nielsr HF Staff commited on
Commit
792a079
·
verified ·
1 Parent(s): 3014dbd

Improve model card: Update pipeline tag, add library name, and usage example

Browse files

This PR enhances the model card for the SeC model by:

- Updating the `pipeline_tag` from `mask-generation` to `image-segmentation` for more precise categorization of the Video Object Segmentation task. This will improve discoverability on the Hugging Face Hub.
- Adding `library_name: transformers` to correctly reflect the model's compatibility and usage with the Hugging Face Transformers library, enabling the "Use in Transformers" widget.
- Including a basic Python usage example to demonstrate how to load and interact with the model, making it easier for users to get started.

These changes will help users better understand the model's capabilities and how to use it within the Hugging Face ecosystem.

Files changed (1) hide show
  1. README.md +41 -5
README.md CHANGED
@@ -1,11 +1,12 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: mask-generation
4
  base_model:
5
- - OpenGVLab/InternVL2.5-4B
6
- - facebook/sam2.1-hiera-large
 
 
7
  tags:
8
- - SeC
 
9
  ---
10
 
11
  # SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
@@ -31,6 +32,41 @@ tags:
31
  | **SeC (Ours)** | **82.7** | **81.7** | **86.5** | **75.3** | **91.3** | **88.6** | **70.0** |
32
 
33
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  ## Citation
35
 
36
  If you find this project useful in your research, please consider citing:
 
1
  ---
 
 
2
  base_model:
3
+ - OpenGVLab/InternVL2.5-4B
4
+ - facebook/sam2.1-hiera-large
5
+ license: apache-2.0
6
+ pipeline_tag: image-segmentation
7
  tags:
8
+ - SeC
9
+ library_name: transformers
10
  ---
11
 
12
  # SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
 
32
  | **SeC (Ours)** | **82.7** | **81.7** | **86.5** | **75.3** | **91.3** | **88.6** | **70.0** |
33
 
34
  ---
35
+
36
+ ## Usage
37
+
38
+ You can load the SeC model and processor using the `transformers` library with `trust_remote_code=True`. For comprehensive video object segmentation and detailed usage instructions, please refer to the project's [GitHub repository](https://github.com/OpenIXCLab/SeC), particularly `demo.ipynb` for single video inference and `INFERENCE.md` for full inference and evaluation.
39
+
40
+ ```python
41
+ import torch
42
+ from transformers import AutoModel, AutoProcessor
43
+ from PIL import Image
44
+
45
+ # Load model and processor
46
+ model_name = "OpenIXCLab/SeC-4B"
47
+ # Ensure your environment has the necessary PyTorch and transformers versions as specified in the GitHub repo.
48
+ model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
49
+ processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
50
+
51
+ # Example: Assuming you have an image (e.g., a frame from a video) and a text query
52
+ # For full video processing, refer to the project's GitHub repository.
53
+ # Placeholder for an actual image path
54
+ # image = Image.open("path/to/your/image.jpg").convert("RGB")
55
+ # text_query = "segment the main object"
56
+
57
+ # # Prepare inputs
58
+ # inputs = processor(images=image, text=text_query, return_tensors="pt").to(model.device)
59
+
60
+ # # Perform inference
61
+ # with torch.no_grad():
62
+ # outputs = model(**inputs)
63
+
64
+ # The output format will vary depending on the model's implementation.
65
+ # Typically, for segmentation tasks, outputs might include logits or predicted masks.
66
+ # You will need to process these outputs further to visualize the segmentation.
67
+ print("Model loaded successfully. For actual inference with video data, please refer to the project's GitHub repository and demo.ipynb.")
68
+ ```
69
+
70
  ## Citation
71
 
72
  If you find this project useful in your research, please consider citing: