| 12 | 
            +
                "128001": {
         | 
| 13 | 
            +
                  "content": "<|end_of_text|>",
         | 
| 14 | 
            +
                  "lstrip": false,
         | 
| 15 | 
            +
                  "normalized": false,
         | 
| 16 | 
            +
                  "rstrip": false,
         | 
| 17 | 
            +
                  "single_word": false,
         | 
| 18 | 
            +
                  "special": true
         | 
| 19 | 
            +
                },
         | 
| 20 | 
            +
                "128002": {
         | 
| 21 | 
            +
                  "content": "<|im_start|>",
         | 
| 22 | 
            +
                  "lstrip": false,
         | 
| 23 | 
            +
                  "normalized": true,
         | 
| 24 | 
            +
                  "rstrip": false,
         | 
| 25 | 
            +
                  "single_word": false,
         | 
| 26 | 
            +
                  "special": false
         | 
| 27 | 
            +
                },
         | 
| 28 | 
            +
                "128003": {
         | 
| 29 | 
            +
                  "content": "<|im_end|>",
         | 
| 30 | 
            +
                  "lstrip": false,
         | 
| 31 | 
            +
                  "normalized": true,
         | 
| 32 | 
            +
                  "rstrip": false,
         | 
| 33 | 
            +
                  "single_word": false,
         | 
| 34 | 
            +
                  "special": true
         | 
| 35 | 
            +
                },
         | 
| 36 | 
            +
                "128004": {
         | 
| 37 | 
            +
                  "content": "<tool_call>",
         | 
| 38 | 
            +
                  "lstrip": false,
         | 
| 39 | 
            +
                  "normalized": true,
         | 
| 40 | 
            +
                  "rstrip": false,
         | 
| 41 | 
            +
                  "single_word": false,
         | 
| 42 | 
            +
                  "special": false
         | 
| 43 | 
            +
                },
         | 
| 44 | 
            +
                "128005": {
         | 
| 45 | 
            +
                  "content": "<tool_response>",
         | 
| 46 | 
            +
                  "lstrip": false,
         | 
| 47 | 
            +
                  "normalized": true,
         | 
| 48 | 
            +
                  "rstrip": false,
         | 
| 49 | 
            +
                  "single_word": false,
         | 
| 50 | 
            +
                  "special": false
         | 
| 51 | 
            +
                },
         | 
| 52 | 
            +
                "128006": {
         | 
| 53 | 
            +
                  "content": "<|start_header_id|>",
         | 
| 54 | 
            +
                  "lstrip": false,
         | 
| 55 | 
            +
                  "normalized": true,
         | 
| 56 | 
            +
                  "rstrip": false,
         | 
| 57 | 
            +
                  "single_word": false,
         | 
| 58 | 
            +
                  "special": false
         | 
| 59 | 
            +
                },
         | 
| 60 | 
            +
                "128007": {
         | 
| 61 | 
            +
                  "content": "<|end_header_id|>",
         | 
| 62 | 
            +
                  "lstrip": false,
         | 
| 63 | 
            +
                  "normalized": true,
         | 
| 64 | 
            +
                  "rstrip": false,
         | 
| 65 | 
            +
                  "single_word": false,
         | 
| 66 | 
            +
                  "special": false
         | 
| 67 | 
            +
                },
         | 
| 68 | 
            +
                "128008": {
         | 
| 69 | 
            +
                  "content": "<tools>",
         | 
| 70 | 
            +
                  "lstrip": false,
         | 
| 71 | 
            +
                  "normalized": true,
         | 
| 72 | 
            +
                  "rstrip": false,
         | 
| 73 | 
            +
                  "single_word": false,
         | 
| 74 | 
            +
                  "special": false
         | 
| 75 | 
            +
                },
         | 
| 76 | 
            +
                "128009": {
         | 
| 77 | 
            +
                  "content": "<|eot_id|>",
         | 
| 78 | 
            +
                  "lstrip": false,
         | 
| 79 | 
            +
                  "normalized": true,
         | 
| 80 | 
            +
                  "rstrip": false,
         | 
| 81 | 
            +
                  "single_word": false,
         | 
| 82 | 
            +
                  "special": false
         | 
| 83 | 
            +
                },
         | 
| 84 | 
            +
                "128010": {
         | 
| 85 | 
            +
                  "content": "</tools>",
         | 
| 86 | 
            +
                  "lstrip": false,
         | 
| 87 | 
            +
                  "normalized": true,
         | 
| 88 | 
            +
                  "rstrip": false,
         | 
| 89 | 
            +
                  "single_word": false,
         | 
| 90 | 
            +
                  "special": false
         | 
| 91 | 
            +
                },
         | 
| 92 | 
            +
                "128011": {
         | 
| 93 | 
            +
                  "content": "</tool_call>",
         | 
| 94 | 
            +
                  "lstrip": false,
         | 
| 95 | 
            +
                  "normalized": true,
         | 
| 96 | 
            +
                  "rstrip": false,
         | 
| 97 | 
            +
                  "single_word": false,
         | 
| 98 | 
            +
                  "special": false
         | 
| 99 | 
            +
                },
         | 
| 100 | 
            +
                "128012": {
         | 
| 101 | 
            +
                  "content": "</tool_response>",
         | 
| 102 | 
            +
                  "lstrip": false,
         | 
| 103 | 
            +
                  "normalized": true,
         | 
| 104 | 
            +
                  "rstrip": false,
         | 
| 105 | 
            +
                  "single_word": false,
         | 
| 106 | 
            +
                  "special": false
         | 
| 107 | 
            +
                },
         | 
| 108 | 
            +
                "128013": {
         | 
| 109 | 
            +
                  "content": "<|reserved_special_token_8|>",
         | 
| 110 | 
            +
                  "lstrip": false,
         | 
| 111 | 
            +
                  "normalized": false,
         | 
| 112 | 
            +
                  "rstrip": false,
         | 
| 113 | 
            +
                  "single_word": false,
         | 
| 114 | 
            +
                  "special": true
         | 
| 115 | 
            +
                },
         | 
| 116 | 
            +
                "128014": {
         | 
| 117 | 
            +
                  "content": "<|reserved_special_token_9|>",
         | 
| 118 | 
            +
                  "lstrip": false,
         | 
| 119 | 
            +
                  "normalized": false,
         | 
| 120 | 
            +
                  "rstrip": false,
         | 
| 121 | 
            +
                  "single_word": false,
         | 
| 122 | 
            +
                  "special": true
         | 
| 123 | 
            +
                },
         | 
| 124 | 
            +
                "128015": {
         | 
| 125 | 
            +
                  "content": "<|reserved_special_token_10|>",
         | 
| 126 | 
            +
                  "lstrip": false,
         | 
| 127 | 
            +
                  "normalized": false,
         | 
| 128 | 
            +
                  "rstrip": false,
         | 
| 129 | 
            +
                  "single_word": false,
         | 
| 130 | 
            +
                  "special": true
         | 
| 131 | 
            +
                },
         | 
| 132 | 
            +
                "128016": {
         | 
| 133 | 
            +
                  "content": "<|reserved_special_token_11|>",
         | 
| 134 | 
            +
                  "lstrip": false,
         | 
| 135 | 
            +
                  "normalized": false,
         | 
| 136 | 
            +
                  "rstrip": false,
         | 
| 137 | 
            +
                  "single_word": false,
         | 
| 138 | 
            +
                  "special": true
         | 
| 139 | 
            +
                },
         | 
| 140 | 
            +
                "128017": {
         | 
| 141 | 
            +
                  "content": "<|reserved_special_token_12|>",
         | 
| 142 | 
            +
                  "lstrip": false,
         | 
| 143 | 
            +
                  "normalized": false,
         | 
| 144 | 
            +
                  "rstrip": false,
         | 
| 145 | 
            +
                  "single_word": false,
         | 
| 146 | 
            +
                  "special": true
         | 
| 147 | 
            +
                },
         | 
| 148 | 
            +
                "128018": {
         | 
| 149 | 
            +
                  "content": "<|reserved_special_token_13|>",
         | 
| 150 | 
            +
                  "lstrip": false,
         | 
| 151 | 
            +
                  "normalized": false,
         | 
| 152 | 
            +
                  "rstrip": false,
         | 
| 153 | 
            +
                  "single_word": false,
         | 
| 154 | 
            +
                  "special": true
         | 
| 155 | 
            +
                },
         | 
| 156 | 
            +
                "128019": {
         | 
| 157 | 
            +
                  "content": "<|reserved_special_token_14|>",
         | 
| 158 | 
            +
                  "lstrip": false,
         | 
| 159 | 
            +
                  "normalized": false,
         | 
| 160 | 
            +
                  "rstrip": false,
         | 
| 161 | 
            +
                  "single_word": false,
         | 
| 162 | 
            +
                  "special": true
         | 
| 163 | 
            +
                },
         | 
| 164 | 
            +
                "128020": {
         | 
| 165 | 
            +
                  "content": "<|reserved_special_token_15|>",
         | 
| 166 | 
            +
                  "lstrip": false,
         | 
| 167 | 
            +
                  "normalized": false,
         | 
| 168 | 
            +
                  "rstrip": false,
         | 
| 169 | 
            +
                  "single_word": false,
         | 
| 170 | 
            +
                  "special": true
         | 
| 171 | 
            +
                },
         | 
| 172 | 
            +
                "128021": {
         | 
| 173 | 
            +
                  "content": "<|reserved_special_token_16|>",
         | 
| 174 | 
            +
                  "lstrip": false,
         | 
| 175 | 
            +
                  "normalized": false,
         | 
| 176 | 
            +
                  "rstrip": false,
         | 
| 177 | 
            +
                  "single_word": false,
         | 
| 178 | 
            +
                  "special": true
         | 
| 179 | 
            +
                },
         | 
| 180 | 
            +
                "128022": {
         | 
| 181 | 
            +
                  "content": "<|reserved_special_token_17|>",
         | 
| 182 | 
            +
                  "lstrip": false,
         | 
| 183 | 
            +
                  "normalized": false,
         | 
| 184 | 
            +
                  "rstrip": false,
         | 
| 185 | 
            +
                  "single_word": false,
         | 
| 186 | 
            +
                  "special": true
         | 
| 187 | 
            +
                },
         | 
| 188 | 
            +
                "128023": {
         | 
| 189 | 
            +
                  "content": "<|reserved_special_token_18|>",
         | 
| 190 | 
            +
                  "lstrip": false,
         | 
| 191 | 
            +
                  "normalized": false,
         | 
| 192 | 
            +
                  "rstrip": false,
         | 
| 193 | 
            +
                  "single_word": false,
         | 
| 194 | 
            +
                  "special": true
         | 
| 195 | 
            +
                },
         | 
| 196 | 
            +
                "128024": {
         | 
| 197 | 
            +
                  "content": "<|reserved_special_token_19|>",
         | 
| 198 | 
            +
                  "lstrip": false,
         | 
| 199 | 
            +
                  "normalized": false,
         | 
| 200 | 
            +
                  "rstrip": false,
         | 
| 201 | 
            +
                  "single_word": false,
         | 
| 202 | 
            +
                  "special": true
         | 
| 203 | 
            +
                },
         | 
| 204 | 
            +
                "128025": {
         | 
| 205 | 
            +
                  "content": "<|reserved_special_token_20|>",
         | 
| 206 | 
            +
                  "lstrip": false,
         | 
| 207 | 
            +
                  "normalized": false,
         | 
| 208 | 
            +
                  "rstrip": false,
         | 
| 209 | 
            +
                  "single_word": false,
         | 
| 210 | 
            +
                  "special": true
         | 
| 211 | 
            +
                },
         | 
| 212 | 
            +
                "128026": {
         | 
| 213 | 
            +
                  "content": "<|reserved_special_token_21|>",
         | 
| 214 | 
            +
                  "lstrip": false,
         | 
| 215 | 
            +
                  "normalized": false,
         | 
| 216 | 
            +
                  "rstrip": false,
         | 
| 217 | 
            +
                  "single_word": false,
         | 
| 218 | 
            +
                  "special": true
         | 
| 219 | 
            +
                },
         | 
| 220 | 
            +
                "128027": {
         | 
| 221 | 
            +
                  "content": "<|reserved_special_token_22|>",
         | 
| 222 | 
            +
                  "lstrip": false,
         | 
| 223 | 
            +
                  "normalized": false,
         | 
| 224 | 
            +
                  "rstrip": false,
         | 
| 225 | 
            +
                  "single_word": false,
         | 
| 226 | 
            +
                  "special": true
         | 
| 227 | 
            +
                },
         | 
| 228 | 
            +
                "128028": {
         | 
| 229 | 
            +
                  "content": "<|reserved_special_token_23|>",
         | 
| 230 | 
            +
                  "lstrip": false,
         | 
| 231 | 
            +
                  "normalized": false,
         | 
| 232 | 
            +
                  "rstrip": false,
         | 
| 233 | 
            +
                  "single_word": false,
         | 
| 234 | 
            +
                  "special": true
         | 
| 235 | 
            +
                },
         | 
| 236 | 
            +
                "128029": {
         | 
| 237 | 
            +
                  "content": "<|reserved_special_token_24|>",
         | 
| 238 | 
            +
                  "lstrip": false,
         | 
| 239 | 
            +
                  "normalized": false,
         | 
| 240 | 
            +
                  "rstrip": false,
         | 
| 241 | 
            +
                  "single_word": false,
         | 
| 242 | 
            +
                  "special": true
         | 
| 243 | 
            +
                },
         | 
| 244 | 
            +
                "128030": {
         | 
| 245 | 
            +
                  "content": "<|reserved_special_token_25|>",
         | 
| 246 | 
            +
                  "lstrip": false,
         | 
| 247 | 
            +
                  "normalized": false,
         | 
| 248 | 
            +
                  "rstrip": false,
         | 
| 249 | 
            +
                  "single_word": false,
         | 
| 250 | 
            +
                  "special": true
         | 
| 251 | 
            +
                },
         | 
| 252 | 
            +
                "128031": {
         | 
| 253 | 
            +
                  "content": "<|reserved_special_token_26|>",
         | 
| 254 | 
            +
                  "lstrip": false,
         | 
| 255 | 
            +
                  "normalized": false,
         | 
| 256 | 
            +
                  "rstrip": false,
         | 
| 257 | 
            +
                  "single_word": false,
         | 
| 258 | 
            +
                  "special": true
         | 
| 259 | 
            +
                },
         | 
| 260 | 
            +
                "128032": {
         | 
| 261 | 
            +
                  "content": "<|reserved_special_token_27|>",
         | 
| 262 | 
            +
                  "lstrip": false,
         | 
| 263 | 
            +
                  "normalized": false,
         | 
| 264 | 
            +
                  "rstrip": false,
         | 
| 265 | 
            +
                  "single_word": false,
         | 
| 266 | 
            +
                  "special": true
         | 
| 267 | 
            +
                },
         | 
| 268 | 
            +
                "128033": {
         | 
| 269 | 
            +
                  "content": "<|reserved_special_token_28|>",
         | 
| 270 | 
            +
                  "lstrip": false,
         | 
| 271 | 
            +
                  "normalized": false,
         | 
| 272 | 
            +
                  "rstrip": false,
         | 
| 273 | 
            +
                  "single_word": false,
         | 
| 274 | 
            +
                  "special": true
         | 
| 275 | 
            +
                },
         | 
| 276 | 
            +
                "128034": {
         | 
| 277 | 
            +
                  "content": "<|reserved_special_token_29|>",
         | 
| 278 | 
            +
                  "lstrip": false,
         | 
| 279 | 
            +
                  "normalized": false,
         | 
| 280 | 
            +
                  "rstrip": false,
         | 
| 281 | 
            +
                  "single_word": false,
         | 
| 282 | 
            +
                  "special": true
         | 
| 283 | 
            +
                },
         | 
| 284 | 
            +
                "128035": {
         | 
| 285 | 
            +
                  "content": "<|reserved_special_token_30|>",
         | 
| 286 | 
            +
                  "lstrip": false,
         | 
| 287 | 
            +
                  "normalized": false,
         | 
| 288 | 
            +
                  "rstrip": false,
         | 
| 289 | 
            +
                  "single_word": false,
         | 
| 290 | 
            +
                  "special": true
         | 
| 291 | 
            +
                },
         | 
| 292 | 
            +
