XY_Tokenizer_TTSD_V0_hf / modeling_xy_tokenizer.py
MCplayer's picture
support auto model for moss-ttsd
afc7015
raw
history blame
61.8 kB
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformers XYTokenizer model."""
import math
from collections import defaultdict
from dataclasses import asdict, dataclass
from typing import Optional, Tuple, Union, List
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils.parametrizations import weight_norm
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedAudioTokenizerBase
from transformers.utils import ModelOutput, logging
from transformers.feature_extraction_utils import BatchFeature
from .configuration_xy_tokenizer import XYTokenizerConfig
from .feature_extraction_xy_tokenizer import ExtractorIterator
logger = logging.get_logger(__name__)
# ----------------------------------------------- #
# Model Output Dataclasses #
# ----------------------------------------------- #
@dataclass
class XYTokenizerEncodeOutput(ModelOutput):
"""
Output type of [`XYTokenizerModel.encode`].
Args:
quantized_representation (`torch.FloatTensor` of shape `(batch_size, hidden_dim, sequence_length)`):
The quantized continuous representation of the input audio. This is the output of the quantizer.
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
The discrete codes from the quantizer for each codebook.
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`):
The valid length of each sequence in `audio_codes`.
commit_loss (`torch.FloatTensor`, *optional*):
The commitment loss from the vector quantizer.
overlap_seconds (`int`, *optional*):
The duration of the overlap in seconds between adjacent audio chunks.
"""
quantized_representation: torch.FloatTensor = None
audio_codes: torch.LongTensor = None
codes_lengths: torch.LongTensor = None
commit_loss: Optional[torch.FloatTensor] = None
overlap_seconds: Optional[int] = None
@dataclass
class XYTokenizerDecodeOutput(ModelOutput):
"""
Output type of [`XYTokenizerModel.decode`].
Args:
audio_values (`torch.FloatTensor` of shape `(batch_size, 1, sequence_length)`):
The reconstructed audio waveform.
output_length (`torch.LongTensor` of shape `(batch_size,)`):
The valid length of each sequence in `audio_values`.
"""
audio_values: torch.FloatTensor = None
output_length: Optional[torch.LongTensor] = None
@dataclass
class XYTokenizerModelOutput(ModelOutput):
"""
Output type of [`XYTokenizerModel`]'s forward pass.
Args:
audio_values (`torch.FloatTensor` of shape `(batch_size, 1, sequence_length)`):
The reconstructed audio waveform.
output_length (`torch.LongTensor` of shape `(batch_size,)`):
The valid length of each sequence in `audio_values`.
quantized_representation (`torch.FloatTensor` of shape `(batch_size, hidden_dim, sequence_length)`):
The quantized continuous representation of the input audio. This is the output of the quantizer.
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
The discrete codes from the quantizer for each codebook.
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`):
The valid length of each sequence in `audio_codes`.
commit_loss (`torch.FloatTensor`, *optional*):
The commitment loss from the vector quantizer.
"""
audio_values: torch.FloatTensor = None
output_length: torch.LongTensor = None
quantized_representation: torch.FloatTensor = None
audio_codes: torch.LongTensor = None
codes_lengths: torch.LongTensor = None
commit_loss: Optional[torch.FloatTensor] = None
@dataclass
class VectorQuantizerConfig:
"""Configuration for the VectorQuantize module."""
commitment: float = 1.0
decay: float = 0.99
epsilon: float = 1e-5
threshold_ema_dead: int = 2
kmeans_init: bool = True
kmeans_iters: int = 10
# ----------------------------------------------- #
# All Helper Modules (Copied from source) #
# ----------------------------------------------- #
def sinusoids(length, channels, max_timescale=10000, device=None):
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length, device=device)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
def get_sequence_mask(inputs, inputs_length):
if inputs.dim() == 3:
bsz, tgt_len, _ = inputs.size()
else:
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length)
sequence_mask = torch.arange(0, tgt_len, device=inputs.device)
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1)
return sequence_mask
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class VarLenAttention(nn.Module):
def __init__(self, embed_dim, num_heads, causal=False, dropout=0.0):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.causal = causal
self.dropout = nn.Dropout(dropout)
self.scaling = self.head_dim ** -0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
def _create_attention_mask(self, seq_len, max_len, device, dtype):
bsz = seq_len.size(0)
mask = torch.ones(bsz, 1, max_len, max_len, device=device, dtype=dtype)
seq_indices = torch.arange(max_len, device=device).unsqueeze(0)
seq_len_expanded = seq_len.unsqueeze(1)
valid_mask = seq_indices < seq_len_expanded.unsqueeze(-1)
mask = mask * (valid_mask.unsqueeze(2) & valid_mask.unsqueeze(3)).to(dtype)
if self.causal:
causal_mask = torch.triu(torch.ones(max_len, max_len, device=device, dtype=torch.bool), diagonal=1)
mask = mask * (~causal_mask.unsqueeze(0).unsqueeze(1)).to(dtype)
mask = mask + (1.0 - mask) * torch.finfo(dtype).min
return mask
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
bsz, max_len, _ = hidden_states.size()
query = self.q_proj(hidden_states) * self.scaling
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = query.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)
key = key.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)
value = value.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)
attn_scores = torch.matmul(query, key.transpose(-1, -2))
attn_mask = self._create_attention_mask(seq_len, max_len, hidden_states.device, attn_scores.dtype)
attn_scores = attn_scores + attn_mask
attn_weights = F.softmax(attn_scores, dim=-1)
attn_weights = self.dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, max_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output
class OmniWhisperMLP(nn.Module):
def __init__(self, activation_function="gelu", d_model=1280, ffn_dim=5120):
super().__init__()
self.activation_fn = ACT2FN[activation_function]
self.fc1 = nn.Linear(d_model, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, d_model)
def forward(self, hidden_states):
hidden_states = self.activation_fn(self.fc1(hidden_states))
return self.fc2(hidden_states)
class OmniWhisperTransformerLayer(nn.Module):
def __init__(self, activation_function="gelu", d_model=1280, attention_heads=20, ffn_dim=5120, causal=False, ln_type="LayerNorm", attn_type="varlen"):
super().__init__()
self.embed_dim = d_model
if attn_type != "varlen":
raise ValueError(f"Unknown attn_type: {attn_type}. Only 'varlen' is supported.")
