Mentors4EDU commited on
Commit
29db1dc
·
verified ·
1 Parent(s): f2bab5e

Update MODEL_CARD.md

Browse files
Files changed (1) hide show
  1. MODEL_CARD.md +173 -158
MODEL_CARD.md CHANGED
@@ -1,159 +1,174 @@
1
- # Model Card: Cloud Agents for OpenPeerLLM
2
-
3
- ## Model Details
4
-
5
- - **Model Type:** Distributed Training System for Language Models
6
- - **Primary Purpose:** Training Large Language Models in a distributed environment
7
- - **Framework:** PyTorch with Ray
8
- - **Target Model:** [OpenPeerLLM](https://huggingface.co/OpenPeerAI/OpenPeerLLM)
9
- - **License:** MIT
10
-
11
- ## Intended Use
12
-
13
- ### Primary Use
14
-
15
- - Distributed training of large language models
16
- - Grid computing/distributed computing-based learning for tensors
17
- - Horizontal scaling of model training infrastructure
18
-
19
- ### Out-of-Scope Uses
20
-
21
- - Production deployment of models
22
- - Single-machine training
23
- - Real-time inference
24
-
25
- ## System Architecture
26
-
27
- ### Components
28
-
29
- 1. **Distributed Agents**
30
- - Lightweight worker nodes for distributed computing
31
- - Automatic scaling based on workload
32
- - Built-in fault tolerance and recovery
33
-
34
- 2. **CouchDB Coordination Layer**
35
- - Job distribution and management
36
- - State synchronization
37
- - Agent discovery and registration
38
-
39
- 3. **Tensor Operations**
40
- - Distributed gradient computation
41
- - Efficient parameter updates
42
- - Gradient averaging and clipping
43
-
44
- 4. **Training Orchestration**
45
- - Automated model checkpoint management
46
- - Dynamic load balancing
47
- - Progress monitoring and reporting
48
-
49
- ## Performance
50
-
51
- ### Scaling Characteristics
52
-
53
- - **Minimum Agents:** 2
54
- - **Maximum Agents:** 10 (configurable)
55
- - **Scale-up Threshold:** 80% utilization
56
- - **Scale-down Threshold:** 30% utilization
57
- - **Auto-scaling:** Yes, based on workload
58
-
59
- ### Resource Requirements
60
-
61
- - **Per Agent:**
62
- - CPU: 1 core minimum
63
- - GPU: Optional, supports fractional GPU allocation
64
- - Memory: Varies based on model size
65
- - Network: Reliable connection to CouchDB and other agents
66
-
67
- ## Limitations
68
-
69
- 1. **Network Dependency**
70
- - Requires stable network connectivity between agents
71
- - CouchDB must be accessible to all agents
72
-
73
- 2. **Scaling Limits**
74
- - Upper bound on number of concurrent agents
75
- - Network latency can impact synchronization
76
-
77
- 3. **Resource Management**
78
- - Requires careful monitoring of resource utilization
79
- - GPU memory management crucial for large models
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- - Uses the same training data as OpenPeerLLM
86
- - Supports distributed batch processing
87
- - Configurable gradient accumulation steps
88
-
89
- ### Training Procedure
90
-
91
- 1. **Initialization**
92
- - Model weights loaded from HuggingFace hub
93
- - Agents register with coordinator
94
- - Initial state distributed to all agents
95
-
96
- 2. **Training Loop**
97
- - Distributed gradient computation
98
- - Synchronized parameter updates
99
- - Regular checkpointing
100
- - Automatic agent scaling
101
-
102
- ### Hyperparameters
103
-
104
- Configurable through environment variables:
105
- - Batch size
106
- - Gradient accumulation steps
107
- - Number of epochs
108
- - Learning rate
109
- - Scaling thresholds
110
-
111
- ## Getting Started
112
-
113
- 1. **Installation**
114
- ```bash
115
- pip install -r requirements.txt
116
- ```
117
-
118
- 2. **Configuration**
119
- - Copy `.env.example` to `.env`
120
- - Configure CouchDB connection
121
- - Set desired training parameters
122
-
123
- 3. **Launch Training**
124
- ```bash
125
- python -m cloud_agents.cli train --num-epochs 3 --steps-per-epoch 100
126
- ```
127
-
128
- 4. **Monitor Progress**
129
- ```bash
130
- python -m cloud_agents.cli status
131
- ```
132
-
133
- ## Ethical Considerations
134
-
135
- - Resource efficiency through intelligent scaling
136
- - Environmental impact minimization via workload-based scaling
137
- - Distributed approach reduces single-point-of-failure risks
138
-
139
- ## Maintenance
140
-
141
- This system is maintained as an open-source project. Users are encouraged to:
142
- - Report issues and bugs
143
- - Suggest improvements
144
- - Contribute to the codebase
145
- - Share performance metrics and optimization strategies
146
-
147
- ## Citation
148
-
149
- If you use this system in your research, please cite:
150
-
151
- ```bibtex
152
- @software{cloud_agents_2025,
153
- title = {Cloud Agents: Distributed Training System for OpenPeerLLM},
154
- year = {2025},
155
- author = {Andrew Magdy Kamal},
156
- url = {hhttps://huggingface.co/OpenPeerAI/Cloud-Agents},
157
- note = {Distributed computing framework for training large language models}
158
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  ```
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ library_name: openpeerllm