                "128036": {
         | 
| 293 | 
            +
                  "content": "<|reserved_special_token_31|>",
         | 
| 294 | 
            +
                  "lstrip": false,
         | 
| 295 | 
            +
                  "normalized": false,
         | 
| 296 | 
            +
                  "rstrip": false,
         | 
| 297 | 
            +
                  "single_word": false,
         | 
| 298 | 
            +
                  "special": true
         | 
| 299 | 
            +
                },
         | 
| 300 | 
            +
                "128037": {
         | 
| 301 | 
            +
                  "content": "<|reserved_special_token_32|>",
         | 
| 302 | 
            +
                  "lstrip": false,
         | 
| 303 | 
            +
                  "normalized": false,
         | 
| 304 | 
            +
                  "rstrip": false,
         | 
| 305 | 
            +
                  "single_word": false,
         | 
| 306 | 
            +
                  "special": true
         | 
| 307 | 
            +
                },
         | 
| 308 | 
            +
                "128038": {
         | 
| 309 | 
            +
                  "content": "<|reserved_special_token_33|>",
         | 
| 310 | 
            +
                  "lstrip": false,
         | 
| 311 | 
            +
                  "normalized": false,
         | 
| 312 | 
            +
                  "rstrip": false,
         | 
| 313 | 
            +
                  "single_word": false,
         | 
| 314 | 
            +
                  "special": true
         | 
| 315 | 
            +
                },
         | 
| 316 | 
            +
                "128039": {
         | 
| 317 | 
            +
                  "content": "<|reserved_special_token_34|>",
         | 
| 318 | 
            +
                  "lstrip": false,
         | 
| 319 | 
            +
                  "normalized": false,
         | 
| 320 | 
            +
                  "rstrip": false,
         | 
| 321 | 
            +
                  "single_word": false,
         | 
| 322 | 
            +
                  "special": true
         | 
| 323 | 
            +
                },
         | 
| 324 | 
            +
                "128040": {
         | 
| 325 | 
            +
                  "content": "<|reserved_special_token_35|>",
         | 
| 326 | 
            +
                  "lstrip": false,
         | 
| 327 | 
            +
                  "normalized": false,
         | 
| 328 | 
            +
                  "rstrip": false,
         | 
| 329 | 
            +
                  "single_word": false,
         | 
| 330 | 
            +
                  "special": true
         | 
| 331 | 
            +
                },
         | 
| 332 | 
            +
                "128041": {
         | 
| 333 | 
            +
                  "content": "<|reserved_special_token_36|>",
         | 
| 334 | 
            +
                  "lstrip": false,
         | 
| 335 | 
            +
                  "normalized": false,
         | 
| 336 | 
            +
                  "rstrip": false,
         | 
| 337 | 
            +
                  "single_word": false,
         | 
| 338 | 
            +
                  "special": true
         | 
| 339 | 
            +
                },
         | 
| 340 | 
            +
                "128042": {
         | 
| 341 | 
            +
                  "content": "<|reserved_special_token_37|>",
         | 
| 342 | 
            +
                  "lstrip": false,
         | 
| 343 | 
            +
                  "normalized": false,
         | 
| 344 | 
            +
                  "rstrip": false,
         | 
| 345 | 
            +
                  "single_word": false,
         | 
| 346 | 
            +
                  "special": true
         | 
| 347 | 
            +
                },
         | 
| 348 | 
            +
                "128043": {
         | 
| 349 | 
            +
                  "content": "<|reserved_special_token_38|>",
         | 
| 350 | 
            +
                  "lstrip": false,
         | 
| 351 | 
            +
                  "normalized": false,
         | 
| 352 | 
            +
                  "rstrip": false,
         | 
| 353 | 
            +
                  "single_word": false,
         | 
| 354 | 
            +
                  "special": true
         | 
| 355 | 
            +
                },
         | 
| 356 | 
            +
                "128044": {
         | 
| 357 | 
            +
                  "content": "<|reserved_special_token_39|>",
         | 
| 358 | 
            +
                  "lstrip": false,
         | 
| 359 | 
            +
                  "normalized": false,
         | 
| 360 | 
            +
                  "rstrip": false,
         | 
| 361 | 
            +
                  "single_word": false,
         | 
| 362 | 
            +
                  "special": true
         | 
| 363 | 
            +
                },
         | 
| 364 | 
            +
                "128045": {
         | 
| 365 | 
            +
                  "content": "<|reserved_special_token_40|>",
         | 
| 366 | 
            +
                  "lstrip": false,
         | 
| 367 | 
            +
                  "normalized": false,
         | 
| 368 | 
            +
                  "rstrip": false,
         | 
| 369 | 
            +
                  "single_word": false,
         | 
| 370 | 
            +
                  "special": true
         | 
| 371 | 
            +
                },
         | 
| 372 | 
            +
                "128046": {
         | 
| 373 | 
            +
                  "content": "<|reserved_special_token_41|>",
         | 
| 374 | 
            +
                  "lstrip": false,
         | 
| 375 | 
            +
                  "normalized": false,
         | 
| 376 | 
            +
                  "rstrip": false,
         | 
| 377 | 
            +
                  "single_word": false,
         | 
| 378 | 
            +
                  "special": true
         | 
| 379 | 
            +
                },
         | 
| 380 | 
            +
                "128047": {
         | 
| 381 | 
            +
                  "content": "<|reserved_special_token_42|>",
         | 
| 382 | 
            +
                  "lstrip": false,
         | 
| 383 | 
            +
                  "normalized": false,
         | 
| 384 | 
            +
                  "rstrip": false,
         | 
| 385 | 
            +
                  "single_word": false,
         | 
| 386 | 
            +
                  "special": true
         | 
| 387 | 
            +
                },
         | 
| 388 | 
            +
                "128048": {
         | 
| 389 | 
            +
                  "content": "<|reserved_special_token_43|>",
         | 
| 390 | 
            +
                  "lstrip": false,
         | 
| 391 | 
            +
                  "normalized": false,
         | 
| 392 | 
            +
                  "rstrip": false,
         | 
| 393 | 
            +
                  "single_word": false,
         | 
| 394 | 
            +
                  "special": true
         | 
| 395 | 
            +
                },
         | 
| 396 | 
            +
                "128049": {
         | 
| 397 | 
            +
                  "content": "<|reserved_special_token_44|>",
         | 
| 398 | 
            +
                  "lstrip": false,
         | 
| 399 | 
            +
                  "normalized": false,
         | 
| 400 | 
            +
                  "rstrip": false,
         | 
| 401 | 
            +
                  "single_word": false,
         | 
| 402 | 
            +
                  "special": true
         | 
| 403 | 
            +
                },
         | 
| 404 | 
            +
                "128050": {
         | 
| 405 | 
            +
                  "content": "<|reserved_special_token_45|>",
         | 
| 406 | 
            +
                  "lstrip": false,
         | 
| 407 | 
            +
                  "normalized": false,
         | 
| 408 | 
            +
                  "rstrip": false,
         | 
| 409 | 
            +
                  "single_word": false,
         | 
| 410 | 
            +
                  "special": true
         | 
| 411 | 
            +
                },
         | 
| 412 | 
            +
                "128051": {
         | 
| 413 | 
            +
                  "content": "<|reserved_special_token_46|>",
         | 
| 414 | 
            +
                  "lstrip": false,
         | 
| 415 | 
            +
                  "normalized": false,
         | 
| 416 | 
            +
                  "rstrip": false,
         | 
| 417 | 
            +
                  "single_word": false,
         | 
| 418 | 
            +
                  "special": true
         | 
| 419 | 
            +
                },
         | 
| 420 | 
            +
                "128052": {
         | 
| 421 | 
            +
                  "content": "<|reserved_special_token_47|>",
         | 
| 422 | 
            +
                  "lstrip": false,
         | 
| 423 | 
            +
                  "normalized": false,
         | 
| 424 | 
            +
                  "rstrip": false,
         | 
| 425 | 
            +
                  "single_word": false,
         | 
| 426 | 
            +
                  "special": true
         | 
| 427 | 
            +
                },
         | 
| 428 | 
            +
                "128053": {
         | 
| 429 | 
            +
                  "content": "<|reserved_special_token_48|>",
         | 
| 430 | 
            +
                  "lstrip": false,
         | 
| 431 | 
            +
                  "normalized": false,
         | 
| 432 | 
            +
                  "rstrip": false,
         | 
| 433 | 
            +
                  "single_word": false,
         | 
| 434 | 
            +
                  "special": true
         | 
| 435 | 
            +
                },
         | 
| 436 | 
            +
                "128054": {
         | 
| 437 | 
            +
                  "content": "<|reserved_special_token_49|>",
         | 
| 438 | 
            +
                  "lstrip": false,
         | 
| 439 | 
            +
                  "normalized": false,
         | 
| 440 | 
            +
                  "rstrip": false,
         | 
| 441 | 
            +
                  "single_word": false,
         | 
| 442 | 
            +
                  "special": true
         | 
| 443 | 
            +
                },
         | 
| 444 | 
            +
                "128055": {
         | 
| 445 | 
            +
                  "content": "<|reserved_special_token_50|>",
         | 
| 446 | 
            +
                  "lstrip": false,
         | 
| 447 | 
            +
                  "normalized": false,
         | 
| 448 | 
            +
                  "rstrip": false,
         | 
| 449 | 
            +
                  "single_word": false,
         | 
| 450 | 
            +
                  "special": true
         | 
| 451 | 
            +
                },
         | 
| 452 | 
            +
                "128056": {
         | 
| 453 | 
            +
                  "content": "<|reserved_special_token_51|>",
         | 
| 454 | 
            +
                  "lstrip": false,
         | 
| 455 | 
            +
                  "normalized": false,
         | 
| 456 | 
            +
                  "rstrip": false,
         | 
| 457 | 
            +
                  "single_word": false,
         | 
| 458 | 
            +
                  "special": true
         | 
| 459 | 
            +
                },
         | 
| 460 | 
            +
                "128057": {
         | 
| 461 | 
            +
                  "content": "<|reserved_special_token_52|>",
         | 
| 462 | 
            +
                  "lstrip": false,
         | 
| 463 | 
            +
                  "normalized": false,
         | 
| 464 | 
            +
                  "rstrip": false,
         | 
| 465 | 
            +
                  "single_word": false,
         | 
| 466 | 
            +
                  "special": true
         | 
| 467 | 
            +
                },
         | 
| 468 | 
            +
                "128058": {
         | 
| 469 | 
            +
                  "content": "<|reserved_special_token_53|>",
         | 
| 470 | 
            +
                  "lstrip": false,
         | 
| 471 | 
            +
                  "normalized": false,
         | 
| 472 | 
            +
                  "rstrip": false,
         | 
| 473 | 
            +
                  "single_word": false,
         | 
| 474 | 
            +
                  "special": true
         | 
| 475 | 
            +
                },
         | 
| 476 | 
            +
                "128059": {
         | 
| 477 | 
            +
                  "content": "<|reserved_special_token_54|>",
         | 
| 478 | 
            +
                  "lstrip": false,
         | 
| 479 | 
            +
                  "normalized": false,
         | 
| 480 | 
            +
                  "rstrip": false,
         | 
| 481 | 
            +
                  "single_word": false,
         | 
| 482 | 
            +
                  "special": true
         | 
| 483 | 
            +
                },
         | 
| 484 | 
            +
                "128060": {
         | 
| 485 | 
            +
                  "content": "<|reserved_special_token_55|>",
         | 
| 486 | 
            +
                  "lstrip": false,
         | 
| 487 | 
            +
                  "normalized": false,
         | 
| 488 | 
            +
                  "rstrip": false,
         | 
| 489 | 
            +
                  "single_word": false,
         | 
| 490 | 
            +
                  "special": true
         | 
| 491 | 
            +
                },
         | 
| 492 | 
            +
                "128061": {
         | 
| 493 | 
            +
                  "content": "<|reserved_special_token_56|>",
         | 
| 494 | 
            +
                  "lstrip": false,
         | 
| 495 | 
            +
                  "normalized": false,
         | 
| 496 | 
            +
                  "rstrip": false,
         | 
| 497 | 
            +
                  "single_word": false,
         | 
| 498 | 
            +
                  "special": true
         | 
| 499 | 
            +
                },
         | 
| 500 | 
            +
                "128062": {
         | 
| 501 | 
            +
                  "content": "<|reserved_special_token_57|>",
         | 
| 502 | 
            +
                  "lstrip": false,
         | 
| 503 | 
            +
                  "normalized": false,
         | 
| 504 | 
            +
                  "rstrip": false,
         | 
| 505 | 
            +
                  "single_word": false,
         | 
| 506 | 
            +
                  "special": true
         | 
| 507 | 
            +
                },
         | 
| 508 | 
            +
                "128063": {
         | 
| 509 | 
            +
                  "content": "<|reserved_special_token_58|>",
         | 
| 510 | 
            +
                  "lstrip": false,
         | 
| 511 | 
            +
                  "normalized": false,
         | 
| 512 | 
            +
                  "rstrip": false,
         | 
| 513 | 
            +
                  "single_word": false,
         | 
| 514 | 
            +
                  "special": true
         | 
| 515 | 
            +
                },
         | 
| 516 | 
            +
                "128064": {
         | 
| 517 | 
            +
                  "content": "<|reserved_special_token_59|>",
         | 
| 518 | 
            +
                  "lstrip": false,
         | 
| 519 | 
            +
                  "normalized": false,
         | 
| 520 | 
            +
                  "rstrip": false,
         | 
| 521 | 
            +
                  "single_word": false,
         | 
| 522 | 
            +
                  "special": true
         | 
| 523 | 
            +
                },
         | 
| 524 | 
            +
                "128065": {
         | 
| 525 | 
            +
                  "content": "<|reserved_special_token_60|>",
         | 
| 526 | 
            +
                  "lstrip": false,
         | 
| 527 | 
            +
                  "normalized": false,
         | 
| 528 | 
            +
                  "rstrip": false,
         | 
| 529 | 
            +
                  "single_word": false,
         | 
| 530 | 
            +
                  "special": true
         | 
| 531 | 
            +
                },
         | 
| 532 | 
            +
                "128066": {
         | 
| 533 | 
            +
                  "content": "<|reserved_special_token_61|>",
         | 
| 534 | 
            +
                  "lstrip": false,
         | 
| 535 | 
            +
                  "normalized": false,
         | 
| 536 | 
            +
                  "rstrip": false,
         | 
| 537 | 
            +
                  "single_word": false,
         | 
| 538 | 
            +
                  "special": true
         | 
| 539 | 
            +
                },
         | 
| 540 | 
            +
                "128067": {
         | 
| 541 | 
            +
                  "content": "<|reserved_special_token_62|>",
         | 
| 542 | 
            +
                  "lstrip": false,
         | 
| 543 | 
            +
                  "normalized": false,
         | 
| 544 | 
            +
                  "rstrip": false,
         | 
| 545 | 
            +
                  "single_word": false,
         | 
| 546 | 
            +
                  "special": true
         | 
| 547 | 
            +
                },
         | 
| 548 | 
            +
                "128068": {
         | 
| 549 | 
            +
                  "content": "<|reserved_special_token_63|>",
         | 
| 550 | 
            +
                  "lstrip": false,
         | 
| 551 | 
            +
                  "normalized": false,
         | 
| 552 | 
            +
                  "rstrip": false,
         | 
| 553 | 
            +
                  "single_word": false,
         | 
| 554 | 
            +
                  "special": true
         | 
| 555 | 
            +
                },
         | 
| 556 | 
            +
                "128069": {
         | 
| 557 | 
            +
                  "content": "<|reserved_special_token_64|>",
         | 
| 558 | 
            +
                  "lstrip": false,
         | 
| 559 | 
            +
                  "normalized": false,
         | 
| 560 | 
            +
                  "rstrip": false,
         | 
| 561 | 
            +
                  "single_word": false,
         | 
| 562 | 
            +
                  "special": true
         | 
| 563 | 
            +
                },
         | 
| 564 | 
            +
                "128070": {
         | 
| 565 | 
            +
                  "content": "<|reserved_special_token_65|>",
         | 
| 566 | 
            +
                  "lstrip": false,
         | 
| 567 | 
            +
                  "normalized": false,
         | 
| 568 | 