self.self_attn = VarLenAttention(self.embed_dim, attention_heads, causal)
if ln_type == "LayerNorm":
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
elif ln_type == "RMSNorm":
self.self_attn_layer_norm = RMSNorm(self.embed_dim)
else:
raise ValueError(f"Unknown ln_type: {ln_type}")
self.mlp = OmniWhisperMLP(activation_function, d_model, ffn_dim)
if ln_type == "LayerNorm":
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
elif ln_type == "RMSNorm":
self.final_layer_norm = RMSNorm(self.embed_dim)
else:
raise ValueError(f"Unknown ln_type: {ln_type}")
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states, seq_len)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if (hidden_states.dtype == torch.float16 or hidden_states.dtype == torch.bfloat16) and \
(torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
return hidden_states
class OmniAudioEncoder(nn.Module):
def __init__(
self, num_mel_bins=128, sampling_rate=16000, hop_length=160, stride_size=2, kernel_size=3,
d_model=1280, scale_embedding=True, max_audio_seconds=30, encoder_layers=32,
encoder_attention_heads=20, encoder_ffn_dim=5120, activation_function="gelu", attn_type="varlen"
):
super().__init__()
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
self.num_mel_bins, self.d_model, self.stride_size = num_mel_bins, d_model, stride_size
self.conv1 = nn.Conv1d(num_mel_bins, d_model, kernel_size=kernel_size, padding=1)
self.conv2 = nn.Conv1d(d_model, d_model, kernel_size=kernel_size, stride=stride_size, padding=1)
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
self.layers = nn.ModuleList([
OmniWhisperTransformerLayer(activation_function, d_model, encoder_attention_heads, encoder_ffn_dim, False, attn_type=attn_type)
for _ in range(encoder_layers)
])
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, input_features, input_length, output_hidden_states=False):
input_features = input_features.to(self.conv1.weight.dtype)
inputs_embeds = F.gelu(self.conv1(input_features))
inputs_embeds = F.gelu(self.conv2(inputs_embeds))
output_length = (input_length // self.stride_size).long()
hidden_states = inputs_embeds.permute(0, 2, 1)
bsz, tgt_len, _ = hidden_states.size()
pos_embed = self.positional_embedding[:tgt_len] if tgt_len < self.positional_embedding.shape[0] else self.positional_embedding
hidden_states = (hidden_states.to(torch.float32) + pos_embed).to(hidden_states.dtype)
attention_mask = get_sequence_mask(hidden_states, output_length)
all_hidden = () if output_hidden_states else None
for layer in self.layers:
if output_hidden_states:
all_hidden += (hidden_states,)
hidden_states = layer(hidden_states, output_length)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden += (hidden_states,)
hidden_states = torch.where(attention_mask, hidden_states, 0).transpose(1, 2)
if not output_hidden_states:
return hidden_states, output_length
return hidden_states, output_length, all_hidden
class OmniAudioDecoder(nn.Module):
def __init__(
self, num_mel_bins=128, sampling_rate=16000, hop_length=160, stride_size=2, kernel_size=3,
d_model=1280, scale_embedding=True, max_audio_seconds=30, decoder_layers=32,
decoder_attention_heads=20, decoder_ffn_dim=5120, activation_function="gelu", attn_type="varlen"
):
super().__init__()
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
self.num_mel_bins, self.d_model, self.stride_size = num_mel_bins, d_model, stride_size
self.deconv1 = nn.ConvTranspose1d(d_model, d_model, kernel_size, stride_size, padding=0, output_padding=0)
self.deconv2 = nn.ConvTranspose1d(d_model, num_mel_bins, kernel_size, stride=1, padding=0)
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
self.layers = nn.ModuleList([
OmniWhisperTransformerLayer(activation_function, d_model, decoder_attention_heads, decoder_ffn_dim, False, attn_type=attn_type)
for _ in range(decoder_layers)
])
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, hidden_states, input_length):
hidden_states = hidden_states.transpose(1, 2)
bsz, tgt_len, _ = hidden_states.size()
pos_embed = self.positional_embedding[:tgt_len] if tgt_len < self.positional_embedding.shape[0] else self.positional_embedding
hidden_states = (hidden_states.to(torch.float32) + pos_embed).to(hidden_states.dtype)
attention_mask = get_sequence_mask(hidden_states, input_length)
for layer in self.layers:
hidden_states = layer(hidden_states, input_length)
hidden_states = self.layer_norm(hidden_states)
hidden_states = torch.where(attention_mask, hidden_states, 0).permute(0, 2, 1)
output_features = F.gelu(self.deconv1(hidden_states))
output_features = F.gelu(self.deconv2(output_features))
expected_length = tgt_len * self.stride_size
if output_features.size(2) > expected_length:
output_features = output_features[:, :, :expected_length]
output_length = input_length * self.stride_size
return output_features, output_length
class ResidualDownConv(nn.Module):
def __init__(self, d_model=1280, avg_pooler=4):
super().__init__()
self.d_model, self.avg_pooler = d_model, avg_pooler
self.intermediate_dim = d_model * avg_pooler
self.gate_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
self.up_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
self.down_proj = nn.Linear(self.intermediate_dim, self.intermediate_dim, bias=False)
self.act_fn = ACT2FN['silu']
self.layer_norm = nn.LayerNorm(self.intermediate_dim)
def forward(self, x, input_length):
output_length = input_length // self.avg_pooler
x = x.transpose(1, 2)
batch_size, seq_len, _ = x.shape
if seq_len % self.avg_pooler != 0:
pad_size = self.avg_pooler - seq_len % self.avg_pooler
x = F.pad(x, (0, 0, 0, pad_size), "constant", 0) # Pad sequence dim
xt = x.permute(0, 2, 1)
g, u = self.gate_proj(xt).permute(0, 2, 1), self.up_proj(xt).permute(0, 2, 1)
x = x.reshape(batch_size, -1, self.intermediate_dim)
c = self.down_proj(self.act_fn(g) * u)
res = self.layer_norm(c + x).transpose(1, 2)
return res, output_length
