from transformers import AutoModel import torch.nn as nn from tasks import SECONDARY_TASKS from huggingface_hub import PyTorchModelHubMixin class BertMultiTask(nn.Module, PyTorchModelHubMixin): def __init__( self, model_name, extra_layer_sizes=[], dropout_rate=0.1, finetune: bool = False ): super(BertMultiTask, self).__init__() self.model_name = model_name self.extra_layer_sizes = extra_layer_sizes self.dropout_rate = dropout_rate self.finetune = finetune self.bert = AutoModel.from_pretrained(model_name) self.layers = nn.ModuleList() if not finetune: self.name = f"{model_name.split('/')[-1]}_all_tasks_{'_'.join(map(str, extra_layer_sizes))}" for param in self.bert.parameters(): param.requires_grad = False else: self.name = f"{model_name.split('/')[-1]}_finetune_all_tasks_{'_'.join(map(str, extra_layer_sizes))}" for param in self.bert.parameters(): param.requires_grad = True prev_size = self.bert.config.hidden_size for size in extra_layer_sizes: self.layers.append(nn.Linear(prev_size, size)) self.layers.append(nn.ReLU()) self.layers.append(nn.Dropout(dropout_rate)) prev_size = size self.reg_head = nn.Linear(prev_size, 1) # for education value self.classification_heads = nn.ModuleDict() for task_name, id_map in SECONDARY_TASKS.items(): self.classification_heads[task_name] = nn.Linear(prev_size, len(id_map)) def forward(self, input_ids, attention_mask): outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) pooled_output = outputs.pooler_output x = pooled_output for layer in self.layers: x = layer(x) reg_output = self.reg_head(x).squeeze(-1) classes_outputs = {} for task, head in self.classification_heads.items(): classes_outputs[task] = head(x) return reg_output, classes_outputs def model_unique_name(self) -> str: return self.name