            +
                  "rstrip": false,
         | 
| 569 | 
            +
                  "single_word": false,
         | 
| 570 | 
            +
                  "special": true
         | 
| 571 | 
            +
                },
         | 
| 572 | 
            +
                "128071": {
         | 
| 573 | 
            +
                  "content": "<|reserved_special_token_66|>",
         | 
| 574 | 
            +
                  "lstrip": false,
         | 
| 575 | 
            +
                  "normalized": false,
         | 
| 576 | 
            +
                  "rstrip": false,
         | 
| 577 | 
            +
                  "single_word": false,
         | 
| 578 | 
            +
                  "special": true
         | 
| 579 | 
            +
                },
         | 
| 580 | 
            +
                "128072": {
         | 
| 581 | 
            +
                  "content": "<|reserved_special_token_67|>",
         | 
| 582 | 
            +
                  "lstrip": false,
         | 
| 583 | 
            +
                  "normalized": false,
         | 
| 584 | 
            +
                  "rstrip": false,
         | 
| 585 | 
            +
                  "single_word": false,
         | 
| 586 | 
            +
                  "special": true
         | 
| 587 | 
            +
                },
         | 
| 588 | 
            +
                "128073": {
         | 
| 589 | 
            +
                  "content": "<|reserved_special_token_68|>",
         | 
| 590 | 
            +
                  "lstrip": false,
         | 
| 591 | 
            +
                  "normalized": false,
         | 
| 592 | 
            +
                  "rstrip": false,
         | 
| 593 | 
            +
                  "single_word": false,
         | 
| 594 | 
            +
                  "special": true
         | 
| 595 | 
            +
                },
         | 
| 596 | 
            +
                "128074": {
         | 
| 597 | 
            +
                  "content": "<|reserved_special_token_69|>",
         | 
| 598 | 
            +
                  "lstrip": false,
         | 
| 599 | 
            +
                  "normalized": false,
         | 
| 600 | 
            +
                  "rstrip": false,
         | 
| 601 | 
            +
                  "single_word": false,
         | 
| 602 | 
            +
                  "special": true
         | 
| 603 | 
            +
                },
         | 
| 604 | 
            +
                "128075": {
         | 
| 605 | 
            +
                  "content": "<|reserved_special_token_70|>",
         | 
| 606 | 
            +
                  "lstrip": false,
         | 
| 607 | 
            +
                  "normalized": false,
         | 
| 608 | 
            +
                  "rstrip": false,
         | 
| 609 | 
            +
                  "single_word": false,
         | 
| 610 | 
            +
                  "special": true
         | 
| 611 | 
            +
                },
         | 
| 612 | 
            +
                "128076": {
         | 
| 613 | 
            +
                  "content": "<|reserved_special_token_71|>",
         | 
| 614 | 
            +
                  "lstrip": false,
         | 
| 615 | 
            +
                  "normalized": false,
         | 
| 616 | 
            +
                  "rstrip": false,
         | 
| 617 | 
            +
                  "single_word": false,
         | 
| 618 | 
            +
                  "special": true
         | 
| 619 | 
            +
                },
         | 
| 620 | 
            +
                "128077": {
         | 
| 621 | 
            +
                  "content": "<|reserved_special_token_72|>",
         | 
| 622 | 
            +
                  "lstrip": false,
         | 
| 623 | 
            +
                  "normalized": false,
         | 
| 624 | 
            +
                  "rstrip": false,
         | 
| 625 | 
            +
                  "single_word": false,
         | 
| 626 | 
            +
                  "special": true
         | 
| 627 | 
            +
                },
         | 
| 628 | 
            +
                "128078": {
         | 
| 629 | 
            +
                  "content": "<|reserved_special_token_73|>",
         | 
| 630 | 
            +
                  "lstrip": false,
         | 
| 631 | 
            +
                  "normalized": false,
         | 
| 632 | 
            +
                  "rstrip": false,
         | 
| 633 | 
            +
                  "single_word": false,
         | 
| 634 | 
            +
                  "special": true
         | 
| 635 | 
            +
                },
         | 
| 636 | 
            +
                "128079": {
         | 
| 637 | 
            +
                  "content": "<|reserved_special_token_74|>",
         | 
| 638 | 
            +
                  "lstrip": false,
         | 
| 639 | 
            +
                  "normalized": false,
         | 
| 640 | 
            +
                  "rstrip": false,
         | 
| 641 | 
            +
                  "single_word": false,
         | 
| 642 | 
            +
                  "special": true
         | 
| 643 | 
            +
                },
         | 
| 644 | 
            +
                "128080": {
         | 
| 645 | 
            +
                  "content": "<|reserved_special_token_75|>",
         | 
| 646 | 
            +
                  "lstrip": false,
         | 
| 647 | 
            +
                  "normalized": false,
         | 
| 648 | 
            +
                  "rstrip": false,
         | 
| 649 | 
            +
                  "single_word": false,
         | 
| 650 | 
            +
                  "special": true
         | 
| 651 | 
            +
                },
         | 
| 652 | 
            +
                "128081": {
         | 
| 653 | 
            +
                  "content": "<|reserved_special_token_76|>",
         | 
| 654 | 
            +
                  "lstrip": false,
         | 
| 655 | 
            +
                  "normalized": false,
         | 
| 656 | 
            +
                  "rstrip": false,
         | 
| 657 | 
            +
                  "single_word": false,
         | 
| 658 | 
            +
                  "special": true
         | 
| 659 | 
            +
                },
         | 
| 660 | 
            +
                "128082": {
         | 
| 661 | 
            +
                  "content": "<|reserved_special_token_77|>",
         | 
| 662 | 
            +
                  "lstrip": false,
         | 
| 663 | 
            +
                  "normalized": false,
         | 
| 664 | 
            +
                  "rstrip": false,
         | 
| 665 | 
            +
                  "single_word": false,
         | 
| 666 | 
            +
                  "special": true
         | 
| 667 | 
            +
                },
         | 
| 668 | 
            +
                "128083": {
         | 
| 669 | 
            +
                  "content": "<|reserved_special_token_78|>",
         | 
| 670 | 
            +
                  "lstrip": false,
         | 
| 671 | 
            +
                  "normalized": false,
         | 
| 672 | 
            +
                  "rstrip": false,
         | 
| 673 | 
            +
                  "single_word": false,
         | 
| 674 | 
            +
                  "special": true
         | 
| 675 | 
            +
                },
         | 
| 676 | 
            +
                "128084": {
         | 
| 677 | 
            +
                  "content": "<|reserved_special_token_79|>",
         | 
| 678 | 
            +
                  "lstrip": false,
         | 
| 679 | 
            +
                  "normalized": false,
         | 
| 680 | 
            +
                  "rstrip": false,
         | 
| 681 | 
            +
                  "single_word": false,
         | 
| 682 | 
            +
                  "special": true
         | 
| 683 | 
            +
                },
         | 
| 684 | 
            +
                "128085": {
         | 
| 685 | 
            +
                  "content": "<|reserved_special_token_80|>",
         | 
| 686 | 
            +
                  "lstrip": false,
         | 
| 687 | 
            +
                  "normalized": false,
         | 
| 688 | 
            +
                  "rstrip": false,
         | 
| 689 | 
            +
                  "single_word": false,
         | 
| 690 | 
            +
                  "special": true
         | 
| 691 | 
            +
                },
         | 
| 692 | 
            +
                "128086": {
         | 
| 693 | 
            +
                  "content": "<|reserved_special_token_81|>",
         | 
| 694 | 
            +
                  "lstrip": false,
         | 
| 695 | 
            +
                  "normalized": false,
         | 
| 696 | 
            +
                  "rstrip": false,
         | 
| 697 | 
            +
                  "single_word": false,
         | 
| 698 | 
            +
                  "special": true
         | 
| 699 | 
            +
                },
         | 
| 700 | 
            +
                "128087": {
         | 
| 701 | 
            +
                  "content": "<|reserved_special_token_82|>",
         | 
| 702 | 
            +
                  "lstrip": false,
         | 
| 703 | 
            +
                  "normalized": false,
         | 
| 704 | 
            +
                  "rstrip": false,
         | 
| 705 | 
            +
                  "single_word": false,
         | 
| 706 | 
            +
                  "special": true
         | 
| 707 | 
            +
                },
         | 
| 708 | 
            +
                "128088": {
         | 
| 709 | 
            +
                  "content": "<|reserved_special_token_83|>",
         | 
| 710 | 
            +
                  "lstrip": false,
         | 
| 711 | 
            +
                  "normalized": false,
         | 
| 712 | 
            +
                  "rstrip": false,
         | 
| 713 | 
            +
                  "single_word": false,
         | 
| 714 | 
            +
                  "special": true
         | 
| 715 | 
            +
                },
         | 
| 716 | 
            +
                "128089": {
         | 
| 717 | 
            +
                  "content": "<|reserved_special_token_84|>",
         | 
| 718 | 
            +
                  "lstrip": false,
         | 
| 719 | 
            +
                  "normalized": false,
         | 
| 720 | 
            +
                  "rstrip": false,
         | 
| 721 | 
            +
                  "single_word": false,
         | 
| 722 | 
            +
                  "special": true
         | 
| 723 | 
            +
                },
         | 
| 724 | 
            +
                "128090": {
         | 
| 725 | 
            +
                  "content": "<|reserved_special_token_85|>",
         | 
| 726 | 
            +
                  "lstrip": false,
         | 
| 727 | 
            +
                  "normalized": false,
         | 
| 728 | 
            +
                  "rstrip": false,
         | 
| 729 | 
            +
                  "single_word": false,
         | 
| 730 | 
            +
                  "special": true
         | 
| 731 | 
            +
                },
         | 
| 732 | 
            +
                "128091": {
         | 
| 733 | 
            +
                  "content": "<|reserved_special_token_86|>",
         | 
| 734 | 
            +
                  "lstrip": false,
         | 
| 735 | 
            +
                  "normalized": false,
         | 
| 736 | 
            +
                  "rstrip": false,
         | 
| 737 | 
            +
                  "single_word": false,
         | 
| 738 | 
            +
                  "special": true
         | 
| 739 | 
            +
                },
         | 
| 740 | 
            +
                "128092": {
         | 
| 741 | 
            +
                  "content": "<|reserved_special_token_87|>",
         | 
| 742 | 
            +
                  "lstrip": false,
         | 
| 743 | 
            +
                  "normalized": false,
         | 
| 744 | 
            +
                  "rstrip": false,
         | 
| 745 | 
            +
                  "single_word": false,
         | 
| 746 | 
            +
                  "special": true
         | 
| 747 | 
            +
                },
         | 
| 748 | 
            +
                "128093": {
         | 
| 749 | 
            +
                  "content": "<|reserved_special_token_88|>",
         | 
| 750 | 
            +
                  "lstrip": false,
         | 
| 751 | 
            +
                  "normalized": false,
         | 
| 752 | 
            +
                  "rstrip": false,
         | 
| 753 | 
            +
                  "single_word": false,
         | 
| 754 | 
            +
                  "special": true
         | 
| 755 | 
            +
                },
         | 
| 756 | 
            +
                "128094": {
         | 
| 757 | 
            +
                  "content": "<|reserved_special_token_89|>",
         | 
| 758 | 
            +
                  "lstrip": false,
         | 
| 759 | 
            +
                  "normalized": false,
         | 
| 760 | 
            +
                  "rstrip": false,
         | 
| 761 | 
            +
                  "single_word": false,
         | 
| 762 | 
            +
                  "special": true
         | 
| 763 | 
            +
                },
         | 
| 764 | 
            +
                "128095": {
         | 
| 765 | 
            +
                  "content": "<|reserved_special_token_90|>",
         | 
| 766 | 
            +
                  "lstrip": false,
         | 
| 767 | 
            +
                  "normalized": false,
         | 
| 768 | 
            +
                  "rstrip": false,
         | 
| 769 | 
            +
                  "single_word": false,
         | 
| 770 | 
            +
                  "special": true
         | 
| 771 | 
            +
                },
         | 
| 772 | 
            +
                "128096": {
         | 
| 773 | 
            +
                  "content": "<|reserved_special_token_91|>",
         | 
| 774 | 
            +
                  "lstrip": false,
         | 
| 775 | 
            +
                  "normalized": false,
         | 
| 776 | 
            +
                  "rstrip": false,
         | 
| 777 | 
            +
                  "single_word": false,
         | 
| 778 | 
            +
                  "special": true
         | 
| 779 | 
            +
                },
         | 
| 780 | 
            +
                "128097": {
         | 
| 781 | 
            +
                  "content": "<|reserved_special_token_92|>",
         | 
| 782 | 
            +
                  "lstrip": false,
         | 
| 783 | 
            +
                  "normalized": false,
         | 
| 784 | 
            +
                  "rstrip": false,
         | 
| 785 | 
            +
                  "single_word": false,
         | 
| 786 | 
            +
                  "special": true
         | 
| 787 | 
            +
                },
         | 
| 788 | 
            +
                "128098": {
         | 
| 789 | 
            +
                  "content": "<|reserved_special_token_93|>",
         | 
| 790 | 
            +
                  "lstrip": false,
         | 
| 791 | 
            +
                  "normalized": false,
         | 
| 792 | 
            +
                  "rstrip": false,
         | 
| 793 | 
            +
                  "single_word": false,
         | 
| 794 | 
            +
                  "special": true
         | 
| 795 | 
            +
                },
         | 
| 796 | 
            +
                "128099": {
         | 
| 797 | 
            +
                  "content": "<|reserved_special_token_94|>",
         | 
| 798 | 
            +
                  "lstrip": false,
         | 
| 799 | 
            +
                  "normalized": false,
         | 
| 800 | 
            +
                  "rstrip": false,
         | 
| 801 | 
            +
                  "single_word": false,
         | 
| 802 | 
            +
                  "special": true
         | 
| 803 | 
            +
                },
         | 
| 804 | 
            +
                "128100": {
         | 
| 805 | 
            +
                  "content": "<|reserved_special_token_95|>",
         | 
| 806 | 
            +
                  "lstrip": false,
         | 
| 807 | 
            +
                  "normalized": false,
         | 
| 808 | 
            +
                  "rstrip": false,
         | 
| 809 | 
            +
                  "single_word": false,
         | 
| 810 | 
            +
                  "special": true
         | 
| 811 | 
            +
                },
         | 
| 812 | 
            +
                "128101": {
         | 
| 813 | 
            +
                  "content": "<|reserved_special_token_96|>",
         | 
| 814 | 
            +
                  "lstrip": false,
         | 
| 815 | 
            +
                  "normalized": false,
         | 
| 816 | 
            +
                  "rstrip": false,
         | 
| 817 | 
            +
                  "single_word": false,
         | 
| 818 | 
            +
                  "special": true
         | 
| 819 | 
            +
                },
         | 
| 820 | 
            +
                "128102": {
         | 
| 821 | 
            +
                  "content": "<|reserved_special_token_97|>",
         | 
| 822 | 
            +
                  "lstrip": false,
         | 
| 823 | 
            +
                  "normalized": false,
         | 
| 824 | 
            +
                  "rstrip": false,
         | 
| 825 | 
            +
                  "single_word": false,
         | 
| 826 | 
            +
                  "special": true
         | 
| 827 | 
            +
                },
         | 
| 828 | 
            +
                "128103": {
         | 
| 829 | 
            +
                  "content": "<|reserved_special_token_98|>",
         | 
| 830 | 
            +
                  "lstrip": false,
         | 
| 831 | 
            +
                  "normalized": false,
         | 
| 832 | 
            +
                  "rstrip": false,
         | 
| 833 | 
            +
                  "single_word": false,
         | 
| 834 | 
            +
                  "special": true
         | 
| 835 | 
            +
                },
         | 
| 836 | 
            +
                "128104": {
         | 
| 837 | 
            +
                  "content": "<|reserved_special_token_99|>",
         | 
| 838 | 
            +
                  "lstrip": false,
         | 
| 839 | 
            +
                  "normalized": false,
         | 
| 840 | 
            +
                  "rstrip": false,
         | 
| 841 | 
            +
                  "single_word": false,
         | 
| 842 | 
            +
                  "special": true
         | 
| 843 | 
            +
                },
         | 
| 844 | 
            +
                "128105": {