class UpConv(nn.Module):
def __init__(self, d_model=1280, stride=4):
super().__init__()
self.d_model, self.stride = d_model, stride
self.up_conv = nn.ConvTranspose1d(self.stride * d_model, d_model, stride, stride, bias=False)
def forward(self, x, input_length):
res = self.up_conv(x)
output_length = input_length * self.stride
return res, output_length
class Transformer(nn.Module):
def __init__(
self, input_dim=1280, d_model=1280, output_dim=1280, max_source_positions=1500,
encoder_layers=32, encoder_attention_heads=20, encoder_ffn_dim=5120,
activation_function="gelu", attn_type="varlen"
):
super().__init__()
self.input_dim, self.d_model, self.output_dim, self.max_source_positions = input_dim, d_model, output_dim, max_source_positions
self.proj = nn.Linear(input_dim, d_model, bias=True) if input_dim != d_model else None
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
self.layers = nn.ModuleList([
OmniWhisperTransformerLayer(activation_function, d_model, encoder_attention_heads, encoder_ffn_dim, False, attn_type=attn_type)
for _ in range(encoder_layers)
])
self.layer_norm = nn.LayerNorm(d_model)
self.out_proj = nn.Linear(d_model, output_dim, bias=True) if output_dim != d_model else None
def forward(self, input_features, input_length, output_hidden_states=False):
output_length = input_length.long()
hidden_states = self.proj(input_features.permute(0, 2, 1)).permute(0, 2, 1) if self.proj else input_features
hidden_states = hidden_states.permute(0, 2, 1)
bsz, tgt_len, _ = hidden_states.size()
pos_embed = self.positional_embedding[:tgt_len] if tgt_len < self.positional_embedding.shape[0] else self.positional_embedding
hidden_states = (hidden_states.to(torch.float32) + pos_embed).to(hidden_states.dtype)
attention_mask = get_sequence_mask(hidden_states, output_length)
all_hidden = () if output_hidden_states else None
for layer in self.layers:
if output_hidden_states:
all_hidden += (hidden_states,)
hidden_states = layer(hidden_states, output_length)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden += (hidden_states,)
hidden_states = torch.where(attention_mask, hidden_states, 0).transpose(1, 2)
if self.out_proj:
hidden_states = self.out_proj(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
if not output_hidden_states:
return hidden_states, output_length
return hidden_states, output_length, all_hidden
# Note: The other helper classes like STFT, ISTFT, Vocos, VectorQuantize, etc.,
# would be placed here. For brevity, they are omitted but are required dependencies.
# Assuming they are defined in the same way as the user provided code.
# The code below will assume these classes are defined in the current scope.
# ... [Paste all other helper classes here] ...
class ISTFT(nn.Module):
def __init__(self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding, self.n_fft, self.hop_length, self.win_length = padding, n_fft, hop_length, win_length
self.register_buffer("window", torch.hann_window(win_length))
def forward(self, spec: torch.Tensor) -> torch.Tensor:
if self.padding == "center":
return torch.istft(spec, self.n_fft, self.hop_length, self.win_length, self.window, center=True)
elif self.padding == "same":
pad = (self.win_length - self.hop_length) // 2
else:
raise ValueError("Padding must be 'center' or 'same'.")
B, N, T = spec.shape
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") * self.window[None, :, None]
output_size = (T - 1) * self.hop_length + self.win_length
y = F.fold(ifft, (1, output_size), (1, self.win_length), stride=(1, self.hop_length))[:, 0, 0, pad:-pad]
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
window_envelope = torch.nn.functional.fold(
window_sq,
output_size=(1, output_size),
kernel_size=(1, self.win_length),
stride=(1, self.hop_length),
).squeeze()[pad:-pad]
assert (window_envelope > 1e-11).all()
return y / window_envelope
class FourierHead(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError("Subclasses must implement the forward method.")
class ISTFTHead(FourierHead):
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
super().__init__()
self.out = nn.Linear(dim, n_fft + 2)
self.istft = ISTFT(n_fft, hop_length, n_fft, padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.out(x).transpose(1, 2)
mag, p = x.chunk(2, dim=1)
mag = torch.exp(mag).clip(max=1e2)
s = mag.float() * (torch.cos(p).float() + 1j * torch.sin(p).float())
return self.istft(s).to(x.dtype)
class AdaLayerNorm(nn.Module):
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
super().__init__()
self.eps, self.dim = eps, embedding_dim
self.scale = nn.Embedding(num_embeddings, embedding_dim)
self.shift = nn.Embedding(num_embeddings, embedding_dim)
torch.nn.init.ones_(self.scale.weight)
torch.nn.init.zeros_(self.shift.weight)
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
scale, shift = self.scale(cond_embedding_id), self.shift(cond_embedding_id)
x = F.layer_norm(x, (self.dim,), eps=self.eps)
return x * scale + shift
class ConvNeXtBlock(nn.Module):
def __init__(self, dim, intermediate_dim, layer_scale_init_value, adanorm_num_embeddings=None):
super().__init__()
self.dwconv = nn.Conv1d(dim, dim, 7, 1, 3, groups=dim)
self.adanorm = adanorm_num_embeddings is not None
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim) if self.adanorm else nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, intermediate_dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(intermediate_dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None
def forward(self, x, cond_embedding_id=None):
res = x
x = self.dwconv(x).transpose(1, 2)
x = self.norm(x, cond_embedding_id) if self.adanorm else self.norm(x)
x = self.pwconv2(self.act(self.pwconv1(x)))
if self.gamma is not None:
x = self.gamma * x
x = res + x.transpose(1, 2)
return x
class Backbone(nn.Module):
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
raise NotImplementedError("Subclasses must implement the forward method.")