5
+ tags:
6
+ - distributed-training
7
+ - cloud-computing
8
+ - language-model
9
+ - grid-computing
10
+ - openpeerllm
11
+ datasets:
12
+ - OpenPeerAI/OpenPeerLLM
13
+ pipeline_tag: distributed-training
14
+ mask: sequential
15
+
16
+ # Model Card: Cloud Agents for OpenPeerLLM
17
+
18
+ ## Model Details
19
+
20
+ - **Model Type:** Distributed Training System for Language Models
21
+ - **Primary Purpose:** Training Large Language Models in a distributed environment
22
+ - **Framework:** PyTorch with Ray
23
+ - **Target Model:** [OpenPeerLLM](https://huggingface.co/OpenPeerAI/OpenPeerLLM)
24
+ - **License:** MIT
25
+
26
+ ## Intended Use
27
+
28
+ ### Primary Use
29
+
30
+ - Distributed training of large language models
31
+ - Grid computing/distributed computing-based learning for tensors
32
+ - Horizontal scaling of model training infrastructure
33
+
34
+ ### Out-of-Scope Uses
35
+
36
+ - Production deployment of models
37
+ - Single-machine training
38
+ - Real-time inference
39
+
40
+ ## System Architecture
41
+
42
+ ### Components
43
+
44
+ 1. **Distributed Agents**
45
+ - Lightweight worker nodes for distributed computing
46
+ - Automatic scaling based on workload
47
+ - Built-in fault tolerance and recovery
48
+
49
+ 2. **CouchDB Coordination Layer**
50
+ - Job distribution and management
51
+ - State synchronization
52
+ - Agent discovery and registration
53
+
54
+ 3. **Tensor Operations**
55
+ - Distributed gradient computation
56
+ - Efficient parameter updates
57
+ - Gradient averaging and clipping
58
+
59
+ 4. **Training Orchestration**
60
+ - Automated model checkpoint management
61
+ - Dynamic load balancing
62
+ - Progress monitoring and reporting
63
+
64
+ ## Performance
65
+
66
+ ### Scaling Characteristics
67
+
68
+ - **Minimum Agents:** 2
69
+ - **Maximum Agents:** 10 (configurable)
70
+ - **Scale-up Threshold:** 80% utilization
71
+ - **Scale-down Threshold:** 30% utilization
72
+ - **Auto-scaling:** Yes, based on workload
73
+
74
+ ### Resource Requirements
75
+
76
+ - **Per Agent:**
77
+ - CPU: 1 core minimum
78
+ - GPU: Optional, supports fractional GPU allocation
79
+ - Memory: Varies based on model size
80
+ - Network: Reliable connection to CouchDB and other agents
81
+
82
+ ## Limitations
83
+
84
+ 1. **Network Dependency**
85
+ - Requires stable network connectivity between agents
86
+ - CouchDB must be accessible to all agents
87
+
88
+ 2. **Scaling Limits**
89
+ - Upper bound on number of concurrent agents
90
+ - Network latency can impact synchronization
91
+
92
+ 3. **Resource Management**
93
+ - Requires careful monitoring of resource utilization
94
+ - GPU memory management crucial for large models
95
+
96
+ ## Training Details
97
+
98
+ ### Training Data
99
+
100
+ - Uses the same training data as OpenPeerLLM
101
+ - Supports distributed batch processing
102
+ - Configurable gradient accumulation steps
103
+
104
+ ### Training Procedure
105
+
106
+ 1. **Initialization**
107
+ - Model weights loaded from HuggingFace hub
108
+ - Agents register with coordinator
109
+ - Initial state distributed to all agents
110
+
111
+ 2. **Training Loop**
112
+ - Distributed gradient computation
113
+ - Synchronized parameter updates
114
+ - Regular checkpointing
115
+ - Automatic agent scaling
116
+
117
+ ### Hyperparameters
118
+
119
+ Configurable through environment variables:
120
+ - Batch size
121
+ - Gradient accumulation steps
122
+ - Number of epochs
123
+ - Learning rate
124
+ - Scaling thresholds
125
+
126
+ ## Getting Started
127
+
128
+ 1. **Installation**
129
+ ```bash
130
+ pip install -r requirements.txt
131
+ ```
132
+
133
+ 2. **Configuration**
134
+ - Copy `.env.example` to `.env`
135
+ - Configure CouchDB connection
136
+ - Set desired training parameters
137
+
138
+ 3. **Launch Training**
139
+ ```bash
140
+ python -m cloud_agents.cli train --num-epochs 3 --steps-per-epoch 100
141
+ ```
142
+
143
+ 4. **Monitor Progress**
144
+ ```bash
145
+ python -m cloud_agents.cli status
146
+ ```
147
+
148
+ ## Ethical Considerations
149
+
150
+ - Resource efficiency through intelligent scaling
151
+ - Environmental impact minimization via workload-based scaling
152
+ - Distributed approach reduces single-point-of-failure risks
153
+
154
+ ## Maintenance
155
+
156
+ This system is maintained as an open-source project. Users are encouraged to:
157
+ - Report issues and bugs
158
+ - Suggest improvements
159
+ - Contribute to the codebase
160
+ - Share performance metrics and optimization strategies
161
+
162
+ ## Citation
163
+
164
+ If you use this system in your research, please cite:
165
+
166
+ ```bibtex
167
+ @software{cloud_agents_2025,
168
+ title = {Cloud Agents: Distributed Training System for OpenPeerLLM},
169
+ year = {2025},
170
+ author = {Andrew Magdy Kamal},
171
+ url = {hhttps://huggingface.co/OpenPeerAI/Cloud-Agents},
172
+ note = {Distributed computing framework for training large language models}
173
+ }
174
  ```