         | 
| 845 | 
            +
                  "content": "<|reserved_special_token_100|>",
         | 
| 846 | 
            +
                  "lstrip": false,
         | 
| 847 | 
            +
                  "normalized": false,
         | 
| 848 | 
            +
                  "rstrip": false,
         | 
| 849 | 
            +
                  "single_word": false,
         | 
| 850 | 
            +
                  "special": true
         | 
| 851 | 
            +
                },
         | 
| 852 | 
            +
                "128106": {
         | 
| 853 | 
            +
                  "content": "<|reserved_special_token_101|>",
         | 
| 854 | 
            +
                  "lstrip": false,
         | 
| 855 | 
            +
                  "normalized": false,
         | 
| 856 | 
            +
                  "rstrip": false,
         | 
| 857 | 
            +
                  "single_word": false,
         | 
| 858 | 
            +
                  "special": true
         | 
| 859 | 
            +
                },
         | 
| 860 | 
            +
                "128107": {
         | 
| 861 | 
            +
                  "content": "<|reserved_special_token_102|>",
         | 
| 862 | 
            +
                  "lstrip": false,
         | 
| 863 | 
            +
                  "normalized": false,
         | 
| 864 | 
            +
                  "rstrip": false,
         | 
| 865 | 
            +
                  "single_word": false,
         | 
| 866 | 
            +
                  "special": true
         | 
| 867 | 
            +
                },
         | 
| 868 | 
            +
                "128108": {
         | 
| 869 | 
            +
                  "content": "<|reserved_special_token_103|>",
         | 
| 870 | 
            +
                  "lstrip": false,
         | 
| 871 | 
            +
                  "normalized": false,
         | 
| 872 | 
            +
                  "rstrip": false,
         | 
| 873 | 
            +
                  "single_word": false,
         | 
| 874 | 
            +
                  "special": true
         | 
| 875 | 
            +
                },
         | 
| 876 | 
            +
                "128109": {
         | 
| 877 | 
            +
                  "content": "<|reserved_special_token_104|>",
         | 
| 878 | 
            +
                  "lstrip": false,
         | 
| 879 | 
            +
                  "normalized": false,
         | 
| 880 | 
            +
                  "rstrip": false,
         | 
| 881 | 
            +
                  "single_word": false,
         | 
| 882 | 
            +
                  "special": true
         | 
| 883 | 
            +
                },
         | 
| 884 | 
            +
                "128110": {
         | 
| 885 | 
            +
                  "content": "<|reserved_special_token_105|>",
         | 
| 886 | 
            +
                  "lstrip": false,
         | 
| 887 | 
            +
                  "normalized": false,
         | 
| 888 | 
            +
                  "rstrip": false,
         | 
| 889 | 
            +
                  "single_word": false,
         | 
| 890 | 
            +
                  "special": true
         | 
| 891 | 
            +
                },
         | 
| 892 | 
            +
                "128111": {
         | 
| 893 | 
            +
                  "content": "<|reserved_special_token_106|>",
         | 
| 894 | 
            +
                  "lstrip": false,
         | 
| 895 | 
            +
                  "normalized": false,
         | 
| 896 | 
            +
                  "rstrip": false,
         | 
| 897 | 
            +
                  "single_word": false,
         | 
| 898 | 
            +
                  "special": true
         | 
| 899 | 
            +
                },
         | 
| 900 | 
            +
                "128112": {
         | 
| 901 | 
            +
                  "content": "<|reserved_special_token_107|>",
         | 
| 902 | 
            +
                  "lstrip": false,
         | 
| 903 | 
            +
                  "normalized": false,
         | 
| 904 | 
            +
                  "rstrip": false,
         | 
| 905 | 
            +
                  "single_word": false,
         | 
| 906 | 
            +
                  "special": true
         | 
| 907 | 
            +
                },
         | 
| 908 | 
            +
                "128113": {
         | 
| 909 | 
            +
                  "content": "<|reserved_special_token_108|>",
         | 
| 910 | 
            +
                  "lstrip": false,
         | 
| 911 | 
            +
                  "normalized": false,
         | 
| 912 | 
            +
                  "rstrip": false,
         | 
| 913 | 
            +
                  "single_word": false,
         | 
| 914 | 
            +
                  "special": true
         | 
| 915 | 
            +
                },
         | 
| 916 | 
            +
                "128114": {
         | 
| 917 | 
            +
                  "content": "<|reserved_special_token_109|>",
         | 
| 918 | 
            +
                  "lstrip": false,
         | 
| 919 | 
            +
                  "normalized": false,
         | 
| 920 | 
            +
                  "rstrip": false,
         | 
| 921 | 
            +
                  "single_word": false,
         | 
| 922 | 
            +
                  "special": true
         | 
| 923 | 
            +
                },
         | 
| 924 | 
            +
                "128115": {
         | 
| 925 | 
            +
                  "content": "<|reserved_special_token_110|>",
         | 
| 926 | 
            +
                  "lstrip": false,
         | 
| 927 | 
            +
                  "normalized": false,
         | 
| 928 | 
            +
                  "rstrip": false,
         | 
| 929 | 
            +
                  "single_word": false,
         | 
| 930 | 
            +
                  "special": true
         | 
| 931 | 
            +
                },
         | 
| 932 | 
            +
                "128116": {
         | 
| 933 | 
            +
                  "content": "<|reserved_special_token_111|>",
         | 
| 934 | 
            +
                  "lstrip": false,
         | 
| 935 | 
            +
                  "normalized": false,
         | 
| 936 | 
            +
                  "rstrip": false,
         | 
| 937 | 
            +
                  "single_word": false,
         | 
| 938 | 
            +
                  "special": true
         | 
| 939 | 
            +
                },
         | 
| 940 | 
            +
                "128117": {
         | 
| 941 | 
            +
                  "content": "<|reserved_special_token_112|>",
         | 
| 942 | 
            +
                  "lstrip": false,
         | 
| 943 | 
            +
                  "normalized": false,
         | 
| 944 | 
            +
                  "rstrip": false,
         | 
| 945 | 
            +
                  "single_word": false,
         | 
| 946 | 
            +
                  "special": true
         | 
| 947 | 
            +
                },
         | 
| 948 | 
            +
                "128118": {
         | 
| 949 | 
            +
                  "content": "<|reserved_special_token_113|>",
         | 
| 950 | 
            +
                  "lstrip": false,
         | 
| 951 | 
            +
                  "normalized": false,
         | 
| 952 | 
            +
                  "rstrip": false,
         | 
| 953 | 
            +
                  "single_word": false,
         | 
| 954 | 
            +
                  "special": true
         | 
| 955 | 
            +
                },
         | 
| 956 | 
            +
                "128119": {
         | 
| 957 | 
            +
                  "content": "<|reserved_special_token_114|>",
         | 
| 958 | 
            +
                  "lstrip": false,
         | 
| 959 | 
            +
                  "normalized": false,
         | 
| 960 | 
            +
                  "rstrip": false,
         | 
| 961 | 
            +
                  "single_word": false,
         | 
| 962 | 
            +
                  "special": true
         | 
| 963 | 
            +
                },
         | 
| 964 | 
            +
                "128120": {
         | 
| 965 | 
            +
                  "content": "<|reserved_special_token_115|>",
         | 
| 966 | 
            +
                  "lstrip": false,
         | 
| 967 | 
            +
                  "normalized": false,
         | 
| 968 | 
            +
                  "rstrip": false,
         | 
| 969 | 
            +
                  "single_word": false,
         | 
| 970 | 
            +
                  "special": true
         | 
| 971 | 
            +
                },
         | 
| 972 | 
            +
                "128121": {
         | 
| 973 | 
            +
                  "content": "<|reserved_special_token_116|>",
         | 
| 974 | 
            +
                  "lstrip": false,
         | 
| 975 | 
            +
                  "normalized": false,
         | 
| 976 | 
            +
                  "rstrip": false,
         | 
| 977 | 
            +
                  "single_word": false,
         | 
| 978 | 
            +
                  "special": true
         | 
| 979 | 
            +
                },
         | 
| 980 | 
            +
                "128122": {
         | 
| 981 | 
            +
                  "content": "<|reserved_special_token_117|>",
         | 
| 982 | 
            +
                  "lstrip": false,
         | 
| 983 | 
            +
                  "normalized": false,
         | 
| 984 | 
            +
                  "rstrip": false,
         | 
| 985 | 
            +
                  "single_word": false,
         | 
| 986 | 
            +
                  "special": true
         | 
| 987 | 
            +
                },
         | 
| 988 | 
            +
                "128123": {
         | 
| 989 | 
            +
                  "content": "<|reserved_special_token_118|>",
         | 
| 990 | 
            +
                  "lstrip": false,
         | 
| 991 | 
            +
                  "normalized": false,
         | 
| 992 | 
            +
                  "rstrip": false,
         | 
| 993 | 
            +
                  "single_word": false,
         | 
| 994 | 
            +
                  "special": true
         | 
| 995 | 
            +
                },
         | 
| 996 | 
            +
                "128124": {
         | 
| 997 | 
            +
                  "content": "<|reserved_special_token_119|>",
         | 
| 998 | 
            +
                  "lstrip": false,
         | 
| 999 | 
            +
                  "normalized": false,
         | 
| 1000 | 
            +
                  "rstrip": false,
         | 
| 1001 | 
            +
                  "single_word": false,
         | 
| 1002 | 
            +
                  "special": true
         | 
| 1003 | 
            +
                },
         | 
| 1004 | 
            +
                "128125": {
         | 
| 1005 | 
            +
                  "content": "<|reserved_special_token_120|>",
         | 
| 1006 | 
            +
                  "lstrip": false,
         | 
| 1007 | 
            +
                  "normalized": false,
         | 
| 1008 | 
            +
                  "rstrip": false,
         | 
| 1009 | 
            +
                  "single_word": false,
         | 
| 1010 | 
            +
                  "special": true
         | 
| 1011 | 
            +
                },
         | 
| 1012 | 
            +
                "128126": {
         | 
| 1013 | 
            +
                  "content": "<|reserved_special_token_121|>",
         | 
| 1014 | 
            +
                  "lstrip": false,
         | 
| 1015 | 
            +
                  "normalized": false,
         | 
| 1016 | 
            +
                  "rstrip": false,
         | 
| 1017 | 
            +
                  "single_word": false,
         | 
| 1018 | 
            +
                  "special": true
         | 
| 1019 | 
            +
                },
         | 
| 1020 | 
            +
                "128127": {
         | 
| 1021 | 
            +
                  "content": "<|reserved_special_token_122|>",
         | 
| 1022 | 
            +
                  "lstrip": false,
         | 
| 1023 | 
            +
                  "normalized": false,
         | 
| 1024 | 
            +
                  "rstrip": false,
         | 
| 1025 | 
            +
                  "single_word": false,
         | 
| 1026 | 
            +
                  "special": true
         | 
| 1027 | 
            +
                },
         | 
| 1028 | 
            +
                "128128": {
         | 
| 1029 | 
            +
                  "content": "<|reserved_special_token_123|>",
         | 
| 1030 | 
            +
                  "lstrip": false,
         | 
| 1031 | 
            +
                  "normalized": false,
         | 
| 1032 | 
            +
                  "rstrip": false,
         | 
| 1033 | 
            +
                  "single_word": false,
         | 
| 1034 | 
            +
                  "special": true
         | 
| 1035 | 
            +
                },
         | 
| 1036 | 
            +
                "128129": {
         | 
| 1037 | 
            +
                  "content": "<|reserved_special_token_124|>",
         | 
| 1038 | 
            +
                  "lstrip": false,
         | 
| 1039 | 
            +
                  "normalized": false,
         | 
| 1040 | 
            +
                  "rstrip": false,
         | 
| 1041 | 
            +
                  "single_word": false,
         | 
| 1042 | 
            +
                  "special": true
         | 
| 1043 | 
            +
                },
         | 
| 1044 | 
            +
                "128130": {
         | 
| 1045 | 
            +
                  "content": "<|reserved_special_token_125|>",
         | 
| 1046 | 
            +
                  "lstrip": false,
         | 
| 1047 | 
            +
                  "normalized": false,
         | 
| 1048 | 
            +
                  "rstrip": false,
         | 
| 1049 | 
            +
                  "single_word": false,
         | 
| 1050 | 
            +
                  "special": true
         | 
| 1051 | 
            +
                },
         | 
| 1052 | 
            +
                "128131": {
         | 
| 1053 | 
            +
                  "content": "<|reserved_special_token_126|>",
         | 
| 1054 | 
            +
                  "lstrip": false,
         | 
| 1055 | 
            +
                  "normalized": false,
         | 
| 1056 | 
            +
                  "rstrip": false,
         | 
| 1057 | 
            +
                  "single_word": false,
         | 
| 1058 | 
            +
                  "special": true
         | 
| 1059 | 
            +
                },
         | 
| 1060 | 
            +
                "128132": {
         | 
| 1061 | 
            +
                  "content": "<|reserved_special_token_127|>",
         | 
| 1062 | 
            +
                  "lstrip": false,
         | 
| 1063 | 
            +
                  "normalized": false,
         | 
| 1064 | 
            +
                  "rstrip": false,
         | 
| 1065 | 
            +
                  "single_word": false,
         | 
| 1066 | 
            +
                  "special": true
         | 
| 1067 | 
            +
                },
         | 
| 1068 | 
            +
                "128133": {
         | 
| 1069 | 
            +
                  "content": "<|reserved_special_token_128|>",
         | 
| 1070 | 
            +
                  "lstrip": false,
         | 
| 1071 | 
            +
                  "normalized": false,
         | 
| 1072 | 
            +
                  "rstrip": false,
         | 
| 1073 | 
            +
                  "single_word": false,
         | 
| 1074 | 
            +
                  "special": true
         | 
| 1075 | 
            +
                },
         | 
| 1076 | 
            +
                "128134": {
         | 
| 1077 | 
            +
                  "content": "<|reserved_special_token_129|>",
         | 
| 1078 | 
            +
                  "lstrip": false,
         | 
| 1079 | 
            +
                  "normalized": false,
         | 
| 1080 | 
            +
                  "rstrip": false,
         | 
| 1081 | 
            +
                  "single_word": false,
         | 
| 1082 | 
            +
                  "special": true
         | 
| 1083 | 
            +
                },
         | 
| 1084 | 
            +
                "128135": {
         | 
| 1085 | 
            +
                  "content": "<|reserved_special_token_130|>",
         | 
| 1086 | 
            +
                  "lstrip": false,
         | 
| 1087 | 
            +
                  "normalized": false,
         | 
| 1088 | 
            +
                  "rstrip": false,
         | 
| 1089 | 
            +
                  "single_word": false,
         | 
| 1090 | 
            +
                  "special": true
         | 
| 1091 | 
            +
                },
         | 
| 1092 | 
            +
                "128136": {
         | 
| 1093 | 
            +
                  "content": "<|reserved_special_token_131|>",
         | 
| 1094 | 
            +
                  "lstrip": false,
         | 
| 1095 | 
            +
                  "normalized": false,
         | 
| 1096 | 
            +
                  "rstrip": false,
         | 
| 1097 | 
            +
                  "single_word": false,
         | 
| 1098 | 
            +
                  "special": true
         | 
| 1099 | 
            +
                },
         | 
| 1100 | 
            +
                "128137": {
         | 
| 1101 | 
            +
                  "content": "<|reserved_special_token_132|>",
         | 
| 1102 | 
            +
                  "lstrip": false,
         | 
| 1103 | 
            +
                  "normalized": false,
         | 
| 1104 | 
            +
                  "rstrip": false,
         | 
| 1105 | 
            +
                  "single_word": false,
         | 
| 1106 | 
            +
                  "special": true
         | 
| 1107 | 
            +
                },
         | 
| 1108 | 
            +
                "128138": {
         | 
| 1109 | 
            +
                  "content": "<|reserved_special_token_133|>",
         | 
| 1110 | 
            +
                  "lstrip": false,
         | 
| 1111 | 
            +
                  "normalized": false,
         | 
| 1112 | 
            +
                  "rstrip": false,
         | 
| 1113 | 
            +
                  "single_word": false,
         | 
| 1114 | 
            +
                  "special": true
         | 
| 1115 | 
            +
                },
         | 
| 1116 | 
            +
                "128139": {
         | 
| 1117 | 
            +
                  "content": "<|reserved_special_token_134|>",
         | 
| 1118 | 
            +