class VocosBackbone(Backbone):
def __init__(self, input_channels, dim, intermediate_dim, num_layers, layer_scale_init_value=None, adanorm_num_embeddings=None):
super().__init__()
self.input_channels, self.embed = input_channels, nn.Conv1d(input_channels, dim, 7, 1, 3)
self.adanorm = adanorm_num_embeddings is not None
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim) if self.adanorm else nn.LayerNorm(dim, eps=1e-6)
self.convnext = nn.ModuleList([ConvNeXtBlock(dim, intermediate_dim, layer_scale_init_value or 1/num_layers, adanorm_num_embeddings) for _ in range(num_layers)])
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
x = self.embed(x).transpose(1, 2)
x = self.norm(x, kwargs.get("bandwidth_id")) if self.adanorm else self.norm(x)
x = x.transpose(1, 2)
for block in self.convnext:
x = block(x, kwargs.get("bandwidth_id"))
return self.final_layer_norm(x.transpose(1, 2))
class Vocos(nn.Module):
def __init__(self, input_channels=128, dim=512, intermediate_dim=4096, num_layers=30, n_fft=640, hop_size=160, padding="same", adanorm_num_embeddings=None):
super().__init__()
self.backbone = VocosBackbone(input_channels, dim, intermediate_dim, num_layers, adanorm_num_embeddings=adanorm_num_embeddings)
self.head = ISTFTHead(dim, n_fft, hop_size, padding)
self.hop_size = hop_size
def forward(self, x, input_length):
x = self.backbone(x)
x = self.head(x)
return x[:, None, :], input_length * self.hop_size
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def ema_inplace(moving_avg, new, decay):
moving_avg.data.mul_(decay).add_(new.float(), alpha=(1 - decay))
def sample_vectors(samples, num):
num_samples, device = samples.shape[0], samples.device
indices = torch.randperm(num_samples, device=device)[:num] if num_samples >= num else torch.randint(0, num_samples, (num,), device=device)
return samples[indices].float()
def kmeans(samples, num_clusters, num_iters=10):
dim, means = samples.shape[-1], sample_vectors(samples, num_clusters).float()
for _ in range(num_iters):
dists = -(samples.float().pow(2).sum(1, keepdim=True) - 2 * samples.float() @ means.t() + means.t().float().pow(2).sum(0, keepdim=True))
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=torch.float32).scatter_add_(0, buckets.unsqueeze(1).expand(-1, dim), samples.float()) / bins_min_clamped[..., None]
means = torch.where(zero_mask[..., None], means, new_means)
dists = -(samples.float().pow(2).sum(1, keepdim=True) - 2 * samples.float() @ means.t() + means.t().float().pow(2).sum(0, keepdim=True))
return means, torch.bincount(dists.max(dim=-1).indices, minlength=num_clusters).float()
class VectorQuantize(nn.Module):
def __init__(self, input_dim, codebook_size, codebook_dim, commitment=1.0, decay=0.99, epsilon=1e-5, threshold_ema_dead=2, kmeans_init=True, kmeans_iters=10):
super().__init__()
self.input_dim, self.codebook_size, self.codebook_dim = input_dim, codebook_size, codebook_dim
self.commitment, self.decay, self.epsilon, self.threshold_ema_dead = commitment, decay, epsilon, threshold_ema_dead
self.kmeans_init, self.kmeans_iters = kmeans_init, kmeans_iters
self.in_project = WNConv1d(input_dim, codebook_dim, 1) if input_dim != codebook_dim else nn.Identity()
self.out_project = WNConv1d(codebook_dim, input_dim, 1) if codebook_dim != input_dim else nn.Identity()
self.register_buffer("codebook", torch.zeros(codebook_size, codebook_dim) if kmeans_init else torch.randn(codebook_size, codebook_dim))
self.register_buffer("inited", torch.tensor(not kmeans_init, dtype=torch.bool))
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed_avg", self.codebook.clone())
def ema_update(self, encodings, embed_onehot):
encodings, embed_onehot = encodings.float(), embed_onehot.float()
cluster_size_new, embed_sum = embed_onehot.sum(0), encodings.t() @ embed_onehot
if dist.is_initialized():
dist.all_reduce(cluster_size_new)
dist.all_reduce(embed_sum)
ema_inplace(self.cluster_size, cluster_size_new, self.decay)
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (self.cluster_size + self.epsilon) / (self.cluster_size.sum() + self.codebook_size * self.epsilon) * self.cluster_size.sum()
self.codebook.copy_(self.embed_avg / cluster_size.unsqueeze(1))
def replace_dead_codes(self, encodings):
if self.threshold_ema_dead == 0: return
dead_mask = self.cluster_size < self.threshold_ema_dead
if dead_mask.any():
samples = sample_vectors(encodings.float(), self.codebook_size) if not dist.is_initialized() or dist.get_rank() == 0 else torch.zeros_like(self.codebook)
if dist.is_initialized(): dist.broadcast(samples, src=0)
self.codebook[dead_mask] = samples[:dead_mask.sum()].to(self.codebook.dtype)
def init_codebook(self, encodings):
if self.inited.item(): return
if not dist.is_initialized() or dist.get_rank() == 0:
embed, cluster_sizes = kmeans(encodings.float(), self.codebook_size, self.kmeans_iters)
else:
embed, cluster_sizes = torch.zeros(self.codebook_size, self.codebook_dim, device=encodings.device), torch.zeros(self.codebook_size, device=encodings.device)
if dist.is_initialized():
dist.broadcast(embed, src=0)
dist.broadcast(cluster_sizes, src=0)
self.codebook.copy_(embed)
self.embed_avg.copy_(embed.clone())
self.cluster_size.copy_(cluster_sizes)
self.inited.fill_(True)
def forward(self, z):
z_e = self.in_project(z.float())
encodings = rearrange(z_e, "b d t -> (b t) d")
if self.kmeans_init and not self.inited.item(): self.init_codebook(encodings)
dist = encodings.pow(2).sum(1, keepdim=True) - 2 * encodings @ self.codebook.float().t() + self.codebook.float().pow(2).sum(1, keepdim=True).t()
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=z.size(0))
z_q = self.decode_code(indices)
commit_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) * self.commitment
if self.training and torch.is_grad_enabled():
self.ema_update(encodings, F.one_hot(indices.view(-1), self.codebook_size))
self.replace_dead_codes(encodings)
z_q = self.out_project(z_e + (z_q - z_e).detach())
return z_q, commit_loss, torch.tensor(0.0, device=z.device), indices, z_e
