Update MODEL_CARD.md
Browse files- MODEL_CARD.md +173 -158
MODEL_CARD.md
CHANGED
@@ -1,159 +1,174 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
-
|
56 |
-
-
|
57 |
-
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
-
|
86 |
-
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
-
|
94 |
-
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
-
|
108 |
-
-
|
109 |
-
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
```bash
|
130 |
-
|
131 |
-
```
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
-
|
136 |
-
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
```
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
library_name: openpeerllm
|
5 |
+
tags:
|
6 |
+
- distributed-training
|
7 |
+
- cloud-computing
|
8 |
+
- language-model
|
9 |
+
- grid-computing
|
10 |
+
- openpeerllm
|
11 |
+
datasets:
|
12 |
+
- OpenPeerAI/OpenPeerLLM
|
13 |
+
pipeline_tag: distributed-training
|
14 |
+
mask: sequential
|
15 |
+
|
16 |
+
# Model Card: Cloud Agents for OpenPeerLLM
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
- **Model Type:** Distributed Training System for Language Models
|
21 |
+
- **Primary Purpose:** Training Large Language Models in a distributed environment
|
22 |
+
- **Framework:** PyTorch with Ray
|
23 |
+
- **Target Model:** [OpenPeerLLM](https://huggingface.co/OpenPeerAI/OpenPeerLLM)
|
24 |
+
- **License:** MIT
|
25 |
+
|
26 |
+
## Intended Use
|
27 |
+
|
28 |
+
### Primary Use
|
29 |
+
|
30 |
+
- Distributed training of large language models
|
31 |
+
- Grid computing/distributed computing-based learning for tensors
|
32 |
+
- Horizontal scaling of model training infrastructure
|
33 |
+
|
34 |
+
### Out-of-Scope Uses
|
35 |
+
|
36 |
+
- Production deployment of models
|
37 |
+
- Single-machine training
|
38 |
+
- Real-time inference
|
39 |
+
|
40 |
+
## System Architecture
|
41 |
+
|
42 |
+
### Components
|
43 |
+
|
44 |
+
1. **Distributed Agents**
|
45 |
+
- Lightweight worker nodes for distributed computing
|
46 |
+
- Automatic scaling based on workload
|
47 |
+
- Built-in fault tolerance and recovery
|
48 |
+
|
49 |
+
2. **CouchDB Coordination Layer**
|
50 |
+
- Job distribution and management
|
51 |
+
- State synchronization
|
52 |
+
- Agent discovery and registration
|
53 |
+
|
54 |
+
3. **Tensor Operations**
|
55 |
+
- Distributed gradient computation
|
56 |
+
- Efficient parameter updates
|
57 |
+
- Gradient averaging and clipping
|
58 |
+
|
59 |
+
4. **Training Orchestration**
|
60 |
+
- Automated model checkpoint management
|
61 |
+
- Dynamic load balancing
|
62 |
+
- Progress monitoring and reporting
|
63 |
+
|
64 |
+
## Performance
|
65 |
+
|
66 |
+
### Scaling Characteristics
|
67 |
+
|
68 |
+
- **Minimum Agents:** 2
|
69 |
+
- **Maximum Agents:** 10 (configurable)
|
70 |
+
- **Scale-up Threshold:** 80% utilization
|
71 |
+
- **Scale-down Threshold:** 30% utilization
|
72 |
+
- **Auto-scaling:** Yes, based on workload
|
73 |
+
|
74 |
+
### Resource Requirements
|
75 |
+
|
76 |
+
- **Per Agent:**
|
77 |
+
- CPU: 1 core minimum
|
78 |
+
- GPU: Optional, supports fractional GPU allocation
|
79 |
+
- Memory: Varies based on model size
|
80 |
+
- Network: Reliable connection to CouchDB and other agents
|
81 |
+
|
82 |
+
## Limitations
|
83 |
+
|
84 |
+
1. **Network Dependency**
|
85 |
+
- Requires stable network connectivity between agents
|
86 |
+
- CouchDB must be accessible to all agents
|
87 |
+
|
88 |
+
2. **Scaling Limits**
|
89 |
+
- Upper bound on number of concurrent agents
|
90 |
+
- Network latency can impact synchronization
|
91 |
+
|
92 |
+
3. **Resource Management**
|
93 |
+
- Requires careful monitoring of resource utilization
|
94 |
+
- GPU memory management crucial for large models
|
95 |
+
|
96 |
+
## Training Details
|
97 |
+
|
98 |
+
### Training Data
|
99 |
+
|
100 |
+
- Uses the same training data as OpenPeerLLM
|
101 |
+
- Supports distributed batch processing
|
102 |
+
- Configurable gradient accumulation steps
|
103 |
+
|
104 |
+
### Training Procedure
|
105 |
+
|
106 |
+
1. **Initialization**
|
107 |
+
- Model weights loaded from HuggingFace hub
|
108 |
+
- Agents register with coordinator
|
109 |
+
- Initial state distributed to all agents
|
110 |
+
|
111 |
+
2. **Training Loop**
|
112 |
+
- Distributed gradient computation
|
113 |
+
- Synchronized parameter updates
|
114 |
+
- Regular checkpointing
|
115 |
+
- Automatic agent scaling
|
116 |
+
|
117 |
+
### Hyperparameters
|
118 |
+
|
119 |
+
Configurable through environment variables:
|
120 |
+
- Batch size
|
121 |
+
- Gradient accumulation steps
|
122 |
+
- Number of epochs
|
123 |
+
- Learning rate
|
124 |
+
- Scaling thresholds
|
125 |
+
|
126 |
+
## Getting Started
|
127 |
+
|
128 |
+
1. **Installation**
|
129 |
+
```bash
|
130 |
+
pip install -r requirements.txt
|
131 |
+
```
|
132 |
+
|
133 |
+
2. **Configuration**
|
134 |
+
- Copy `.env.example` to `.env`
|
135 |
+
- Configure CouchDB connection
|
136 |
+
- Set desired training parameters
|
137 |
+
|
138 |
+
3. **Launch Training**
|
139 |
+
```bash
|
140 |
+
python -m cloud_agents.cli train --num-epochs 3 --steps-per-epoch 100
|
141 |
+
```
|
142 |
+
|
143 |
+
4. **Monitor Progress**
|
144 |
+
```bash
|
145 |
+
python -m cloud_agents.cli status
|
146 |
+
```
|
147 |
+
|
148 |
+
## Ethical Considerations
|
149 |
+
|
150 |
+
- Resource efficiency through intelligent scaling
|
151 |
+
- Environmental impact minimization via workload-based scaling
|
152 |
+
- Distributed approach reduces single-point-of-failure risks
|
153 |
+
|
154 |
+
## Maintenance
|
155 |
+
|
156 |
+
This system is maintained as an open-source project. Users are encouraged to:
|
157 |
+
- Report issues and bugs
|
158 |
+
- Suggest improvements
|
159 |
+
- Contribute to the codebase
|
160 |
+
- Share performance metrics and optimization strategies
|
161 |
+
|
162 |
+
## Citation
|
163 |
+
|
164 |
+
If you use this system in your research, please cite:
|
165 |
+
|
166 |
+
```bibtex
|
167 |
+
@software{cloud_agents_2025,
|
168 |
+
title = {Cloud Agents: Distributed Training System for OpenPeerLLM},
|
169 |
+
year = {2025},
|
170 |
+
author = {Andrew Magdy Kamal},
|
171 |
+
url = {hhttps://huggingface.co/OpenPeerAI/Cloud-Agents},
|
172 |
+
note = {Distributed computing framework for training large language models}
|
173 |
+
}
|
174 |
```
|