                  "lstrip": false,
         | 
| 1119 | 
            +
                  "normalized": false,
         | 
| 1120 | 
            +
                  "rstrip": false,
         | 
| 1121 | 
            +
                  "single_word": false,
         | 
| 1122 | 
            +
                  "special": true
         | 
| 1123 | 
            +
                },
         | 
| 1124 | 
            +
                "128140": {
         | 
| 1125 | 
            +
                  "content": "<|reserved_special_token_135|>",
         | 
| 1126 | 
            +
                  "lstrip": false,
         | 
| 1127 | 
            +
                  "normalized": false,
         | 
| 1128 | 
            +
                  "rstrip": false,
         | 
| 1129 | 
            +
                  "single_word": false,
         | 
| 1130 | 
            +
                  "special": true
         | 
| 1131 | 
            +
                },
         | 
| 1132 | 
            +
                "128141": {
         | 
| 1133 | 
            +
                  "content": "<|reserved_special_token_136|>",
         | 
| 1134 | 
            +
                  "lstrip": false,
         | 
| 1135 | 
            +
                  "normalized": false,
         | 
| 1136 | 
            +
                  "rstrip": false,
         | 
| 1137 | 
            +
                  "single_word": false,
         | 
| 1138 | 
            +
                  "special": true
         | 
| 1139 | 
            +
                },
         | 
| 1140 | 
            +
                "128142": {
         | 
| 1141 | 
            +
                  "content": "<|reserved_special_token_137|>",
         | 
| 1142 | 
            +
                  "lstrip": false,
         | 
| 1143 | 
            +
                  "normalized": false,
         | 
| 1144 | 
            +
                  "rstrip": false,
         | 
| 1145 | 
            +
                  "single_word": false,
         | 
| 1146 | 
            +
                  "special": true
         | 
| 1147 | 
            +
                },
         | 
| 1148 | 
            +
                "128143": {
         | 
| 1149 | 
            +
                  "content": "<|reserved_special_token_138|>",
         | 
| 1150 | 
            +
                  "lstrip": false,
         | 
| 1151 | 
            +
                  "normalized": false,
         | 
| 1152 | 
            +
                  "rstrip": false,
         | 
| 1153 | 
            +
                  "single_word": false,
         | 
| 1154 | 
            +
                  "special": true
         | 
| 1155 | 
            +
                },
         | 
| 1156 | 
            +
                "128144": {
         | 
| 1157 | 
            +
                  "content": "<|reserved_special_token_139|>",
         | 
| 1158 | 
            +
                  "lstrip": false,
         | 
| 1159 | 
            +
                  "normalized": false,
         | 
| 1160 | 
            +
                  "rstrip": false,
         | 
| 1161 | 
            +
                  "single_word": false,
         | 
| 1162 | 
            +
                  "special": true
         | 
| 1163 | 
            +
                },
         | 
| 1164 | 
            +
                "128145": {
         | 
| 1165 | 
            +
                  "content": "<|reserved_special_token_140|>",
         | 
| 1166 | 
            +
                  "lstrip": false,
         | 
| 1167 | 
            +
                  "normalized": false,
         | 
| 1168 | 
            +
                  "rstrip": false,
         | 
| 1169 | 
            +
                  "single_word": false,
         | 
| 1170 | 
            +
                  "special": true
         | 
| 1171 | 
            +
                },
         | 
| 1172 | 
            +
                "128146": {
         | 
| 1173 | 
            +
                  "content": "<|reserved_special_token_141|>",
         | 
| 1174 | 
            +
                  "lstrip": false,
         | 
| 1175 | 
            +
                  "normalized": false,
         | 
| 1176 | 
            +
                  "rstrip": false,
         | 
| 1177 | 
            +
                  "single_word": false,
         | 
| 1178 | 
            +
                  "special": true
         | 
| 1179 | 
            +
                },
         | 
| 1180 | 
            +
                "128147": {
         | 
| 1181 | 
            +
                  "content": "<|reserved_special_token_142|>",
         | 
| 1182 | 
            +
                  "lstrip": false,
         | 
| 1183 | 
            +
                  "normalized": false,
         | 
| 1184 | 
            +
                  "rstrip": false,
         | 
| 1185 | 
            +
                  "single_word": false,
         | 
| 1186 | 
            +
                  "special": true
         | 
| 1187 | 
            +
                },
         | 
| 1188 | 
            +
                "128148": {
         | 
| 1189 | 
            +
                  "content": "<|reserved_special_token_143|>",
         | 
| 1190 | 
            +
                  "lstrip": false,
         | 
| 1191 | 
            +
                  "normalized": false,
         | 
| 1192 | 
            +
                  "rstrip": false,
         | 
| 1193 | 
            +
                  "single_word": false,
         | 
| 1194 | 
            +
                  "special": true
         | 
| 1195 | 
            +
                },
         | 
| 1196 | 
            +
                "128149": {
         | 
| 1197 | 
            +
                  "content": "<|reserved_special_token_144|>",
         | 
| 1198 | 
            +
                  "lstrip": false,
         | 
| 1199 | 
            +
                  "normalized": false,
         | 
| 1200 | 
            +
                  "rstrip": false,
         | 
| 1201 | 
            +
                  "single_word": false,
         | 
| 1202 | 
            +
                  "special": true
         | 
| 1203 | 
            +
                },
         | 
| 1204 | 
            +
                "128150": {
         | 
| 1205 | 
            +
                  "content": "<|reserved_special_token_145|>",
         | 
| 1206 | 
            +
                  "lstrip": false,
         | 
| 1207 | 
            +
                  "normalized": false,
         | 
| 1208 | 
            +
                  "rstrip": false,
         | 
| 1209 | 
            +
                  "single_word": false,
         | 
| 1210 | 
            +
                  "special": true
         | 
| 1211 | 
            +
                },
         | 
| 1212 | 
            +
                "128151": {
         | 
| 1213 | 
            +
                  "content": "<|reserved_special_token_146|>",
         | 
| 1214 | 
            +
                  "lstrip": false,
         | 
| 1215 | 
            +
                  "normalized": false,
         | 
| 1216 | 
            +
                  "rstrip": false,
         | 
| 1217 | 
            +
                  "single_word": false,
         | 
| 1218 | 
            +
                  "special": true
         | 
| 1219 | 
            +
                },
         | 
| 1220 | 
            +
                "128152": {
         | 
| 1221 | 
            +
                  "content": "<|reserved_special_token_147|>",
         | 
| 1222 | 
            +
                  "lstrip": false,
         | 
| 1223 | 
            +
                  "normalized": false,
         | 
| 1224 | 
            +
                  "rstrip": false,
         | 
| 1225 | 
            +
                  "single_word": false,
         | 
| 1226 | 
            +
                  "special": true
         | 
| 1227 | 
            +
                },
         | 
| 1228 | 
            +
                "128153": {
         | 
| 1229 | 
            +
                  "content": "<|reserved_special_token_148|>",
         | 
| 1230 | 
            +
                  "lstrip": false,
         | 
| 1231 | 
            +
                  "normalized": false,
         | 
| 1232 | 
            +
                  "rstrip": false,
         | 
| 1233 | 
            +
                  "single_word": false,
         | 
| 1234 | 
            +
                  "special": true
         | 
| 1235 | 
            +
                },
         | 
| 1236 | 
            +
                "128154": {
         | 
| 1237 | 
            +
                  "content": "<|reserved_special_token_149|>",
         | 
| 1238 | 
            +
                  "lstrip": false,
         | 
| 1239 | 
            +
                  "normalized": false,
         | 
| 1240 | 
            +
                  "rstrip": false,
         | 
| 1241 | 
            +
                  "single_word": false,
         | 
| 1242 | 
            +
                  "special": true
         | 
| 1243 | 
            +
                },
         | 
| 1244 | 
            +
                "128155": {
         | 
| 1245 | 
            +
                  "content": "<|reserved_special_token_150|>",
         | 
| 1246 | 
            +
                  "lstrip": false,
         | 
| 1247 | 
            +
                  "normalized": false,
         | 
| 1248 | 
            +
                  "rstrip": false,
         | 
| 1249 | 
            +
                  "single_word": false,
         | 
| 1250 | 
            +
                  "special": true
         | 
| 1251 | 
            +
                },
         | 
| 1252 | 
            +
                "128156": {
         | 
| 1253 | 
            +
                  "content": "<|reserved_special_token_151|>",
         | 
| 1254 | 
            +
                  "lstrip": false,
         | 
| 1255 | 
            +
                  "normalized": false,
         | 
| 1256 | 
            +
                  "rstrip": false,
         | 
| 1257 | 
            +
                  "single_word": false,
         | 
| 1258 | 
            +
                  "special": true
         | 
| 1259 | 
            +
                },
         | 
| 1260 | 
            +
                "128157": {
         | 
| 1261 | 
            +
                  "content": "<|reserved_special_token_152|>",
         | 
| 1262 | 
            +
                  "lstrip": false,
         | 
| 1263 | 
            +
                  "normalized": false,
         | 
| 1264 | 
            +
                  "rstrip": false,
         | 
| 1265 | 
            +
                  "single_word": false,
         | 
| 1266 | 
            +
                  "special": true
         | 
| 1267 | 
            +
                },
         | 
| 1268 | 
            +
                "128158": {
         | 
| 1269 | 
            +
                  "content": "<|reserved_special_token_153|>",
         | 
| 1270 | 
            +
                  "lstrip": false,
         | 
| 1271 | 
            +
                  "normalized": false,
         | 
| 1272 | 
            +
                  "rstrip": false,
         | 
| 1273 | 
            +
                  "single_word": false,
         | 
| 1274 | 
            +
                  "special": true
         | 
| 1275 | 
            +
                },
         | 
| 1276 | 
            +
                "128159": {
         | 
| 1277 | 
            +
                  "content": "<|reserved_special_token_154|>",
         | 
| 1278 | 
            +
                  "lstrip": false,
         | 
| 1279 | 
            +
                  "normalized": false,
         | 
| 1280 | 
            +
                  "rstrip": false,
         | 
| 1281 | 
            +
                  "single_word": false,
         | 
| 1282 | 
            +
                  "special": true
         | 
| 1283 | 
            +
                },
         | 
| 1284 | 
            +
                "128160": {
         | 
| 1285 | 
            +
                  "content": "<|reserved_special_token_155|>",
         | 
| 1286 | 
            +
                  "lstrip": false,
         | 
| 1287 | 
            +
                  "normalized": false,
         | 
| 1288 | 
            +
                  "rstrip": false,
         | 
| 1289 | 
            +
                  "single_word": false,
         | 
| 1290 | 
            +
                  "special": true
         | 
| 1291 | 
            +
                },
         | 
| 1292 | 
            +
                "128161": {
         | 
| 1293 | 
            +
                  "content": "<|reserved_special_token_156|>",
         | 
| 1294 | 
            +
                  "lstrip": false,
         | 
| 1295 | 
            +
                  "normalized": false,
         | 
| 1296 | 
            +
                  "rstrip": false,
         | 
| 1297 | 
            +
                  "single_word": false,
         | 
| 1298 | 
            +
                  "special": true
         | 
| 1299 | 
            +
                },
         | 
| 1300 | 
            +
                "128162": {
         | 
| 1301 | 
            +
                  "content": "<|reserved_special_token_157|>",
         | 
| 1302 | 
            +
                  "lstrip": false,
         | 
| 1303 | 
            +
                  "normalized": false,
         | 
| 1304 | 
            +
                  "rstrip": false,
         | 
| 1305 | 
            +
                  "single_word": false,
         | 
| 1306 | 
            +
                  "special": true
         | 
| 1307 | 
            +
                },
         | 
| 1308 | 
            +
                "128163": {
         | 
| 1309 | 
            +
                  "content": "<|reserved_special_token_158|>",
         | 
| 1310 | 
            +
                  "lstrip": false,
         | 
| 1311 | 
            +
                  "normalized": false,
         | 
| 1312 | 
            +
                  "rstrip": false,
         | 
| 1313 | 
            +
                  "single_word": false,
         | 
| 1314 | 
            +
                  "special": true
         | 
| 1315 | 
            +
                },
         | 
| 1316 | 
            +
                "128164": {
         | 
| 1317 | 
            +
                  "content": "<|reserved_special_token_159|>",
         | 
| 1318 | 
            +
                  "lstrip": false,
         | 
| 1319 | 
            +
                  "normalized": false,
         | 
| 1320 | 
            +
                  "rstrip": false,
         | 
| 1321 | 
            +
                  "single_word": false,
         | 
| 1322 | 
            +
                  "special": true
         | 
| 1323 | 
            +
                },
         | 
| 1324 | 
            +
                "128165": {
         | 
| 1325 | 
            +
                  "content": "<|reserved_special_token_160|>",
         | 
| 1326 | 
            +
                  "lstrip": false,
         | 
| 1327 | 
            +
                  "normalized": false,
         | 
| 1328 | 
            +
                  "rstrip": false,
         | 
| 1329 | 
            +
                  "single_word": false,
         | 
| 1330 | 
            +
                  "special": true
         | 
| 1331 | 
            +
                },
         | 
| 1332 | 
            +
                "128166": {
         | 
| 1333 | 
            +
                  "content": "<|reserved_special_token_161|>",
         | 
| 1334 | 
            +
                  "lstrip": false,
         | 
| 1335 | 
            +
                  "normalized": false,
         | 
| 1336 | 
            +
                  "rstrip": false,
         | 
| 1337 | 
            +
                  "single_word": false,
         | 
| 1338 | 
            +
                  "special": true
         | 
| 1339 | 
            +
                },
         | 
| 1340 | 
            +
                "128167": {
         | 
| 1341 | 
            +
                  "content": "<|reserved_special_token_162|>",
         | 
| 1342 | 
            +
                  "lstrip": false,
         | 
| 1343 | 
            +
                  "normalized": false,
         | 
| 1344 | 
            +
                  "rstrip": false,
         | 
| 1345 | 
            +
                  "single_word": false,
         | 
| 1346 | 
            +
                  "special": true
         | 
| 1347 | 
            +
                },
         | 
| 1348 | 
            +
                "128168": {
         | 
| 1349 | 
            +
                  "content": "<|reserved_special_token_163|>",
         | 
| 1350 | 
            +
                  "lstrip": false,
         | 
| 1351 | 
            +
                  "normalized": false,
         | 
| 1352 | 
            +
                  "rstrip": false,
         | 
| 1353 | 
            +
                  "single_word": false,
         | 
| 1354 | 
            +
                  "special": true
         | 
| 1355 | 
            +
                },
         | 
| 1356 | 
            +
                "128169": {
         | 
| 1357 | 
            +
                  "content": "<|reserved_special_token_164|>",
         | 
| 1358 | 
            +
                  "lstrip": false,
         | 
| 1359 | 
            +
                  "normalized": false,
         | 
| 1360 | 
            +
                  "rstrip": false,
         | 
| 1361 | 
            +
                  "single_word": false,
         | 
| 1362 | 
            +
                  "special": true
         | 
| 1363 | 
            +
                },
         | 
| 1364 | 
            +
                "128170": {
         | 
| 1365 | 
            +
                  "content": "<|reserved_special_token_165|>",
         | 
| 1366 | 
            +
                  "lstrip": false,
         | 
| 1367 | 
            +
                  "normalized": false,
         | 
| 1368 | 
            +
                  "rstrip": false,
         | 
| 1369 | 
            +
                  "single_word": false,
         | 
| 1370 | 
            +
                  "special": true
         | 
| 1371 | 
            +
                },
         | 
| 1372 | 
            +
                "128171": {
         | 
| 1373 | 
            +
                  "content": "<|reserved_special_token_166|>",
         | 
| 1374 | 
            +
                  "lstrip": false,
         | 
| 1375 | 
            +
                  "normalized": false,
         | 
| 1376 | 
            +
                  "rstrip": false,
         | 
| 1377 | 
            +
                  "single_word": false,
         | 
| 1378 | 
            +
                  "special": true
         | 
| 1379 | 
            +
                },
         | 
| 1380 | 
            +
                "128172": {
         | 
| 1381 | 
            +
                  "content": "<|reserved_special_token_167|>",
         | 
| 1382 | 
            +
                  "lstrip": false,
         | 
| 1383 | 
            +
                  "normalized": false,
         | 
| 1384 | 
            +
                  "rstrip": false,
         | 
| 1385 | 
            +
                  "single_word": false,
         | 
| 1386 | 
            +
                  "special": true
         | 
| 1387 | 
            +
                },
         | 
| 1388 | 
            +
                "128173": {
         | 
| 1389 | 
            +
                  "content": "<|reserved_special_token_168|>",
         | 
| 1390 | 
            +