def decode_code(self, embed_id):
return F.embedding(embed_id, self.codebook.float()).transpose(1, 2)
class ResidualVQ(nn.Module):
def __init__(
self,
input_dim: int = 1280,
rvq_dim: int = None,
output_dim: int = None,
num_quantizers: int = 32,
codebook_size: int = 1024,
codebook_dim: int = 8,
quantizer_dropout: float = 0.5,
skip_rvq_ratio: float = 0.0,
vq_config: VectorQuantizerConfig = None,
**kwargs
):
super().__init__()
self.input_dim, self.rvq_dim, self.output_dim = input_dim, rvq_dim, output_dim or input_dim
self.num_quantizers, self.codebook_size, self.codebook_dim = num_quantizers, codebook_size, codebook_dim
self.quantizer_dropout, self.skip_rvq_ratio = quantizer_dropout, skip_rvq_ratio
self.input_proj = WNConv1d(input_dim, rvq_dim, 1) if input_dim != rvq_dim else nn.Identity()
self.output_proj = WNConv1d(rvq_dim, self.output_dim, 1) if rvq_dim != self.output_dim else nn.Identity()
if vq_config is None:
vq_config = VectorQuantizerConfig()
quantizer_kwargs = asdict(vq_config)
self.quantizers = nn.ModuleList([VectorQuantize(rvq_dim, codebook_size, codebook_dim, **quantizer_kwargs, **kwargs) for _ in range(num_quantizers)])
def forward(self, z, input_length, n_quantizers: int = None):
z = self.input_proj(z)
with torch.autocast('cuda', enabled=False):
batch_size, _, max_time = z.shape
device = z.device
mask = torch.arange(max_time, device=device).expand(batch_size, max_time) < input_length.unsqueeze(1)
quantized_out = torch.zeros_like(z)
residual = z.clone().float()
all_commit_losses = []
all_indices = []
all_quantized = []
# --- Complexity Reduction Start ---
# 1. Extracted logic for determining quantizer numbers and skip mask
n_q_tensor = self._get_n_quantizers_tensor(batch_size, device, n_quantizers)
skip_mask = self._get_skip_mask(batch_size, device)
# --- Complexity Reduction End ---
max_q_to_run = self.num_quantizers if self.training else (n_quantizers or self.num_quantizers)
for i, quantizer in enumerate(self.quantizers[:max_q_to_run]):
# Create a mask for which batch items are active in this iteration
active_in_iteration_mask = (i < n_q_tensor)
# Skip quantization for items that are not active
if not active_in_iteration_mask.any():
# If no items are active, we can add placeholders and continue
# This branch is less common but handles the case where all items have dropped out
all_commit_losses.append(torch.tensor(0.0, device=device))
all_indices.append(torch.zeros(batch_size, max_time, dtype=torch.long, device=device))
all_quantized.append(torch.zeros_like(z))
continue
masked_residual = residual * mask.unsqueeze(1)
# --- Complexity Reduction Start ---
# 2. Extracted quantization step logic
z_q_i, commit_loss_i, indices_i = self._quantize_step(quantizer, masked_residual, skip_mask)
# --- Complexity Reduction End ---
# Create a mask for updating tensors (batch items active in this iteration AND within valid length)
update_mask = (active_in_iteration_mask.view(-1, 1, 1) & mask.unsqueeze(1))
quantized_out += z_q_i * update_mask
residual -= z_q_i * update_mask
# Calculate average commitment loss only for active items
commit_loss_i = commit_loss_i[active_in_iteration_mask].mean() if active_in_iteration_mask.any() else torch.tensor(0.0, device=device)
all_commit_losses.append(commit_loss_i)
all_indices.append(indices_i)
all_quantized.append(z_q_i)
# Pad the outputs if the loop was exited early (e.g., in eval mode with n_quantizers)
num_loops_done = len(all_commit_losses)
if num_loops_done < self.num_quantizers:
remaining = self.num_quantizers - num_loops_done
all_commit_losses.extend([torch.tensor(0.0, device=device)] * remaining)
all_indices.extend([torch.zeros(batch_size, max_time, dtype=torch.long, device=device)] * remaining)
all_quantized.extend([torch.zeros_like(z)] * remaining)
quantized_out = self.output_proj(quantized_out)
all_indices_tensor = torch.stack(all_indices)
all_commit_losses_tensor = torch.stack(all_commit_losses)
all_quantized_tensor = torch.stack(all_quantized)
return (
quantized_out,
all_indices_tensor,
all_commit_losses_tensor,
all_quantized_tensor,
input_length,
)
def decode_codes(self, codes):
nq, B, T = codes.shape
emb = torch.zeros(B, self.rvq_dim, T, device=codes.device, dtype=torch.float32)
for i, quantizer in enumerate(self.quantizers[:nq]):
emb += quantizer.decode_code(codes[i])
return self.output_proj(emb)
def _get_n_quantizers_tensor(self, batch_size: int, device: torch.device, n_quantizers_override: Optional[int] = None) -> torch.Tensor:
"""
Determines the number of quantizers to use for each item in the batch,
applying dropout during training.
"""
# If not training or dropout is disabled, use the override or default number of quantizers
is_training = self.training and torch.is_grad_enabled()
if not is_training or self.quantizer_dropout == 0:
num_q = n_quantizers_override or self.num_quantizers
return torch.full((batch_size,), num_q, dtype=torch.long, device=device)
# During training, apply quantizer dropout
n_q_tensor = torch.full((batch_size,), self.num_quantizers, device=device)
n_dropout = int(batch_size * self.quantizer_dropout)
if n_dropout > 0:
dropout_indices = torch.randperm(batch_size, device=device)[:n_dropout]
dropout_values = torch.randint(1, self.num_quantizers + 1, (n_dropout,), device=device)
n_q_tensor[dropout_indices] = dropout_values
return n_q_tensor
def _get_skip_mask(self, batch_size: int, device: torch.device) -> Optional[torch.Tensor]:
"""Generates a mask for skipping RVQ during training if skip_rvq_ratio > 0."""
is_training = self.training and torch.is_grad_enabled()
if not is_training or self.skip_rvq_ratio <= 0:
return None
skip_mask = torch.rand(batch_size, device=device) < self.skip_rvq_ratio
# Ensure at least one sample is not skipped to avoid errors in modules like DDP
if skip_mask.all():
skip_mask[0] = False
return skip_mask
def _quantize_step(self, quantizer, residual, skip_mask):
"""Helper to perform one step of quantization, handling the skip logic."""
