VladNA commited on
Commit
c948891
·
verified ·
1 Parent(s): 58bd4a1

Upload model.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. model.py +57 -0
model.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModel
2
+ import torch.nn as nn
3
+ from tasks import SECONDARY_TASKS
4
+ from huggingface_hub import PyTorchModelHubMixin
5
+
6
+ class BertMultiTask(nn.Module, PyTorchModelHubMixin):
7
+ def __init__(
8
+ self, model_name, extra_layer_sizes=[], dropout_rate=0.1, finetune: bool = False
9
+ ):
10
+ super(BertMultiTask, self).__init__()
11
+
12
+ self.model_name = model_name
13
+ self.extra_layer_sizes = extra_layer_sizes
14
+ self.dropout_rate = dropout_rate
15
+ self.finetune = finetune
16
+
17
+ self.bert = AutoModel.from_pretrained(model_name)
18
+ self.layers = nn.ModuleList()
19
+ if not finetune:
20
+ self.name = f"{model_name.split('/')[-1]}_all_tasks_{'_'.join(map(str, extra_layer_sizes))}"
21
+ for param in self.bert.parameters():
22
+ param.requires_grad = False
23
+ else:
24
+ self.name = f"{model_name.split('/')[-1]}_finetune_all_tasks_{'_'.join(map(str, extra_layer_sizes))}"
25
+ for param in self.bert.parameters():
26
+ param.requires_grad = True
27
+
28
+ prev_size = self.bert.config.hidden_size
29
+ for size in extra_layer_sizes:
30
+ self.layers.append(nn.Linear(prev_size, size))
31
+ self.layers.append(nn.ReLU())
32
+ self.layers.append(nn.Dropout(dropout_rate))
33
+ prev_size = size
34
+
35
+ self.reg_head = nn.Linear(prev_size, 1) # for education value
36
+
37
+ self.classification_heads = nn.ModuleDict()
38
+ for task_name, id_map in SECONDARY_TASKS.items():
39
+ self.classification_heads[task_name] = nn.Linear(prev_size, len(id_map))
40
+
41
+ def forward(self, input_ids, attention_mask):
42
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
43
+ pooled_output = outputs.pooler_output
44
+
45
+ x = pooled_output
46
+ for layer in self.layers:
47
+ x = layer(x)
48
+
49
+ reg_output = self.reg_head(x).squeeze(-1)
50
+ classes_outputs = {}
51
+ for task, head in self.classification_heads.items():
52
+ classes_outputs[task] = head(x)
53
+
54
+ return reg_output, classes_outputs
55
+
56
+ def model_unique_name(self) -> str:
57
+ return self.name