                  "lstrip": false,
         | 
| 1391 | 
            +
                  "normalized": false,
         | 
| 1392 | 
            +
                  "rstrip": false,
         | 
| 1393 | 
            +
                  "single_word": false,
         | 
| 1394 | 
            +
                  "special": true
         | 
| 1395 | 
            +
                },
         | 
| 1396 | 
            +
                "128174": {
         | 
| 1397 | 
            +
                  "content": "<|reserved_special_token_169|>",
         | 
| 1398 | 
            +
                  "lstrip": false,
         | 
| 1399 | 
            +
                  "normalized": false,
         | 
| 1400 | 
            +
                  "rstrip": false,
         | 
| 1401 | 
            +
                  "single_word": false,
         | 
| 1402 | 
            +
                  "special": true
         | 
| 1403 | 
            +
                },
         | 
| 1404 | 
            +
                "128175": {
         | 
| 1405 | 
            +
                  "content": "<|reserved_special_token_170|>",
         | 
| 1406 | 
            +
                  "lstrip": false,
         | 
| 1407 | 
            +
                  "normalized": false,
         | 
| 1408 | 
            +
                  "rstrip": false,
         | 
| 1409 | 
            +
                  "single_word": false,
         | 
| 1410 | 
            +
                  "special": true
         | 
| 1411 | 
            +
                },
         | 
| 1412 | 
            +
                "128176": {
         | 
| 1413 | 
            +
                  "content": "<|reserved_special_token_171|>",
         | 
| 1414 | 
            +
                  "lstrip": false,
         | 
| 1415 | 
            +
                  "normalized": false,
         | 
| 1416 | 
            +
                  "rstrip": false,
         | 
| 1417 | 
            +
                  "single_word": false,
         | 
| 1418 | 
            +
                  "special": true
         | 
| 1419 | 
            +
                },
         | 
| 1420 | 
            +
                "128177": {
         | 
| 1421 | 
            +
                  "content": "<|reserved_special_token_172|>",
         | 
| 1422 | 
            +
                  "lstrip": false,
         | 
| 1423 | 
            +
                  "normalized": false,
         | 
| 1424 | 
            +
                  "rstrip": false,
         | 
| 1425 | 
            +
                  "single_word": false,
         | 
| 1426 | 
            +
                  "special": true
         | 
| 1427 | 
            +
                },
         | 
| 1428 | 
            +
                "128178": {
         | 
| 1429 | 
            +
                  "content": "<|reserved_special_token_173|>",
         | 
| 1430 | 
            +
                  "lstrip": false,
         | 
| 1431 | 
            +
                  "normalized": false,
         | 
| 1432 | 
            +
                  "rstrip": false,
         | 
| 1433 | 
            +
                  "single_word": false,
         | 
| 1434 | 
            +
                  "special": true
         | 
| 1435 | 
            +
                },
         | 
| 1436 | 
            +
                "128179": {
         | 
| 1437 | 
            +
                  "content": "<|reserved_special_token_174|>",
         | 
| 1438 | 
            +
                  "lstrip": false,
         | 
| 1439 | 
            +
                  "normalized": false,
         | 
| 1440 | 
            +
                  "rstrip": false,
         | 
| 1441 | 
            +
                  "single_word": false,
         | 
| 1442 | 
            +
                  "special": true
         | 
| 1443 | 
            +
                },
         | 
| 1444 | 
            +
                "128180": {
         | 
| 1445 | 
            +
                  "content": "<|reserved_special_token_175|>",
         | 
| 1446 | 
            +
                  "lstrip": false,
         | 
| 1447 | 
            +
                  "normalized": false,
         | 
| 1448 | 
            +
                  "rstrip": false,
         | 
| 1449 | 
            +
                  "single_word": false,
         | 
| 1450 | 
            +
                  "special": true
         | 
| 1451 | 
            +
                },
         | 
| 1452 | 
            +
                "128181": {
         | 
| 1453 | 
            +
                  "content": "<|reserved_special_token_176|>",
         | 
| 1454 | 
            +
                  "lstrip": false,
         | 
| 1455 | 
            +
                  "normalized": false,
         | 
| 1456 | 
            +
                  "rstrip": false,
         | 
| 1457 | 
            +
                  "single_word": false,
         | 
| 1458 | 
            +
                  "special": true
         | 
| 1459 | 
            +
                },
         | 
| 1460 | 
            +
                "128182": {
         | 
| 1461 | 
            +
                  "content": "<|reserved_special_token_177|>",
         | 
| 1462 | 
            +
                  "lstrip": false,
         | 
| 1463 | 
            +
                  "normalized": false,
         | 
| 1464 | 
            +
                  "rstrip": false,
         | 
| 1465 | 
            +
                  "single_word": false,
         | 
| 1466 | 
            +
                  "special": true
         | 
| 1467 | 
            +
                },
         | 
| 1468 | 
            +
                "128183": {
         | 
| 1469 | 
            +
                  "content": "<|reserved_special_token_178|>",
         | 
| 1470 | 
            +
                  "lstrip": false,
         | 
| 1471 | 
            +
                  "normalized": false,
         | 
| 1472 | 
            +
                  "rstrip": false,
         | 
| 1473 | 
            +
                  "single_word": false,
         | 
| 1474 | 
            +
                  "special": true
         | 
| 1475 | 
            +
                },
         | 
| 1476 | 
            +
                "128184": {
         | 
| 1477 | 
            +
                  "content": "<|reserved_special_token_179|>",
         | 
| 1478 | 
            +
                  "lstrip": false,
         | 
| 1479 | 
            +
                  "normalized": false,
         | 
| 1480 | 
            +
                  "rstrip": false,
         | 
| 1481 | 
            +
                  "single_word": false,
         | 
| 1482 | 
            +
                  "special": true
         | 
| 1483 | 
            +
                },
         | 
| 1484 | 
            +
                "128185": {
         | 
| 1485 | 
            +
                  "content": "<|reserved_special_token_180|>",
         | 
| 1486 | 
            +
                  "lstrip": false,
         | 
| 1487 | 
            +
                  "normalized": false,
         | 
| 1488 | 
            +
                  "rstrip": false,
         | 
| 1489 | 
            +
                  "single_word": false,
         | 
| 1490 | 
            +
                  "special": true
         | 
| 1491 | 
            +
                },
         | 
| 1492 | 
            +
                "128186": {
         | 
| 1493 | 
            +
                  "content": "<|reserved_special_token_181|>",
         | 
| 1494 | 
            +
                  "lstrip": false,
         | 
| 1495 | 
            +
                  "normalized": false,
         | 
| 1496 | 
            +
                  "rstrip": false,
         | 
| 1497 | 
            +
                  "single_word": false,
         | 
| 1498 | 
            +
                  "special": true
         | 
| 1499 | 
            +
                },
         | 
| 1500 | 
            +
                "128187": {
         | 
| 1501 | 
            +
                  "content": "<|reserved_special_token_182|>",
         | 
| 1502 | 
            +
                  "lstrip": false,
         | 
| 1503 | 
            +
                  "normalized": false,
         | 
| 1504 | 
            +
                  "rstrip": false,
         | 
| 1505 | 
            +
                  "single_word": false,
         | 
| 1506 | 
            +
                  "special": true
         | 
| 1507 | 
            +
                },
         | 
| 1508 | 
            +
                "128188": {
         | 
| 1509 | 
            +
                  "content": "<|reserved_special_token_183|>",
         | 
| 1510 | 
            +
                  "lstrip": false,
         | 
| 1511 | 
            +
                  "normalized": false,
         | 
| 1512 | 
            +
                  "rstrip": false,
         | 
| 1513 | 
            +
                  "single_word": false,
         | 
| 1514 | 
            +
                  "special": true
         | 
| 1515 | 
            +
                },
         | 
| 1516 | 
            +
                "128189": {
         | 
| 1517 | 
            +
                  "content": "<|reserved_special_token_184|>",
         | 
| 1518 | 
            +
                  "lstrip": false,
         | 
| 1519 | 
            +
                  "normalized": false,
         | 
| 1520 | 
            +
                  "rstrip": false,
         | 
| 1521 | 
            +
                  "single_word": false,
         | 
| 1522 | 
            +
                  "special": true
         | 
| 1523 | 
            +
                },
         | 
| 1524 | 
            +
                "128190": {
         | 
| 1525 | 
            +
                  "content": "<|reserved_special_token_185|>",
         | 
| 1526 | 
            +
                  "lstrip": false,
         | 
| 1527 | 
            +
                  "normalized": false,
         | 
| 1528 | 
            +
                  "rstrip": false,
         | 
| 1529 | 
            +
                  "single_word": false,
         | 
| 1530 | 
            +
                  "special": true
         | 
| 1531 | 
            +
                },
         | 
| 1532 | 
            +
                "128191": {
         | 
| 1533 | 
            +
                  "content": "<|reserved_special_token_186|>",
         | 
| 1534 | 
            +
                  "lstrip": false,
         | 
| 1535 | 
            +
                  "normalized": false,
         | 
| 1536 | 
            +
                  "rstrip": false,
         | 
| 1537 | 
            +
                  "single_word": false,
         | 
| 1538 | 
            +
                  "special": true
         | 
| 1539 | 
            +
                },
         | 
| 1540 | 
            +
                "128192": {
         | 
| 1541 | 
            +
                  "content": "<|reserved_special_token_187|>",
         | 
| 1542 | 
            +
                  "lstrip": false,
         | 
| 1543 | 
            +
                  "normalized": false,
         | 
| 1544 | 
            +
                  "rstrip": false,
         | 
| 1545 | 
            +
                  "single_word": false,
         | 
| 1546 | 
            +
                  "special": true
         | 
| 1547 | 
            +
                },
         | 
| 1548 | 
            +
                "128193": {
         | 
| 1549 | 
            +
                  "content": "<|reserved_special_token_188|>",
         | 
| 1550 | 
            +
                  "lstrip": false,
         | 
| 1551 | 
            +
                  "normalized": false,
         | 
| 1552 | 
            +
                  "rstrip": false,
         | 
| 1553 | 
            +
                  "single_word": false,
         | 
| 1554 | 
            +
                  "special": true
         | 
| 1555 | 
            +
                },
         | 
| 1556 | 
            +
                "128194": {
         | 
| 1557 | 
            +
                  "content": "<|reserved_special_token_189|>",
         | 
| 1558 | 
            +
                  "lstrip": false,
         | 
| 1559 | 
            +
                  "normalized": false,
         | 
| 1560 | 
            +
                  "rstrip": false,
         | 
| 1561 | 
            +
                  "single_word": false,
         | 
| 1562 | 
            +
                  "special": true
         | 
| 1563 | 
            +
                },
         | 
| 1564 | 
            +
                "128195": {
         | 
| 1565 | 
            +
                  "content": "<|reserved_special_token_190|>",
         | 
| 1566 | 
            +
                  "lstrip": false,
         | 
| 1567 | 
            +
                  "normalized": false,
         | 
| 1568 | 
            +
                  "rstrip": false,
         | 
| 1569 | 
            +
                  "single_word": false,
         | 
| 1570 | 
            +
                  "special": true
         | 
| 1571 | 
            +
                },
         | 
| 1572 | 
            +
                "128196": {
         | 
| 1573 | 
            +
                  "content": "<|reserved_special_token_191|>",
         | 
| 1574 | 
            +
                  "lstrip": false,
         | 
| 1575 | 
            +
                  "normalized": false,
         | 
| 1576 | 
            +
                  "rstrip": false,
         | 
| 1577 | 
            +
                  "single_word": false,
         | 
| 1578 | 
            +
                  "special": true
         | 
| 1579 | 
            +
                },
         | 
| 1580 | 
            +
                "128197": {
         | 
| 1581 | 
            +
                  "content": "<|reserved_special_token_192|>",
         | 
| 1582 | 
            +
                  "lstrip": false,
         | 
| 1583 | 
            +
                  "normalized": false,
         | 
| 1584 | 
            +
                  "rstrip": false,
         | 
| 1585 | 
            +
                  "single_word": false,
         | 
| 1586 | 
            +
                  "special": true
         | 
| 1587 | 
            +
                },
         | 
| 1588 | 
            +
                "128198": {
         | 
| 1589 | 
            +
                  "content": "<|reserved_special_token_193|>",
         | 
| 1590 | 
            +
                  "lstrip": false,
         | 
| 1591 | 
            +
                  "normalized": false,
         | 
| 1592 | 
            +
                  "rstrip": false,
         | 
| 1593 | 
            +
                  "single_word": false,
         | 
| 1594 | 
            +
                  "special": true
         | 
| 1595 | 
            +
                },
         | 
| 1596 | 
            +
                "128199": {
         | 
| 1597 | 
            +
                  "content": "<|reserved_special_token_194|>",
         | 
| 1598 | 
            +
                  "lstrip": false,
         | 
| 1599 | 
            +
                  "normalized": false,
         | 
| 1600 | 
            +
                  "rstrip": false,
         | 
| 1601 | 
            +
                  "single_word": false,
         | 
| 1602 | 
            +
                  "special": true
         | 
| 1603 | 
            +
                },
         | 
| 1604 | 
            +
                "128200": {
         | 
| 1605 | 
            +
                  "content": "<|reserved_special_token_195|>",
         | 
| 1606 | 
            +
                  "lstrip": false,
         | 
| 1607 | 
            +
                  "normalized": false,
         | 
| 1608 | 
            +
                  "rstrip": false,
         | 
| 1609 | 
            +
                  "single_word": false,
         | 
| 1610 | 
            +
                  "special": true
         | 
| 1611 | 
            +
                },
         | 
| 1612 | 
            +
                "128201": {
         | 
| 1613 | 
            +
                  "content": "<|reserved_special_token_196|>",
         | 
| 1614 | 
            +
                  "lstrip": false,
         | 
| 1615 | 
            +
                  "normalized": false,
         | 
| 1616 | 
            +
                  "rstrip": false,
         | 
| 1617 | 
            +
                  "single_word": false,
         | 
| 1618 | 
            +
                  "special": true
         | 
| 1619 | 
            +
                },
         | 
| 1620 | 
            +
                "128202": {
         | 
| 1621 | 
            +
                  "content": "<|reserved_special_token_197|>",
         | 
| 1622 | 
            +
                  "lstrip": false,
         | 
| 1623 | 
            +
                  "normalized": false,
         | 
| 1624 | 
            +
                  "rstrip": false,
         | 
| 1625 | 
            +
                  "single_word": false,
         | 
| 1626 | 
            +
                  "special": true
         | 
| 1627 | 
            +
                },
         | 
| 1628 | 
            +
                "128203": {
         | 
| 1629 | 
            +
                  "content": "<|reserved_special_token_198|>",
         | 
| 1630 | 
            +
                  "lstrip": false,
         | 
| 1631 | 
            +
                  "normalized": false,
         | 
| 1632 | 
            +
                  "rstrip": false,
         | 
| 1633 | 
            +
                  "single_word": false,
         | 
| 1634 | 
            +
                  "special": true
         | 
| 1635 | 
            +
                },
         | 
| 1636 | 
            +
                "128204": {
         | 
| 1637 | 
            +
                  "content": "<|reserved_special_token_199|>",
         | 
| 1638 | 
            +
                  "lstrip": false,
         | 
| 1639 | 
            +
                  "normalized": false,
         | 
| 1640 | 
            +
                  "rstrip": false,
         | 
| 1641 | 
            +
                  "single_word": false,
         | 
| 1642 | 
            +
                  "special": true
         | 
| 1643 | 
            +
                },
         | 
| 1644 | 
            +
                "128205": {
         | 
| 1645 | 
            +
                  "content": "<|reserved_special_token_200|>",
         | 
| 1646 | 
            +
                  "lstrip": false,
         | 
| 1647 | 
            +
                  "normalized": false,
         | 
| 1648 | 
            +
                  "rstrip": false,
         | 
| 1649 | 
            +
                  "single_word": false,
         | 
| 1650 | 
            +
                  "special": true
         | 
| 1651 | 
            +
                },
         | 
| 1652 | 
            +
                "128206": {
         | 
| 1653 | 
            +
                  "content": "<|reserved_special_token_201|>",
         | 
| 1654 | 
            +
                  "lstrip": false,
         | 
| 1655 | 
            +
                  "normalized": false,
         | 
| 1656 | 
            +
                  "rstrip": false,
         | 
| 1657 | 
            +
                  "single_word": false,
         | 
| 1658 | 
            +
                  "special": true
         | 
| 1659 | 
            +
                },
         | 
| 1660 | 
            +
                "128207": {
         | 
| 1661 | 
            +
                  "content": "<|reserved_special_token_202|>",
         | 
| 1662 | 
            +