# The main logic is for non-skipped samples
z_q_i, commit_loss_i, _, indices_i, z_e_i = quantizer(residual.float())
# If skipping is active, overwrite the results for the masked samples
if skip_mask is not None:
# For skipped samples, the "quantized" output is the residual itself
# and the loss is zero.
skip_mask_expanded = skip_mask.view(-1, 1, 1)
z_q_i = torch.where(skip_mask_expanded, residual, z_q_i)
commit_loss_i = torch.where(skip_mask, torch.zeros_like(commit_loss_i), commit_loss_i)
return z_q_i, commit_loss_i, indices_i
# ----------------------------------------------- #
# PreTrainedModel Base Class #
# ----------------------------------------------- #
class XYTokenizerPreTrainedModel(PreTrainedAudioTokenizerBase):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XYTokenizerConfig
base_model_prefix = "xy_tokenizer"
main_input_name = "input_values"
_supports_grad_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (OmniAudioEncoder, OmniAudioDecoder, Transformer)):
module.gradient_checkpointing = value
# ----------------------------------------------- #
# Main Model Class #
# ----------------------------------------------- #
class XYTokenizerModel(XYTokenizerPreTrainedModel):
def __init__(self, config: XYTokenizerConfig):
super().__init__(config)
# Reconstruct the nested parameter dictionaries from the flat config
# This is a bit of a boilerplate but necessary to reuse the original module code.
# A more integrated approach would refactor the sub-modules to accept the flat config directly.
self.config = config
params = config.params
self.semantic_encoder = OmniAudioEncoder(**params['semantic_encoder_kwargs'])
self.semantic_encoder_adapter = Transformer(**params['semantic_encoder_adapter_kwargs'])
self.acoustic_encoder = OmniAudioEncoder(**params['acoustic_encoder_kwargs'])
self.pre_rvq_adapter = Transformer(**params['pre_rvq_adapter_kwargs'])
self.downsample = ResidualDownConv(**params['downsample_kwargs'])
self.quantizer = ResidualVQ(**params['quantizer_kwargs'])
self.post_rvq_adapter = Transformer(**params['post_rvq_adapter_kwargs'])
self.upsample = UpConv(**params['upsample_kwargs'])
self.acoustic_decoder = OmniAudioDecoder(**params['acoustic_decoder_kwargs'])
self.enhanced_vocos = Vocos(**params['vocos_kwargs'])
self.feature_extractor = params['feature_extractor_kwargs']
# Store some config values for easier access
self.encoder_downsample_rate = config.encoder_downsample_rate
self.nq = params['quantizer_kwargs']['num_quantizers']
# Initialize weights and apply final processing
self.post_init()
def _get_feat_extract_output_lengths(self, input_lengths: Optional[torch.Tensor]):
"""
Computes the output lengths of the feature extractor.
"""
def _get_out_len(in_len):
return (in_len - self.feature_extractor["n_fft"]) // self.feature_extractor["hop_length"] + 1
if input_lengths is None:
return None
return torch.tensor([_get_out_len(l) for l in input_lengths], device=self.device)
def scale_window_size(self, boundaries, scaling_factor):
scaling_range = []
scaling_boundaries = []
for left_boundary, right_boundary in boundaries:
scaling_left_boundary = left_boundary// scaling_factor
scaling_right_boundary = right_boundary // scaling_factor
scaling_range.append(scaling_right_boundary-scaling_left_boundary)
scaling_boundaries.append(slice(scaling_left_boundary, scaling_right_boundary))
return scaling_range, scaling_boundaries
@torch.inference_mode
def encode(
self,
features: Union[BatchFeature, ExtractorIterator],
n_quantizers: Optional[int] = None,
return_dict: Optional[bool] = True,
) -> Union[XYTokenizerEncodeOutput, Tuple]:
r"""
Encodes the input audio waveform into discrete codes.
Args:
features (`BatchFeature` or `ExtractorIterator`):
A single batch of features or an iterator that yields batches of chunks for long audio files.
The iterator is expected to yield `BatchFeature` dicts which must contain a `sequence_ids`
tensor of shape `(batch_size,)` mapping each item in the chunk to its original sequence.
n_quantizers (`int`, *optional*):
The number of quantizers to use. If not specified, all quantizers are used.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
[`XYTokenizerEncodeOutput`] or `tuple(torch.FloatTensor)`
"""
assert isinstance(features, (BatchFeature, ExtractorIterator))
# Handle single batch case
if isinstance(features, BatchFeature):
return self._encode(features, n_quantizers, return_dict)
# Handle streaming/chunked case
else:
# Use a dictionary to group chunks by their original sequence ID
encodings = defaultdict(lambda: {"zq": [], "codes": [], "length": 0})
commit_losses = []
total_frames = 0
# 1. Iterate through chunks and store intermediate results
for chunk_features in features:
# Always use return_dict=True for easier access to named outputs
chunk_output = self._encode(chunk_features, n_quantizers, return_dict=True)
valid_code_lengths, valid_code_ranges = self.scale_window_size(chunk_features["input_lengths"], self.encoder_downsample_rate)
# Accumulate weighted commit loss
chunk_length = chunk_output.codes_lengths.sum().item()
valid_chunk_length = sum(valid_code_lengths)
if chunk_output.commit_loss is not None and valid_chunk_length > 0:
commit_loss = chunk_output.commit_loss / chunk_length * valid_chunk_length
commit_losses.append((commit_loss.cpu(), valid_chunk_length))
total_frames += valid_chunk_length
# Group results by original sequence ID
for i, seq_id in enumerate(chunk_features["chunk_seq_no"].tolist()):
valid_code_range = valid_code_ranges[i]
if valid_code_range.stop > 0:
encodings[seq_id]["zq"].append(chunk_output.quantized_representation[i:i+1, :, valid_code_range])
encodings[seq_id]["codes"].append(chunk_output.audio_codes[:, i:i+1, valid_code_range])
# Add the valid length of this chunk to the total for this sequence
encodings[seq_id]["length"] += valid_code_lengths[i]
final_outputs = []
for seq_id, seq_data in encodings.items():
final_outputs.append({
"zq": torch.cat(seq_data["zq"], dim=2),
"codes": torch.cat(seq_data["codes"], dim=2),
"length": seq_data["length"]
})
# 3. Pad all sequences to the same length and stack into a batch
max_len = max(seq["zq"].shape[2] for seq in final_outputs)
batch_zq = []
batch_codes = []
batch_lengths = []
for seq in final_outputs:
pad_amount = max_len - seq["zq"].shape[2]
# Pad on the right side of the last dimension (time)
padded_zq = F.pad(seq["zq"], (0, pad_amount))
padded_codes = F.pad(seq["codes"], (0, pad_amount))
batch_zq.append(padded_zq)
batch_codes.append(padded_codes)
batch_lengths.append(seq["length"])
# Stack the list of tensors into a single batch tensor
quantized_representation = torch.cat(batch_zq, dim=0)
audio_codes = torch.cat(batch_codes, dim=0)
codes_lengths = torch.tensor(batch_lengths, dtype=torch.long, device=self.device)
# 4. Calculate final commit loss
if total_frames > 0:
# Weighted average of commit losses
commit_loss = sum(loss * length for loss, length in commit_losses) / total_frames
commit_loss = commit_loss.to(self.device)
else:
commit_loss = torch.tensor(0.0, device=self.device)
if not return_dict:
return (quantized_representation, audio_codes, codes_lengths, commit_loss)
return XYTokenizerEncodeOutput(
quantized_representation=quantized_representation,
audio_codes=audio_codes,
codes_lengths=codes_lengths,
commit_loss=commit_loss,
overlap_seconds=features.overlap_seconds,
)
def _encode(
self,
features: BatchFeature,
n_quantizers: Optional[int] = None,
return_dict: Optional[bool] = True,
) -> Union[XYTokenizerEncodeOutput, Tuple]:
input_mel = features['input_features'].to(self.device, dtype=self.dtype)
mel_attention_mask = features['attention_mask'].to(self.device)
mel_output_length = mel_attention_mask.sum(dim=-1).long()
# --- Encoder Path ---
semantic_encoder_output, semantic_encoder_output_length = self.semantic_encoder(input_mel, mel_output_length)
semantic_adapter_output, _ = self.semantic_encoder_adapter(semantic_encoder_output, semantic_encoder_output_length)
acoustic_encoder_output, acoustic_encoder_output_length = self.acoustic_encoder(input_mel, mel_output_length)
concated_channel = torch.cat([semantic_adapter_output, acoustic_encoder_output], dim=1)
pre_rvq_adapter_output, pre_rvq_adapter_output_length = self.pre_rvq_adapter(concated_channel, acoustic_encoder_output_length)
downsample_output, downsample_output_length = self.downsample(pre_rvq_adapter_output, pre_rvq_adapter_output_length)
n_quantizers = n_quantizers or self.quantizer.num_quantizers
zq, codes, vq_loss, _, quantizer_output_length = self.quantizer(downsample_output, downsample_output_length, n_quantizers=n_quantizers)
if not return_dict:
return (zq, codes, quantizer_output_length, vq_loss)
return XYTokenizerEncodeOutput(
quantized_representation=zq,
audio_codes=codes,
codes_lengths=quantizer_output_length,
commit_loss=vq_loss.mean()
)
@torch.inference_mode
def decode(
self,
audio_codes: Union[torch.Tensor, XYTokenizerEncodeOutput],
overlap_seconds: int = 10,
return_dict: Optional[bool] = True,
) -> Union[XYTokenizerDecodeOutput, Tuple]:
r"""
Decodes discrete codes back into an audio waveform.
Args:
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
The discrete codes from the quantizer for each codebook.