                  "lstrip": false,
         | 
| 1663 | 
            +
                  "normalized": false,
         | 
| 1664 | 
            +
                  "rstrip": false,
         | 
| 1665 | 
            +
                  "single_word": false,
         | 
| 1666 | 
            +
                  "special": true
         | 
| 1667 | 
            +
                },
         | 
| 1668 | 
            +
                "128208": {
         | 
| 1669 | 
            +
                  "content": "<|reserved_special_token_203|>",
         | 
| 1670 | 
            +
                  "lstrip": false,
         | 
| 1671 | 
            +
                  "normalized": false,
         | 
| 1672 | 
            +
                  "rstrip": false,
         | 
| 1673 | 
            +
                  "single_word": false,
         | 
| 1674 | 
            +
                  "special": true
         | 
| 1675 | 
            +
                },
         | 
| 1676 | 
            +
                "128209": {
         | 
| 1677 | 
            +
                  "content": "<|reserved_special_token_204|>",
         | 
| 1678 | 
            +
                  "lstrip": false,
         | 
| 1679 | 
            +
                  "normalized": false,
         | 
| 1680 | 
            +
                  "rstrip": false,
         | 
| 1681 | 
            +
                  "single_word": false,
         | 
| 1682 | 
            +
                  "special": true
         | 
| 1683 | 
            +
                },
         | 
| 1684 | 
            +
                "128210": {
         | 
| 1685 | 
            +
                  "content": "<|reserved_special_token_205|>",
         | 
| 1686 | 
            +
                  "lstrip": false,
         | 
| 1687 | 
            +
                  "normalized": false,
         | 
| 1688 | 
            +
                  "rstrip": false,
         | 
| 1689 | 
            +
                  "single_word": false,
         | 
| 1690 | 
            +
                  "special": true
         | 
| 1691 | 
            +
                },
         | 
| 1692 | 
            +
                "128211": {
         | 
| 1693 | 
            +
                  "content": "<|reserved_special_token_206|>",
         | 
| 1694 | 
            +
                  "lstrip": false,
         | 
| 1695 | 
            +
                  "normalized": false,
         | 
| 1696 | 
            +
                  "rstrip": false,
         | 
| 1697 | 
            +
                  "single_word": false,
         | 
| 1698 | 
            +
                  "special": true
         | 
| 1699 | 
            +
                },
         | 
| 1700 | 
            +
                "128212": {
         | 
| 1701 | 
            +
                  "content": "<|reserved_special_token_207|>",
         | 
| 1702 | 
            +
                  "lstrip": false,
         | 
| 1703 | 
            +
                  "normalized": false,
         | 
| 1704 | 
            +
                  "rstrip": false,
         | 
| 1705 | 
            +
                  "single_word": false,
         | 
| 1706 | 
            +
                  "special": true
         | 
| 1707 | 
            +
                },
         | 
| 1708 | 
            +
                "128213": {
         | 
| 1709 | 
            +
                  "content": "<|reserved_special_token_208|>",
         | 
| 1710 | 
            +
                  "lstrip": false,
         | 
| 1711 | 
            +
                  "normalized": false,
         | 
| 1712 | 
            +
                  "rstrip": false,
         | 
| 1713 | 
            +
                  "single_word": false,
         | 
| 1714 | 
            +
                  "special": true
         | 
| 1715 | 
            +
                },
         | 
| 1716 | 
            +
                "128214": {
         | 
| 1717 | 
            +
                  "content": "<|reserved_special_token_209|>",
         | 
| 1718 | 
            +
                  "lstrip": false,
         | 
| 1719 | 
            +
                  "normalized": false,
         | 
| 1720 | 
            +
                  "rstrip": false,
         | 
| 1721 | 
            +
                  "single_word": false,
         | 
| 1722 | 
            +
                  "special": true
         | 
| 1723 | 
            +
                },
         | 
| 1724 | 
            +
                "128215": {
         | 
| 1725 | 
            +
                  "content": "<|reserved_special_token_210|>",
         | 
| 1726 | 
            +
                  "lstrip": false,
         | 
| 1727 | 
            +
                  "normalized": false,
         | 
| 1728 | 
            +
                  "rstrip": false,
         | 
| 1729 | 
            +
                  "single_word": false,
         | 
| 1730 | 
            +
                  "special": true
         | 
| 1731 | 
            +
                },
         | 
| 1732 | 
            +
                "128216": {
         | 
| 1733 | 
            +
                  "content": "<|reserved_special_token_211|>",
         | 
| 1734 | 
            +
                  "lstrip": false,
         | 
| 1735 | 
            +
                  "normalized": false,
         | 
| 1736 | 
            +
                  "rstrip": false,
         | 
| 1737 | 
            +
                  "single_word": false,
         | 
| 1738 | 
            +
                  "special": true
         | 
| 1739 | 
            +
                },
         | 
| 1740 | 
            +
                "128217": {
         | 
| 1741 | 
            +
                  "content": "<|reserved_special_token_212|>",
         | 
| 1742 | 
            +
                  "lstrip": false,
         | 
| 1743 | 
            +
                  "normalized": false,
         | 
| 1744 | 
            +
                  "rstrip": false,
         | 
| 1745 | 
            +
                  "single_word": false,
         | 
| 1746 | 
            +
                  "special": true
         | 
| 1747 | 
            +
                },
         | 
| 1748 | 
            +
                "128218": {
         | 
| 1749 | 
            +
                  "content": "<|reserved_special_token_213|>",
         | 
| 1750 | 
            +
                  "lstrip": false,
         | 
| 1751 | 
            +
                  "normalized": false,
         | 
| 1752 | 
            +
                  "rstrip": false,
         | 
| 1753 | 
            +
                  "single_word": false,
         | 
| 1754 | 
            +
                  "special": true
         | 
| 1755 | 
            +
                },
         | 
| 1756 | 
            +
                "128219": {
         | 
| 1757 | 
            +
                  "content": "<|reserved_special_token_214|>",
         | 
| 1758 | 
            +
                  "lstrip": false,
         | 
| 1759 | 
            +
                  "normalized": false,
         | 
| 1760 | 
            +
                  "rstrip": false,
         | 
| 1761 | 
            +
                  "single_word": false,
         | 
| 1762 | 
            +
                  "special": true
         | 
| 1763 | 
            +
                },
         | 
| 1764 | 
            +
                "128220": {
         | 
| 1765 | 
            +
                  "content": "<|reserved_special_token_215|>",
         | 
| 1766 | 
            +
                  "lstrip": false,
         | 
| 1767 | 
            +
                  "normalized": false,
         | 
| 1768 | 
            +
                  "rstrip": false,
         | 
| 1769 | 
            +
                  "single_word": false,
         | 
| 1770 | 
            +
                  "special": true
         | 
| 1771 | 
            +
                },
         | 
| 1772 | 
            +
                "128221": {
         | 
| 1773 | 
            +
                  "content": "<|reserved_special_token_216|>",
         | 
| 1774 | 
            +
                  "lstrip": false,
         | 
| 1775 | 
            +
                  "normalized": false,
         | 
| 1776 | 
            +
                  "rstrip": false,
         | 
| 1777 | 
            +
                  "single_word": false,
         | 
| 1778 | 
            +
                  "special": true
         | 
| 1779 | 
            +
                },
         | 
| 1780 | 
            +
                "128222": {
         | 
| 1781 | 
            +
                  "content": "<|reserved_special_token_217|>",
         | 
| 1782 | 
            +
                  "lstrip": false,
         | 
| 1783 | 
            +
                  "normalized": false,
         | 
| 1784 | 
            +
                  "rstrip": false,
         | 
| 1785 | 
            +
                  "single_word": false,
         | 
| 1786 | 
            +
                  "special": true
         | 
| 1787 | 
            +
                },
         | 
| 1788 | 
            +
                "128223": {
         | 
| 1789 | 
            +
                  "content": "<|reserved_special_token_218|>",
         | 
| 1790 | 
            +
                  "lstrip": false,
         | 
| 1791 | 
            +
                  "normalized": false,
         | 
| 1792 | 
            +
                  "rstrip": false,
         | 
| 1793 | 
            +
                  "single_word": false,
         | 
| 1794 | 
            +
                  "special": true
         | 
| 1795 | 
            +
                },
         | 
| 1796 | 
            +
                "128224": {
         | 
| 1797 | 
            +
                  "content": "<|reserved_special_token_219|>",
         | 
| 1798 | 
            +
                  "lstrip": false,
         | 
| 1799 | 
            +
                  "normalized": false,
         | 
| 1800 | 
            +
                  "rstrip": false,
         | 
| 1801 | 
            +
                  "single_word": false,
         | 
| 1802 | 
            +
                  "special": true
         | 
| 1803 | 
            +
                },
         | 
| 1804 | 
            +
                "128225": {
         | 
| 1805 | 
            +
                  "content": "<|reserved_special_token_220|>",
         | 
| 1806 | 
            +
                  "lstrip": false,
         | 
| 1807 | 
            +
                  "normalized": false,
         | 
| 1808 | 
            +
                  "rstrip": false,
         | 
| 1809 | 
            +
                  "single_word": false,
         | 
| 1810 | 
            +
                  "special": true
         | 
| 1811 | 
            +
                },
         | 
| 1812 | 
            +
                "128226": {
         | 
| 1813 | 
            +
                  "content": "<|reserved_special_token_221|>",
         | 
| 1814 | 
            +
                  "lstrip": false,
         | 
| 1815 | 
            +
                  "normalized": false,
         | 
| 1816 | 
            +
                  "rstrip": false,
         | 
| 1817 | 
            +
                  "single_word": false,
         | 
| 1818 | 
            +
                  "special": true
         | 
| 1819 | 
            +
                },
         | 
| 1820 | 
            +
                "128227": {
         | 
| 1821 | 
            +
                  "content": "<|reserved_special_token_222|>",
         | 
| 1822 | 
            +
                  "lstrip": false,
         | 
| 1823 | 
            +
                  "normalized": false,
         | 
| 1824 | 
            +
                  "rstrip": false,
         | 
| 1825 | 
            +
                  "single_word": false,
         | 
| 1826 | 
            +
                  "special": true
         | 
| 1827 | 
            +
                },
         | 
| 1828 | 
            +
                "128228": {
         | 
| 1829 | 
            +
                  "content": "<|reserved_special_token_223|>",
         | 
| 1830 | 
            +
                  "lstrip": false,
         | 
| 1831 | 
            +
                  "normalized": false,
         | 
| 1832 | 
            +
                  "rstrip": false,
         | 
| 1833 | 
            +
                  "single_word": false,
         | 
| 1834 | 
            +
                  "special": true
         | 
| 1835 | 
            +
                },
         | 
| 1836 | 
            +
                "128229": {
         | 
| 1837 | 
            +
                  "content": "<|reserved_special_token_224|>",
         | 
| 1838 | 
            +
                  "lstrip": false,
         | 
| 1839 | 
            +
                  "normalized": false,
         | 
| 1840 | 
            +
                  "rstrip": false,
         | 
| 1841 | 
            +
                  "single_word": false,
         | 
| 1842 | 
            +
                  "special": true
         | 
| 1843 | 
            +
                },
         | 
| 1844 | 
            +
                "128230": {
         | 
| 1845 | 
            +
                  "content": "<|reserved_special_token_225|>",
         | 
| 1846 | 
            +
                  "lstrip": false,
         | 
| 1847 | 
            +
                  "normalized": false,
         | 
| 1848 | 
            +
                  "rstrip": false,
         | 
| 1849 | 
            +
                  "single_word": false,
         | 
| 1850 | 
            +
                  "special": true
         | 
| 1851 | 
            +
                },
         | 
| 1852 | 
            +
                "128231": {
         | 
| 1853 | 
            +
                  "content": "<|reserved_special_token_226|>",
         | 
| 1854 | 
            +
                  "lstrip": false,
         | 
| 1855 | 
            +
                  "normalized": false,
         | 
| 1856 | 
            +
                  "rstrip": false,
         | 
| 1857 | 
            +
                  "single_word": false,
         | 
| 1858 | 
            +
                  "special": true
         | 
| 1859 | 
            +
                },
         | 
| 1860 | 
            +
                "128232": {
         | 
| 1861 | 
            +
                  "content": "<|reserved_special_token_227|>",
         | 
| 1862 | 
            +
                  "lstrip": false,
         | 
| 1863 | 
            +
                  "normalized": false,
         | 
| 1864 | 
            +
                  "rstrip": false,
         | 
| 1865 | 
            +
                  "single_word": false,
         | 
| 1866 | 
            +
                  "special": true
         | 
| 1867 | 
            +
                },
         | 
| 1868 | 
            +
                "128233": {
         | 
| 1869 | 
            +
                  "content": "<|reserved_special_token_228|>",
         | 
| 1870 | 
            +
                  "lstrip": false,
         | 
| 1871 | 
            +
                  "normalized": false,
         | 
| 1872 | 
            +
                  "rstrip": false,
         | 
| 1873 | 
            +
                  "single_word": false,
         | 
| 1874 | 
            +
                  "special": true
         | 
| 1875 | 
            +
                },
         | 
| 1876 | 
            +
                "128234": {
         | 
| 1877 | 
            +
                  "content": "<|reserved_special_token_229|>",
         | 
| 1878 | 
            +
                  "lstrip": false,
         | 
| 1879 | 
            +
                  "normalized": false,
         | 
| 1880 | 
            +
                  "rstrip": false,
         | 
| 1881 | 
            +
                  "single_word": false,
         | 
| 1882 | 
            +
                  "special": true
         | 
| 1883 | 
            +
                },
         | 
| 1884 | 
            +
                "128235": {
         | 
| 1885 | 
            +
                  "content": "<|reserved_special_token_230|>",
         | 
| 1886 | 
            +
                  "lstrip": false,
         | 
| 1887 | 
            +
                  "normalized": false,
         | 
| 1888 | 
            +
                  "rstrip": false,
         | 
| 1889 | 
            +
                  "single_word": false,
         | 
| 1890 | 
            +
                  "special": true
         | 
| 1891 | 
            +
                },
         | 
| 1892 | 
            +
                "128236": {
         | 
| 1893 | 
            +
                  "content": "<|reserved_special_token_231|>",
         | 
| 1894 | 
            +
                  "lstrip": false,
         | 
| 1895 | 
            +
                  "normalized": false,
         | 
| 1896 | 
            +
                  "rstrip": false,
         | 
| 1897 | 
            +
                  "single_word": false,
         | 
| 1898 | 
            +
                  "special": true
         | 
| 1899 | 
            +
                },
         | 
| 1900 | 
            +
                "128237": {
         | 
| 1901 | 
            +
                  "content": "<|reserved_special_token_232|>",
         | 
| 1902 | 
            +
                  "lstrip": false,
         | 
| 1903 | 
            +
                  "normalized": false,
         | 
| 1904 | 
            +
                  "rstrip": false,
         | 
| 1905 | 
            +
                  "single_word": false,
         | 
| 1906 | 
            +
                  "special": true
         | 
| 1907 | 
            +
                },
         | 
| 1908 | 
            +
                "128238": {
         | 
| 1909 | 
            +
                  "content": "<|reserved_special_token_233|>",
         | 
| 1910 | 
            +
                  "lstrip": false,
         | 
| 1911 | 
            +
                  "normalized": false,
         | 
| 1912 | 
            +
                  "rstrip": false,
         | 
| 1913 | 
            +
                  "single_word": false,
         | 
| 1914 | 
            +
                  "special": true
         | 
| 1915 | 
            +
                },
         | 
| 1916 | 
            +
                "128239": {
         | 
| 1917 | 
            +
                  "content": "<|reserved_special_token_234|>",
         | 
| 1918 | 
            +
                  "lstrip": false,
         | 
| 1919 | 
            +
                  "normalized": false,
         | 
| 1920 | 
            +
                  "rstrip": false,
         | 
| 1921 | 
            +
                  "single_word": false,
         | 
| 1922 | 
            +
                  "special": true
         | 
| 1923 | 
            +
                },
         | 
| 1924 | 
            +
                "128240": {
         | 
| 1925 | 
            +
                  "content": "<|reserved_special_token_235|>",
         | 
| 1926 | 
            +
                  "lstrip": false,
         | 
| 1927 | 
            +
                  "normalized": false,
         | 
| 1928 | 
            +
                  "rstrip": false,
         | 
| 1929 | 
            +
                  "single_word": false,
         | 
| 1930 | 
            +
                  "special": true
         | 
| 1931 | 
            +
                },
         | 
| 1932 | 
            +
                "128241": {
         | 
| 1933 | 
            +
                  "content": "<|reserved_special_token_236|>",
         | 
| 1934 | 
            +