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The valid length of each sequence in `audio_codes`. If not provided, it's assumed to be the full length.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
[`XYTokenizerDecodeOutput`] or `tuple(torch.FloatTensor)`
"""
assert not isinstance(audio_codes, tuple), "try to set param `return_dict=True` for `codec.encode()` function"
assert isinstance(audio_codes, (torch.Tensor, XYTokenizerEncodeOutput)), \
"only accept `torch.Tensor` or `XYTokenizerEncodeOutput` for `codec.decode()` function"
if isinstance(audio_codes, XYTokenizerEncodeOutput):
audio_codes = audio_codes.audio_codes
if hasattr(audio_codes, "overlap_seconds"):
overlap_seconds = audio_codes.overlap_seconds
if overlap_seconds is None:
overlap_seconds = 0
chunk_length = self.feature_extractor["chunk_length"]
duration_seconds = chunk_length - overlap_seconds
chunk_code_length = int(chunk_length * self.feature_extractor["sampling_rate"] // self.config.encoder_downsample_rate) # Maximum code length per chunk
duration_code_length = int(duration_seconds * self.feature_extractor["sampling_rate"] // self.config.encoder_downsample_rate) # Valid code length per chunk
duration_wav_length = duration_code_length * self.config.decoder_upsample_rate # Valid waveform length per chunk
# Get maximum code length
batch_size = audio_codes.shape[1]
codes_list = [audio_codes[:, i, :] for i in range(batch_size)]
max_code_length = max(codes.shape[-1] for codes in codes_list)
batch_size = len(codes_list)
codes_tensor = torch.zeros(self.nq, batch_size, max_code_length, device=self.device, dtype=torch.long)
code_lengths = torch.zeros(batch_size, dtype=torch.long, device=self.device)
for i, codes in enumerate(codes_list):
codes_tensor[:, i, :codes.shape[-1]] = codes.to(self.device)
code_lengths[i] = codes.shape[-1] # (B,)
# Calculate number of chunks needed
max_chunks = (max_code_length + duration_code_length - 1) // duration_code_length
wav_list = []
# Process the entire batch in chunks
for chunk_idx in range(max_chunks):
start = chunk_idx * duration_code_length
end = min(start + chunk_code_length, max_code_length)
chunk_codes = codes_tensor[:, :, start:end] # (nq, B, T')
chunk_code_lengths = torch.clamp(code_lengths - start, 0, end - start) # (B,)
# Skip empty chunks
if chunk_code_lengths.max() == 0:
continue
# Decode
result = self._decode(chunk_codes, chunk_code_lengths) # {"y": (B, 1, T'), "output_length": (B,)}
chunk_wav = result["audio_values"] # (B, 1, T')
chunk_wav_lengths = result["output_length"] # (B,)
# Extract valid portion
valid_wav_lengths = torch.clamp(chunk_wav_lengths, 0, duration_wav_length) # (B,)
valid_chunk_wav = torch.zeros(batch_size, 1, duration_wav_length, device=self.device)
for b in range(batch_size):
if valid_wav_lengths[b] > 0:
valid_chunk_wav[b, :, :valid_wav_lengths[b]] = chunk_wav[b, :, :valid_wav_lengths[b]] # (B, 1, valid_wav_length)
wav_list.append(valid_chunk_wav) # (B, 1, valid_wav_length)
# Concatenate all chunks
if wav_list:
wav_tensor = torch.cat(wav_list, dim=-1) # (B, 1, T_total)
syn_wav_list = [wav_tensor[i, :, :code_lengths[i] * self.config.decoder_upsample_rate] for i in range(batch_size)] # B * (1, T,)
else:
syn_wav_list = [torch.zeros(1, 0, device=self.device) for _ in range(batch_size)] # B * (1, 0,)
if not return_dict:
return (syn_wav_list,)
return XYTokenizerDecodeOutput(
audio_values=syn_wav_list
)
def _decode(
self,
audio_codes: torch.Tensor,
codes_lengths: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = True,
) -> Union[XYTokenizerDecodeOutput, Tuple]:
r"""
Decodes discrete codes back into an audio waveform.
Args:
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
The discrete codes from the quantizer for each codebook.
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
The valid length of each sequence in `audio_codes`. If not provided, it's assumed to be the full length.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
[`XYTokenizerDecodeOutput`] or `tuple(torch.FloatTensor)`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if codes_lengths is None:
codes_lengths = torch.full((audio_codes.shape[1],), audio_codes.shape[2], device=self.device)
# --- Decoder Path ---
zq = self.quantizer.decode_codes(audio_codes)
post_rvq_adapter_output, post_rvq_adapter_output_length = self.post_rvq_adapter(zq, codes_lengths)
upsample_output, upsample_output_length = self.upsample(post_rvq_adapter_output, post_rvq_adapter_output_length)
acoustic_decoder_output, acoustic_decoder_output_length = self.acoustic_decoder(upsample_output, upsample_output_length)
y, vocos_output_length = self.enhanced_vocos(acoustic_decoder_output, acoustic_decoder_output_length)
if not return_dict:
return (y, vocos_output_length)
return XYTokenizerDecodeOutput(
audio_values=y,
output_length=vocos_output_length
)
def forward(
self,
input_values: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
n_quantizers: Optional[int] = None,
return_dict: Optional[bool] = True,
) -> Union[XYTokenizerModelOutput, Tuple]:
r"""
The forward method that handles the full encoding and decoding process.
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of the input audio waveform.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices.
n_quantizers (`int`, *optional*):
The number of quantizers to use for encoding. If not specified, all quantizers are used.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Examples:
```python
>>> from transformers import AutoModel, AutoFeatureExtractor
>>> from datasets import load_dataset, Audio
>>> import torch
>>> # This is a placeholder model name, replace with the actual one on the Hub
>>> model_id = "your-namespace/xy-tokenizer-model"
>>> model = AutoModel.from_pretrained(model_id)
>>> # The feature extractor config is part of the model config, so it can be loaded this way
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
>>> # Load a dummy audio dataset
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> audio_sample = ds[0]["audio"]["array"]
>>> sampling_rate = ds[0]["audio"]["sampling_rate"]
>>> # Process audio
>>> inputs = feature_extractor(audio_sample, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")
>>> # Encode to get codes
>>> with torch.no_grad():
... encoder_output = model.encode(inputs["input_values"], attention_mask=inputs["attention_mask"])
... audio_codes = encoder_output.audio_codes
>>> # Decode from codes
>>> with torch.no_grad():
... decoder_output = model.decode(audio_codes)
... reconstructed_audio = decoder_output.audio_values
>>> # Full forward pass
>>> with torch.no_grad():
... model_output = model(**inputs)
... reconstructed_audio_fwd = model_output.audio_values
>>> print(reconstructed_audio.shape)
torch.Size([1, 1, 147200])
>>> print(torch.allclose(reconstructed_audio, reconstructed_audio_fwd))
True
```
Returns:
[`XYTokenizerModelOutput`] or `tuple(torch.FloatTensor)`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encode(
input_values=input_values,
attention_mask=attention_mask,
n_quantizers=n_quantizers,
return_dict=True
)
decoder_outputs = self.decode(
audio_codes=encoder_outputs,
return_dict=True
)
if not return_dict:
return (
decoder_outputs.audio_values,
decoder_outputs.output_length,
encoder_outputs.quantized_representation,
encoder_outputs.audio_codes,
encoder_outputs.codes_lengths,
encoder_outputs.commit_loss
)
return XYTokenizerModelOutput(
audio_values=decoder_outputs.audio_values,
output_length=decoder_outputs.output_length,
quantized_representation=encoder_outputs.quantized_representation,
audio_codes=encoder_outputs.audio_codes,
codes_lengths=encoder_outputs.codes_lengths,
commit_loss=encoder_outputs.commit_loss
)