                  "lstrip": false,
         | 
| 1935 | 
            +
                  "normalized": false,
         | 
| 1936 | 
            +
                  "rstrip": false,
         | 
| 1937 | 
            +
                  "single_word": false,
         | 
| 1938 | 
            +
                  "special": true
         | 
| 1939 | 
            +
                },
         | 
| 1940 | 
            +
                "128242": {
         | 
| 1941 | 
            +
                  "content": "<|reserved_special_token_237|>",
         | 
| 1942 | 
            +
                  "lstrip": false,
         | 
| 1943 | 
            +
                  "normalized": false,
         | 
| 1944 | 
            +
                  "rstrip": false,
         | 
| 1945 | 
            +
                  "single_word": false,
         | 
| 1946 | 
            +
                  "special": true
         | 
| 1947 | 
            +
                },
         | 
| 1948 | 
            +
                "128243": {
         | 
| 1949 | 
            +
                  "content": "<|reserved_special_token_238|>",
         | 
| 1950 | 
            +
                  "lstrip": false,
         | 
| 1951 | 
            +
                  "normalized": false,
         | 
| 1952 | 
            +
                  "rstrip": false,
         | 
| 1953 | 
            +
                  "single_word": false,
         | 
| 1954 | 
            +
                  "special": true
         | 
| 1955 | 
            +
                },
         | 
| 1956 | 
            +
                "128244": {
         | 
| 1957 | 
            +
                  "content": "<|reserved_special_token_239|>",
         | 
| 1958 | 
            +
                  "lstrip": false,
         | 
| 1959 | 
            +
                  "normalized": false,
         | 
| 1960 | 
            +
                  "rstrip": false,
         | 
| 1961 | 
            +
                  "single_word": false,
         | 
| 1962 | 
            +
                  "special": true
         | 
| 1963 | 
            +
                },
         | 
| 1964 | 
            +
                "128245": {
         | 
| 1965 | 
            +
                  "content": "<|reserved_special_token_240|>",
         | 
| 1966 | 
            +
                  "lstrip": false,
         | 
| 1967 | 
            +
                  "normalized": false,
         | 
| 1968 | 
            +
                  "rstrip": false,
         | 
| 1969 | 
            +
                  "single_word": false,
         | 
| 1970 | 
            +
                  "special": true
         | 
| 1971 | 
            +
                },
         | 
| 1972 | 
            +
                "128246": {
         | 
| 1973 | 
            +
                  "content": "<|reserved_special_token_241|>",
         | 
| 1974 | 
            +
                  "lstrip": false,
         | 
| 1975 | 
            +
                  "normalized": false,
         | 
| 1976 | 
            +
                  "rstrip": false,
         | 
| 1977 | 
            +
                  "single_word": false,
         | 
| 1978 | 
            +
                  "special": true
         | 
| 1979 | 
            +
                },
         | 
| 1980 | 
            +
                "128247": {
         | 
| 1981 | 
            +
                  "content": "<|reserved_special_token_242|>",
         | 
| 1982 | 
            +
                  "lstrip": false,
         | 
| 1983 | 
            +
                  "normalized": false,
         | 
| 1984 | 
            +
                  "rstrip": false,
         | 
| 1985 | 
            +
                  "single_word": false,
         | 
| 1986 | 
            +
                  "special": true
         | 
| 1987 | 
            +
                },
         | 
| 1988 | 
            +
                "128248": {
         | 
| 1989 | 
            +
                  "content": "<|reserved_special_token_243|>",
         | 
| 1990 | 
            +
                  "lstrip": false,
         | 
| 1991 | 
            +
                  "normalized": false,
         | 
| 1992 | 
            +
                  "rstrip": false,
         | 
| 1993 | 
            +
                  "single_word": false,
         | 
| 1994 | 
            +
                  "special": true
         | 
| 1995 | 
            +
                },
         | 
| 1996 | 
            +
                "128249": {
         | 
| 1997 | 
            +
                  "content": "<|reserved_special_token_244|>",
         | 
| 1998 | 
            +
                  "lstrip": false,
         | 
| 1999 | 
            +
                  "normalized": false,
         | 
| 2000 | 
            +
                  "rstrip": false,
         | 
| 2001 | 
            +
                  "single_word": false,
         | 
| 2002 | 
            +
                  "special": true
         | 
| 2003 | 
            +
                },
         | 
| 2004 | 
            +
                "128250": {
         | 
| 2005 | 
            +
                  "content": "<|reserved_special_token_245|>",
         | 
| 2006 | 
            +
                  "lstrip": false,
         | 
| 2007 | 
            +
                  "normalized": false,
         | 
| 2008 | 
            +
                  "rstrip": false,
         | 
| 2009 | 
            +
                  "single_word": false,
         | 
| 2010 | 
            +
                  "special": true
         | 
| 2011 | 
            +
                },
         | 
| 2012 | 
            +
                "128251": {
         | 
| 2013 | 
            +
                  "content": "<|reserved_special_token_246|>",
         | 
| 2014 | 
            +
                  "lstrip": false,
         | 
| 2015 | 
            +
                  "normalized": false,
         | 
| 2016 | 
            +
                  "rstrip": false,
         | 
| 2017 | 
            +
                  "single_word": false,
         | 
| 2018 | 
            +
                  "special": true
         | 
| 2019 | 
            +
                },
         | 
| 2020 | 
            +
                "128252": {
         | 
| 2021 | 
            +
                  "content": "<|reserved_special_token_247|>",
         | 
| 2022 | 
            +
                  "lstrip": false,
         | 
| 2023 | 
            +
                  "normalized": false,
         | 
| 2024 | 
            +
                  "rstrip": false,
         | 
| 2025 | 
            +
                  "single_word": false,
         | 
| 2026 | 
            +
                  "special": true
         | 
| 2027 | 
            +
                },
         | 
| 2028 | 
            +
                "128253": {
         | 
| 2029 | 
            +
                  "content": "<|reserved_special_token_248|>",
         | 
| 2030 | 
            +
                  "lstrip": false,
         | 
| 2031 | 
            +
                  "normalized": false,
         | 
| 2032 | 
            +
                  "rstrip": false,
         | 
| 2033 | 
            +
                  "single_word": false,
         | 
| 2034 | 
            +
                  "special": true
         | 
| 2035 | 
            +
                },
         | 
| 2036 | 
            +
                "128254": {
         | 
| 2037 | 
            +
                  "content": "<|reserved_special_token_249|>",
         | 
| 2038 | 
            +
                  "lstrip": false,
         | 
| 2039 | 
            +
                  "normalized": false,
         | 
| 2040 | 
            +
                  "rstrip": false,
         | 
| 2041 | 
            +
                  "single_word": false,
         | 
| 2042 | 
            +
                  "special": true
         | 
| 2043 | 
            +
                },
         | 
| 2044 | 
            +
                "128255": {
         | 
| 2045 | 
            +
                  "content": "<|reserved_special_token_250|>",
         | 
| 2046 | 
            +
                  "lstrip": false,
         | 
| 2047 | 
            +
                  "normalized": false,
         | 
| 2048 | 
            +
                  "rstrip": false,
         | 
| 2049 | 
            +
                  "single_word": false,
         | 
| 2050 | 
            +
                  "special": true
         | 
| 2051 | 
            +
                },
         | 
| 2052 | 
            +
                "128256": {
         | 
| 2053 | 
            +
                  "content": "<img>",
         | 
| 2054 | 
            +
                  "lstrip": false,
         | 
| 2055 | 
            +
                  "normalized": false,
         | 
| 2056 | 
            +
                  "rstrip": false,
         | 
| 2057 | 
            +
                  "single_word": false,
         | 
| 2058 | 
            +
                  "special": true
         | 
| 2059 | 
            +
                },
         | 
| 2060 | 
            +
                "128257": {
         | 
| 2061 | 
            +
                  "content": "</img>",
         | 
| 2062 | 
            +
                  "lstrip": false,
         | 
| 2063 | 
            +
                  "normalized": false,
         | 
| 2064 | 
            +
                  "rstrip": false,
         | 
| 2065 | 
            +
                  "single_word": false,
         | 
| 2066 | 
            +
                  "special": true
         | 
| 2067 | 
            +
                },
         | 
| 2068 | 
            +
                "128258": {
         | 
| 2069 | 
            +
                  "content": "<IMG_CONTEXT>",
         | 
| 2070 | 
            +
                  "lstrip": false,
         | 
| 2071 | 
            +
                  "normalized": false,
         | 
| 2072 | 
            +
                  "rstrip": false,
         | 
| 2073 | 
            +
                  "single_word": false,
         | 
| 2074 | 
            +
                  "special": true
         | 
| 2075 | 
            +
                },
         | 
| 2076 | 
            +
                "128259": {
         | 
| 2077 | 
            +
                  "content": "<quad>",
         | 
| 2078 | 
            +
                  "lstrip": false,
         | 
| 2079 | 
            +
                  "normalized": false,
         | 
| 2080 | 
            +
                  "rstrip": false,
         | 
| 2081 | 
            +
                  "single_word": false,
         | 
| 2082 | 
            +
                  "special": true
         | 
| 2083 | 
            +
                },
         | 
| 2084 | 
            +
                "128260": {
         | 
| 2085 | 
            +
                  "content": "</quad>",
         | 
| 2086 | 
            +
                  "lstrip": false,
         | 
| 2087 | 
            +
                  "normalized": false,
         | 
| 2088 | 
            +
                  "rstrip": false,
         | 
| 2089 | 
            +
                  "single_word": false,
         | 
| 2090 | 
            +
                  "special": true
         | 
| 2091 | 
            +
                },
         | 
| 2092 | 
            +
                "128261": {
         | 
| 2093 | 
            +
                  "content": "<ref>",
         | 
| 2094 | 
            +
                  "lstrip": false,
         | 
| 2095 | 
            +
                  "normalized": false,
         | 
| 2096 | 
            +
                  "rstrip": false,
         | 
| 2097 | 
            +
                  "single_word": false,
         | 
| 2098 | 
            +
                  "special": true
         | 
| 2099 | 
            +
                },
         | 
| 2100 | 
            +
                "128262": {
         | 
| 2101 | 
            +
                  "content": "</ref>",
         | 
| 2102 | 
            +
                  "lstrip": false,
         | 
| 2103 | 
            +
                  "normalized": false,
         | 
| 2104 | 
            +
                  "rstrip": false,
         | 
| 2105 | 
            +
                  "single_word": false,
         | 
| 2106 | 
            +
                  "special": true
         | 
| 2107 | 
            +
                },
         | 
| 2108 | 
            +
                "128263": {
         | 
| 2109 | 
            +
                  "content": "<box>",
         | 
| 2110 | 
            +
                  "lstrip": false,
         | 
| 2111 | 
            +
                  "normalized": false,
         | 
| 2112 | 
            +
                  "rstrip": false,
         | 
| 2113 | 
            +
                  "single_word": false,
         | 
| 2114 | 
            +
                  "special": true
         | 
| 2115 | 
            +
                },
         | 
| 2116 | 
            +
                "128264": {
         | 
| 2117 | 
            +
                  "content": "</box>",
         | 
| 2118 | 
            +
                  "lstrip": false,
         | 
| 2119 | 
            +
                  "normalized": false,
         | 
| 2120 | 
            +
                  "rstrip": false,
         | 
| 2121 | 
            +
                  "single_word": false,
         | 
| 2122 | 
            +
                  "special": true
         | 
| 2123 | 
            +
                }
         | 
| 2124 | 
            +
              },
         | 
| 2125 | 
            +
              "bos_token": "<|begin_of_text|>",
         | 
| 2126 | 
            +
              "chat_template": [
         | 
| 2127 | 
            +
                {
         | 
| 2128 | 
            +
                  "name": "default",
         | 
| 2129 | 
            +
                  "template": "{{bos_token}}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
         | 
| 2130 | 
            +
                },
         | 
| 2131 | 
            +
                {
         | 
| 2132 | 
            +
                  "name": "tool_use",
         | 
| 2133 | 
            +
                  "template": "{%- macro json_to_python_type(json_spec) %}\n{%- set basic_type_map = {\n    \"string\": \"str\",\n    \"number\": \"float\",\n    \"integer\": \"int\",\n    \"boolean\": \"bool\"\n} %}\n\n{%- if basic_type_map[json_spec.type] is defined %}\n    {{- basic_type_map[json_spec.type] }}\n{%- elif json_spec.type == \"array\" %}\n    {{- \"list[\" +  json_to_python_type(json_spec|items) + \"]\"}}\n{%- elif json_spec.type == \"object\" %}\n    {%- if json_spec.additionalProperties is defined %}\n        {{- \"dict[str, \" + json_to_python_type(json_spec.additionalProperties) + ']'}}\n    {%- else %}\n        {{- \"dict\" }}\n    {%- endif %}\n{%- elif json_spec.type is iterable %}\n    {{- \"Union[\" }}\n    {%- for t in json_spec.type %}\n      {{- json_to_python_type({\"type\": t}) }}\n      {%- if not loop.last %}\n        {{- \",\" }} \n    {%- endif %}\n    {%- endfor %}\n    {{- \"]\" }}\n{%- else %}\n    {{- \"Any\" }}\n{%- endif %}\n{%- endmacro %}\n\n\n{{- bos_token }}\n{{- \"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> \" }}\n{%- for tool in tools %}\n    {%- if tool.function is defined %}\n        {%- set tool = tool.function %}\n    {%- endif %}\n    {{- '{\"type\": \"function\", \"function\": ' }}\n    {{- '{\"name\": ' + tool.name + '\", ' }}\n    {{- '\"description\": \"' + tool.name + '(' }}\n    {%- for param_name, param_fields in tool.parameters.properties|items %}\n        {{- param_name + \": \" + json_to_python_type(param_fields) }}\n        {%- if not loop.last %}\n            {{- \", \" }}\n        {%- endif %}\n    {%- endfor %}\n    {{- \")\" }}\n    {%- if tool.return is defined %}\n        {{- \" -> \" + json_to_python_type(tool.return) }}\n    {%- endif %}\n    {{- \" - \" + tool.description + \"\\n\\n\" }}\n    {%- for param_name, param_fields in tool.parameters.properties|items %}\n        {%- if loop.first %}\n            {{- \"    Args:\\n\" }}\n        {%- endif %}\n        {{- \"        \" + param_name + \"(\" + json_to_python_type(param_fields) + \"): \" + param_fields.description|trim }}\n    {%- endfor %}\n    {%- if tool.return is defined and tool.return.description is defined %}\n        {{- \"\\n    Returns:\\n        \" + tool.return.description }}\n    {%- endif %}\n    {{- '\"' }}\n    {{- ', \"parameters\": ' }}\n    {%- if tool.parameters.properties | length == 0 %}\n        {{- \"{}\" }}\n    {%- else %}\n        {{- tool.parameters|tojson }}\n    {%- endif %}\n    {{- \"}\" }}\n    {%- if not loop.last %}\n        {{- \"\\n\" }}\n    {%- endif %}\n{%- endfor %}\n{{- \" </tools>\" }}\n{{- 'Use the following pydantic model json schema for each tool call you will make: {\"properties\": {\"arguments\": {\"title\": \"Arguments\", \"type\": \"object\"}, \"name\": {\"title\": \"Name\", \"type\": \"string\"}}, \"required\": [\"arguments\", \"name\"], \"title\": \"FunctionCall\", \"type\": \"object\"}\n' }}\n{{- \"For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n\" }}\n{{- \"<tool_call>\n\" }}\n{{- '{\"arguments\": <args-dict>, \"name\": <function-name>}\n' }}\n{{- '</tool_call><|im_end|>' }}\n{%- for message in messages %}\n    {%- if message.role == \"user\" or message.role == \"system\" or (message.role == \"assistant\" and message.tool_calls is not defined) %}\n        {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n    {%- elif message.role == \"assistant\" %}\n        {{- '<|im_start|>' + message.role + '\\n<tool_call>\\n' }}\n        {%- for tool_call in message.tool_calls %}\n            {%- if tool_call.function is defined %}\n                {%- set tool_call = tool_call.function %}\n            {%- endif %}\n            {{- '{ ' }}\n            {%- if tool_call.arguments is defined %}\n                {{- '\"arguments\": ' }}\n                {{- tool_call.arguments|tojson }}\n                {{- ', '}}\n            {%- endif %}\n            {{- '\"name\": \"' }}\n            {{- tool_call.name }}\n            {{- '\"}' }}\n            {{- '\\n</tool_call> ' }}\n        {%- endfor %}\n        {{- '<|im_end|>\\n' }}\n    {%- elif message.role == \"tool\" %}\n        {%- if not message.name is defined %}\n            {{- raise_exception(\"Tool response dicts require a 'name' key indicating the name of the called function!\") }}\n        {%- endif %}\n        {{- '<|im_start|>' + message.role + '\\n<tool_response>\\n' }}\n        {{- '{\"name\": \"' }}\n        {{- message.name }}\n        {{- '\", \"content\": ' }}\n        {{- message.content|tojson + '}' }}\n        {{- '\\n</tool_response> <|im_end|>\\n' }} \n    {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n    {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n"
         | 
| 2134 | 
            +
                }
         | 
| 2135 | 
            +
              ],
         | 
| 2136 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 2137 | 
            +
              "eos_token": "<|im_end|>",
         | 
| 2138 | 
            +
              "model_input_names": [
         | 
| 2139 | 
            +
                "input_ids",
         | 
| 2140 | 
            +
                "attention_mask"
         | 
| 2141 | 
            +
              ],
         | 
| 2142 | 
            +
              "model_max_length": 8192,
         | 
| 2143 | 
            +
              "pad_token": "<|end_of_text|>",
         | 
| 2144 | 
            +
              "tokenizer_class": "PreTrainedTokenizerFast"
         | 
| 2145 | 
            +
            }
         | 
